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1. I n t r o d u c t i o n  

A classical result in the theory of differentiability of functions is the theorem 
of Rademacher. It states that if the function f :  R"c'-',R m is Lipschitzian, then f is 
differentiable at almost all points of R" with respect to Lebesgue measure. We will 
study similar theorems for functions belonging to the Bessel potential spaces L~(R") 
and the Besov spaces A~'~(R"). 

In this paper we always consider differentiability in the ordinary sense. The 
p, q R n main result is that if the function fEL~(R ~) (or A k ( ) )  and if f satisfies a con- 

dition of Lipschitz type, then f is differentiable except on a set of appropriate capa- 
city zero, v. Section 3, Theorem 2 and Corollary 1. If kp<=n there exist e.g. 
Bessel potentials fEL~(R n) which are essentially unbounded in the neighbourhood 
of every point. An additional condition is therefore necessary to assure ordinary 
differentiability. Examples showing that our conditions and exceptional sets are 
best possible in a certain sense are given in Section 6. If ( k - 1 ) p  >n it is well known 
that if fEL~(R ~) or J~AkP'q(R"), then f has continuous derivatives. Therefore 
the investigation is restricted to the case (k-1)p<=n. Ordinary differentiability 
of Bessel potentials except on sets that are small in capacity have been studied also 
by Calder6n, Fabes and Rivirre [8] and by Sj6din [15]. Aronszajn, Mulla and 
Szeptycki [5] have studied a special pointwise derivative of a function redefined 
on an exceptional set. Bagby, Deignan, Meyers, Neugebauer and Ziemer have treated 
derivatives in the sense of Calderrn and Zygmund, v. [6], [9], [12] and [13]. 

In this paper notation and basic definitions can be found in Section 2, together 
with a survey of various forms of differentiability. The main results on differentiabi- 
lity are stated in Section 3 and proved in Section 5. Section 4 contains a study of 
the Besov capacities. In Section 6 we give examples showing that the exceptional 
sets are essentially as small as possible with respect to the capacity. In Section 7 
we discuss generalized Morrey spaces. 
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2. Notation and preliminaries 

2.1. Notation and basic definitions 

Let R", n ~ 1, denote the n-dimensional Euclidean space. Let LP(R"), 1 ~ p ~ co, 
denote the usual Lebesgue space of measurable functions on R" and let [I" lip 
denote the norm. The space of Bessel potentials L~(R") is defined by 

L~ (R n) : {G k �9 g[gE L p (R")}. 

Here G k denotes the Bessel kernel of order k>0 ,  v. [15]. The norm in L~(R") 
is given by I[Gk.gHk,t,=[[gI[p. For 0 < k < ~ ,  l < p < ~ ,  we define, for a compact 
set E c R "  the Bessel capacity 

Bk,, (E) = inf Iif11s p 

where the infimum is taken over all functions fECo(R"  ) such that f=>l  on E. 
C o denotes the infinitely differentiable functions on R" with compact support. 
The Bessel capacity has several equivalent definitions, v. [3] and [11]. A relation 
which holds except on a set E, Bk,p(E)=0, is said to hold Bk,p-almost everywhere 
(Bk, fa.e.).  

For  0 < k < l  the Besov or Lipschitz space AP, q(R ") consists ot all functions 
f for which the norm is finite, i.e. 

[,f[lk, p,q = []fl[p + { f R " f (x  + t)-- f(x)'J~' dt} l'q , Itl,+kq < co. 

For l ~ k < 2  the first difference is replaced by the second difference. For 
k > l  the space A~"q(R ") consists of those f for which 

k - l , p , q  

Here the derivatives are taken in the sense of distribution, v. [16], Chapter 5. 
For 0 < k < ~ ,  l<p<~o ,  l<q<=oo, we define for a compact set K c R "  the 

Besov capacity 
Ak, p, ~ (K) = inf JI fllk,,,q 

where the infimum is taken over all fCCo(R" ) such that . f ~ l  on K. The extension 
to all sets is made by 

Ak, p, ~ (E) ---= sup Ak, p, ~ (K). 
K c E  

If the function ~EA('~ 0 < y < k ,  then f = G k _ ~ . 7  t is well defined, i.e. 

f Gk_~(x-y) l~t'(y)l dy < ~  
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a.e. in R" and Ak,p,q-a.e. when p > l ,  v. Section 4. Corresponding results apply 
to Bessel potentials. We restrict this investigation to the case p > 1, as other methods 
are required for p--1 and weaker results expected, cL [5], Theorem 13.5. 

2.2. Definitions of and relations between different kinds of differentiability 

The following concepts of differentiability are to be used presently. A function 
f is differentiable (or has an ordinary derivative) at a point x0CR", if f is defined 
in a neighbourhood of x0 and there exists a linear function A = Ax0 from R" to 
R 1, such that 

If(x0 + t) -f(xo) - A (t)[ (2.1) sup 
o<l,l-~r Ill 

tends to zero with r. 
The following definitions are generalizations of the definition of differentiability 

at a point: 
A function f has a derivative at x0 in the LP-sense, l < = p < ~ ,  if there is 

a polynomial P:,o of degree one such that 

(r-n fitly_" [f(Xo + y)-- Pxo(Y)l" dY) lip = o (r) 

as r~0 .  This is equivalent to f belonging to the Calder6n--Zygmund class t~(Xo), 
which is the oliginal concept from [7]. 

Let B(a,r)={x] [x-al<r} denote the open ball and m(E) denote the n- 
dimensional Lebesgue measure of a set E. A function f is approximately dif- 
ferentiable at x0 if  we can write f(xo+y)=Pxo(Y)+R~o(y ) where P~o(y ) is a poly- 
nomial of degree one and if, for each e>0,  the set E,={y]  fRxo(Y)l~8[yl} has 
zero as a point of dispersion, i.e. 

rn(E,c~B(O, r))/r" = o(1) as r -~ 0. 

It is obvious that ordinary differentiability at a point implies LV-differentiability 
at that point. 

2.3. Definitions of conditions of Lipschitz type 

The conditions of Lipschitz type will be defined in this section. We begin 
with the property used in Theorem 1. 

Definition 1. Let xo~R" and let f be defined in a neighbourhood of xo. 
The function f has property (ll) at Xo if for every e>0  there are a 6 > 0  and 
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an t / ,0<t /Ns ,  such that 0<]X-Xo]<6 and ly-xl<rtlx-xol imply 

(2.2) I f ( y ) -  f ( x ) l  <- 5 Ix-x01. 

If  a function f has property (/1) except on a set of capacity zero, then property 
(/i) is weaker than f having a uniform Lipschitz condition everywhere. On the 
other hand, there exist functions satisfying a nonuniform Lipschitz condition, but 
not being differentiable on a set of positive capacity, v. Section 6. 

For the study of LkV(R ") and A~'q(R ") we define conditions corresponding 
to (/1) for f=Gk*g and f=Gk_~.7  j, in terms of the functions g and T. 

Definition 2. Let gCLP(R ") and let f=Gk*g be well defined everywhere in 
a neighbourhood of x0CR". The function f has property (/2) at Xo if for every 
5>0 there are a 6>0 ,  and an q, 0<tl<=5, such that 

(2.3) [f Gk(y)(g(Xo+t- y ) -g(Xo+t ' -y ) )dy  <- 5It[ 

whenever 0<[t[<f i  and ]t-t'l<q[t 1. 

Definition 3. Let 7tCA[,q(R ") and let f=Gk_~* ~t' be well defined everywhere 
in a neighbourhood of  x0E R". The function f has property (l~) at Xo if for every 
5>0 there are a 6 > 0  and an tl, 0<q<--e, such that 

(2.4) f L,l -I,It= 6 4 - ,  (y) ( 7' (Xo + t -  y ) -  7" (Xo + t' - y)) dy <- 5 I tl 

whenever 0<ltl<a and [t-t'l<rllt[. 
I f  condition (2.3) in Definition 2 is replaced by the stronger one 

(2.5) f lyl<_ltll2 Gk (y) [g (Xo + t--y)-- g(xo + t'-- y)[ dy <= e Itl 

then f=Gk*g has property (/3) at Xo. Property (/3) together with approximate 
differentiability at Xo ensures that f is well defined in a neighbourhood of )Co. 
This can be done in the same way for f=Gk-7* 71. 

3. Main results 

The differentiability results are of the Rademacher--Stepanoff type. Theorem 1 
provides a simple criterion of differentiability. It also serves as an explanation of 
the role played by the conditions of Lipschitz type, defined in Section 2.3, and as 
an iUushation of the method of proof of the following theorems. The technique was 
used by Federer in [10], Lemma 3.1.5. 
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Theorem 1. Let the function f be defined everywhere in a neighbourhood of 
x0E R". I f  

(i) f is approximately differentiable at Xo, 
(ii) f has property (6) at Xo 

then f is differentiable at Xo. 

Theorem 1 is applied to Bessel potentials and B ~ o v  functions in the following. 

Theorem 2. Let fCL~(R~), k > l ,  ( k -  1)p~n,  1 < p <  ~.  Let f=Gk*g,  gELP(Rn). 
For Bk_l,p-a.e. xER ~ let f be well defined in a neighbourhood of x. Then, for 
Bk- 1,p'a.e. xE R n, the following properties are equivalent. 

(i) f has property (6) at x, 
(ii) . / h a s  property (12) at x, 

(iii) f is differentiable at x. 

Theorem 3. Let fE A~" q (Rn), k > 1, ( k -  1)p <_- n, 1 < p  < co and 1 < q <= ~. Let 
f =Gk-r* ~, ~CA~'q(R~), 0<~:<min (1, k - l ) .  For Ak_l,p,~-a.e. xE R n let 
f be well defined in a neighbourhood of x. Then, for Ak-l,p,q-a.e. xER ~, the 
following properties are equivalent. 

(i) f has property (6) at x, 
(ii) f has property (l"2) at x, 

(iii) f is differentiable at x. 

For kp >n, the Bessel potential is a continuous function and Theorem 2 has 
the following corollary. 

Corollary 1. Let fEL~(Rn), k > l ,  n<kp<=n+p, l < p < o o .  Then f is dif- 
]erentiable at Bk-l,p-a.e. x. 

The problem of showing differentiability Ak_l,p,q-a.e. without an additional 
condition on ./" remains open for kp>n and p~q.  In [1], Theorem 5.3, Adams 
shows that Besov functions, fCA~,q(R1), l < k p <  1 +p,  are differentiable a.e. with 
respect to a related capacity. We summarize the results obtained for Besov capacity 
and Hausdorff measule. 

Corollary 2. Let f EAp'qrR~k ~ j, k > l ,  n<kp<n+p,  l < p < o o ,  l<q=oo.< 
(a) I f  q=p then f is differentiable at Ak-l,o,p-a.e. x. 
(b) For every e > 0  there exists a set E such that f is differentiable .['or all 

xER" except on E, Hn-~k-I~p+~(E)=O. 

The Bessel case kp<=n has been studied by Sj6din in [15], Section 4, With con- 
ditions similar to (/3) but of LP-type. The Bessel case kp>n was treated by 
Calder6n, Fabes and Rivi6re in [8] with Hausdorff measure as in Corollary 2(b). 
We have generalized their result in Corollary 1. 
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Remark 1. Let kp_<=n. If  property (Is) in Theorem 2 is changed to (la) then 
f is well defined and this assumption on f unnecessary, v. [17J, p. 10. It also applies 
to the Besov case, v. [18], p. 16. 

Remark 2. All results in Theorem 2 and 3 can be given pointwise instead of 
a.e. with respect to capacity, cf. [17] and [18]. 

4. Properties of Besov capacities 

4.1. For  0 < k < ~ ,  l < p < ~ ,  and l<q<_-~ we define the Besov capacity 
for a compact set K as 

Ak, p,q(K ) : inf [Ifl[~,p,q 

where the infimum is taken over all J~C o (R") such that f_-> 1 on K. The extension 
to all sets is made by 

(4.1) Ak, p,q (E) = sup Ak, p.q (K) 
K=E 

where K is compact. An outer extension of Ak,p,q is defined as 

A~,. , . (E) : in fAk, . , , (G)  

where G is an open set. We now give a different definition of  Besov capacity, 

A~,v,,(K) = inf llfl!ff, v,q 

> - 1  * where the infimum is taken over all f~A~ 'q such that f =  , Ak, v,-q-a.e, on K. 
These capacities are equivalent. This follows from Proposition 5.3 in [1], which 
we state here. 

Proposition A. For all compact sets K c  R" 

Ak, p,q(X) ~ A~,.,,(K). 

For 0 < 7 < k  we define for a set E a third form of  capacity 

A~,p,,(E) = inf[I ~lf~,.,, 

where the infimum is taken over all nonnegative 7' such that Gk-~* ~u---->l on E. 
We are going to use A ~ in much the same way as is done in [13]. k, p, q 

It is easy to verify that Ak,p,q, Ak, p, q "  and Ak, p, q ~  ale capacities, as defined 
by Meyers in [l 1], p. 257, with the exception that they are only quasisubadditive. 
I f  the sets E1 and E~ belong to a a-additive class of sets which contain the compact 
sets then 

(4,2) A~,p,~ (El w E2 ) <= const.  ( A~,p,q(EO + A~,p,q (E~)). 
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This is easy to show, using the method in [ll]. Now let A~,p,q be extended to all 
sets as in (4.1). Then these two capacities have the following relation with regard 
to null sets, of. [13], Lemma 3 and 5. 

Lemma 1. Let E be a set in R". I f  there exists a constant 7, 0<7 < k ,  such 
that Ak, p,q(E)-O then Ak, p,~(E)=O. 

Lemma 2. Let fCA~'q(R ") and let f =Gk_~. 7 / where k~CA~'q(R"), 0 < 7 <  
rain (1, k). Then Gk_r.g / is well defined, i.e. 

fR- Gk-7 (X-- y) 17' (Y)I dy < 

p 

for all x except on a set E with Ak, p,q(E)=O. 

Proof o f  Lemma 1. Let e>0. If A~,,,,~(E)=0 then there exists a function 
P'q where Gk_r~g>:l o n  E and IIgllv, p,q<e. Now HGk_r*gIlk,p,g< g>=O, gEA~ , 

const.e. Hence A'k,p,~(K)<const. e for every compact set K c E  and A'k,p,q(E)=O. 

Proof of  Lemma 2. Let E =  {x](Gk-,* fk~l)(x) =~} .  Now 

(4.3) A~,,,q(E) <= Af,,e,~{x[(Gk_,*/7/])(x) ~ a} 

{,(G --~)() ~} -~,tl~lfl '[,~'l, = A [ , , p , ~  x k - ~ ' *  x > <= = < a ~ , , p , q  ~ , P , q  

which tends to zero when aE W goes to infinity. The result follows from Lemma 1. 
To construct a function fr A~ ,q which is essentially unbounded in the neigh- 

bourhood of  every point, v. Section 6.5, we need a function (p=>0, ~oEA~ 'q such 
that (Gk_~.TJ)(0)=~. Take a sequence of test functions {~oi} for A~,p,~(E), 
where A~,p,q(E)=O, such that 

II~o~ll~,~.~ <= 2 -i  

P , q  v. (4.3). Now set ~0=~'~,~o i. If A~,,p,q(E)=0 then there exists (pCA~ , (p=>0, 
such that (Gk- r* rp)(x) = ~ on E. 

In [13], the following variant of Besov capacity is defined for a compact set 
E c  R" as 

B~'q(E) = infl[g[l~,,p,q 

where the infimum is taken over all nonnegative g such that Gk_~.g>=l on E. 
As the difference between the A~,p, c a n d  the B~'q-capacity is only a power of p, 

(4.4) B~,q(E) = 0 is equivalent t o  A~,p,q(E) = O. 

4.2. In this section we are going to work out the relations we need between 
Hausdorff measure and Besov capacity. This has been done for Bessel capacity 
in [1 I], Section 8. 
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Lemma 3. I f  l < p < ~ ,  l<q_-<o~, and kp<n, then there exists a finite positive 
constant c, independent of  r, such that 

(4.5) Ak, p,~(B(O , -,,)) <= cr"-kP 

for 0<r<_--l. 

Proof of  Lemma 3. Let f be a test function for Ag, p,q(B(O, 1)). Then we 
have f(x)=>l on B(0, l). This means that f(x/r)>=l on B(0, r ) .  Put  h (x )=  
f(x/r) and observe that for 0 < k < 2  )1. 

IIh[ik, p,~ = [Ih[]p+ ][h(x+t)+h(x-t)--2h(x)tl~ dt 
, ]tl,+kq �9 

By change of  variables, we have 

Ilhllg = f = [f(y)f  r" dy = r"llfllg 

and 

( L ,  Nh(x+t)+h(x--t)--2h(x)'l~ dt) p/q 
ltl.+~. 

__ rn_kp ( f llf(y+t)+f(y--t)--2f(y)lJ~ )"iq 
- to a- ]tl"+kq dt . 

Hence h ( x ) ~ l  on B(O,r),O<r<l,  and since 

n--kp Ilhl/E,p,q <-- const ,  r IlfOk, p,q 
it follows that 

Ak, v,~(B(O, r)) <= const,  rn-kVAk, v,q(B(O, 1)). 

The desired result follows. For  k=>2 the noim is defined as 

which gives the same result. 
The classical Hausdorff measure is defined as follows: Let h(r) be a positive, 

increasing function in some interval O < r < r l  and let lim,~0h(r)=O. If  E is an 
arbitrary set, then the Hausdorff measure with respect to h of  E is given by 

H h (E) = Rlim0 { i n f 2 ;  1 h (r~)} 
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where the above infimum is taken over all countable coverings of E by spheres 
B(x i, ri), rS=R. We note that Hh is a capacity, v. [11]. We do not know if the 
capacity Ak, p.~ is countably subadditive, but from Proposition 5.1 in [1], countable 
quasisubadditivity for p<=q is easily deduced. Then using Lemma 3 we find that 

Ak, p,q(E) <= const.  Hn(E) 

if E c R "  and h(r)=r "-kp. The following lemma shows the connection between 
Hausdorff measure and capacity, of. [1], Proposition 5.4. 

Lemma 4. Let kp< n. 

i) I f  Hh(E)=O,h(r)=r "-kp, then dk,p,q(E)=O when p<=q. 
(ii) I f  Ak, p,q(E)=O then Hh(E)=O,h(r)=r "-kp+" where e:>O. 

P,~ " c  P " >0,  [19], p. 478, Proof ofLemma 4 (ii). As A k (R)  Lk_~12p(R ) for e v. 
we have 

(4.6) Bk_,/2,,p(K) <= Ak, p,q(K) 

for all compact sets K. Hence Bk_,/2p, p(E)=O, From [11], Theorem 22, p. 290, 
we deduce that Hh(E)=O,h(r)=r"-(k-"/2P)P+'/~=r"-kP+" and the lemma follows. 

5. Proofs of  the theorems 

5.1. Proof  of  Theorem 1 

Let x0 be a point where f has property (ll) and f is approximately differen- 
tiable. Let 0 < e < l / 2 .  Then from condition (ll) we have a 61>0 and an t/, 
0 < q ~ s ,  such that IX-Xol<61 and ly-xI<rllX-Xof imply 

l f(y)-f(x)] <= e IX-Xol. 
Let 

W = {Yllf(Y)--f(xo)-- A (y-- Xo) l ~ ~ [Y-- Xol}. 

There is a 62>0 such that 

m (B(x0, r)\W) 

whenever 0<r-<62. Let 6=rain(61,62) and take xEB(xo, 6-rl6) and 

r - -  < 6 .  
1-~1 
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t/r t/r 
Observe that B (x,-~-)cB(xo, r) as IX-Xol+-~-<r and that B (x,-~--1c~Wr 

Now we can choose yEB(x,~@)c~W andwein fe r  xEB(y,t/--2;)cB(y,t/[x-xo] ) 

Then 

l y _ x  I <= t/r _ t~ [x--xo[ 
2 2 l--t/  - -  < t/tx-xol < ~lx-x01 = . 

If(x) -f(Xo) - A ( x -  Xo) l ~ If(Y) -f(Xo) - -  A ( y  - x0) l 

+ I f (x ) - f (y ) I+ IA(x-y) l  <= ely-Xol +e IX-Xo! 

+ c l x -  yl <~ 2~lx-x01 +(~+c)~lX-Xol 

which shows that f is differentiable at x0. 

5.2. Lemmas for the proofs of  Theorem 2 and 3 

The notion of approximate differentiability is essential as a technical aid when 
we prove differentiability. The following lemmas contain a combination of results by 
Bagby, Ziemer and Neugebauer. 

Lemma5 .  ( a )Le t  gELP(R"), l < p < ~ ,  and k > l .  I f  (G~.[g[)(Xo)<~, 
f l=k -1 ,  k and i f  

1 
d x  0 a s  r 0 rn-(k-1)p 

then f =Gk~g has a derivative at x o in the LP-sense. 
(b) I f  the function f has a derivative at Xo in the LP-sense, p >= 1, then f is 

approximately di fferentiable at Xo. 
The corresponding "quasi everywhere" result is stated in Lemma 6. 

Lemma 6. I f  )rE L~ (R n) (or A~' q (an)), 1 < p < co, 1 < q_<- ~,  k > 1, then f is 
approximately differentiable Bk_l,p-a.e. (or Ak_l,p,q-a.e ). 

Lemma 5 (a) follows from the remark on p. 198 in [7], v. also [6], p. 133. Lemma 
5 (b) is Lemma 4.4 in [6], p. 140. 

Proof of  Lemma 6. If  fEA~'q(Rn), then fEtl(x) except on E, B~'q(E)=O. 
This is shown in the proof of Theorem 3, p. 301 in [13] V. also [18]. By (4.4) the 
corresponding capacity A~,p,q(E)=0. Then by Lemma 1 and Proposition A, 
Ag,p,q(E)=0. If  fCtf(x),p>=l, then f is approximately differentiable at x. This 
is Lemma 4.4, p. 140 in [6] and Lemma 6 is proved. 
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To prove differentiability "quasi everywhere", we use the following well-known 
lemma. For k - 0  it can be found in [16], Ch. 1 and for other values of k in [6], 
p. 134. 

Lemma 7. Let fELP(Rn),p>:I and O<=kp<n, then there exists a set E c R "  
with Hh(E):Bk,p(E):O where h(r)=r "-kp, having the following property: 

(i) I f  k >0,  

lim ~ f If(x)l" dx = 0 for all xoER'~E. 
r-+O r - p J B ( x o ,  r) 

(ii) so+ k=O, 

7 L<.o,., l/(x)-/(:,<o)l" dx = 0 for all xoER"\E. 

5.3. Proof of Theorem 3 

5.3.1. We choose to prove Theorem 3, as the proof  of  Theolem 2 is similar, 
but less interesting. Let fEA~,q(R'), k > l ,  (k-1)p<:n, l < p < ~ o  and l ~ q  <-oo. 
Let f = G k _ r .  T, TEA~'q(R ") where 0 < 7 < m i n  (1, k - l ) .  Lemma 2, Section 4.1, 
shows that (Gk_~_p.]Tl) (x0)<~ for /3=0, 1 except on a set E where 
A~_l,p,q(E)=0. Then from Proposition A we get Ak_l,p,q(E)=O. Using Lemma 6 
in Section 5.2, we can also choose E such that f is approximately differentiable 
at every point in CE. 

5.3.2. From Theorem 1 and Lemma 6 it follows that (i) implies (iii). In this 
section we are going to prove that (ii) implies (iii). Consider the set E in Section 
5.3.1. We take an xoECE, fixed but  arbitrary, such that f is well defined in a 
neighbourhood of x0 and 

(5.1) (Gk_r_p* [TI)(x0) < ~  for /3 = 0, 1, 

(5.2) f is approximately differentiable at x0, 

(5.3) f has property (I~) at Xo. 

The method of p loof is  basically the same as in Theorem 1. Choose e, 0 < 5 <  1/2 
arbitrarily. From (I~) we have a 61>0 and an ~, 0<~_-<s, such that 1t[<61 
and It-t ' l<qltl  imply 

f Gk-r(Y)(T (X~ + t--y)--T(Xo+ t'-- y)) dy[ <= ~ltl. 
Let 

E, = {Xo+t'i l f(xo+t')-f(xo),A(t ')[ <-~lt'[ and (G~_~. Itel)(x0+t ') <<~}. 
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As in the proof  of Theorem 1 we choose t' such that xo+t'CB(xo+t, ~/Itl)r~E~, 
v. [18]. 

To show that f is differentiable at Xo we have to show that 

(5.4) It[ --1If(x0 + t) - f ( x o  + t')I 

tends to zero as [t I tends to zero. By assumption, we have absolute convergence 
of  the integrals in (5.4). Decomposition of the integrals gives 

(5.5) [t]-l]f(Xo+t)-f(xo+t')[ = ]t]-X]Gk_r~ T)(xo+t)--(Gk_r* T)(Xo+t')] 

]/]-1 f]y[~-21tl T(x~ 

+]t[-x ft~t>21tl T(x~ y)(Gk-~(t--Y)--Gk-r(t'--Y))dy = 11+12. 

First we consider I2, cf. [2], p. 878. We get 

Is <= It[-x f 17J(x0 +y)] IGk_~(t--y)--Gk_~(t'--y)] dy 
lyI>2It[ 

<-]tl-lflyi>sl,t[ (Xo+y)].~i=l lt~-t2[ 0<0t<lsup ~ G k _ r ( - - y + t + 0 i ( t - - t ' ) )  dy 

1 
<= ecl fsi,l<lrl< 1 [~(x0+y)]  [yl,_~k_~_l) dy+ecz f  lyl~_l I~(Xo-t-Y)le -clrl dy 

observing that ]t~-t~l<=]t-t'l<=elt[ where i=1  . . . .  , n. Each term tends to zero 
when e tends to zero as the integrals are convergent. 

The integral 11 remains to be consideled. Change of variables gives 

11 = [t[ -1 ~(x~ ~(x~ dy 

<_- It[ -1 f lrl~_lttls (~ (Xo + t -  y)-  ~ (Xo + t'-- y))Gk_~(y) dy 

+ltt-l f [~(Xo+t-ylGk_r(y) dy [t[12<=lY[<=3[t[ 

+ Itl-lf ]~(Xo+t'--y)[ Gk_~(y ) dy = 111+11s+113. 
[tll2<=[y[<=7[t[lS 

Well known properties of the Bessel kernel (v. [16], p. 132) and a change of  variables 
give the estimate 

/as <-- clltl-l f [e(Xo+t--y)[ lyl -"+k-~ dy ItIl~-lyl<=zlti 

<= csltl-l f l,l/s~t,l~t,i ]'e (Xo + t -  y)l dy 

<= Cs fl~l~,l,l~ I ~ ' ( x 0 - y ) [  lyl - ' + k - ~  dy. 
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As (Gk_~_l*lTJl)(Xo) is convergent, Ijz tends to zero with It I. The integral I~3 
is estimated in the same way. As f has property (l~), Ill  tends to zero when It I 
tends to zero. This completes the proof of  the fact that (ii) implies (iii). 

5.3.3. In this section we prove that (iii) implies (ii) in Theorem 2, i.e. differen- 
tiability of  f = G k - ~ * ~  at x0 implies that f has property (l~) at x0. That (iii) 
implies (i) follows in the same way. Choose e > 0  arbitrarily. 

There exist a linear function A and to the e > 0  a 5 > 0  so that I x - x 0 [ < 5  
implies 

l f (x ) - f (Xo)-  A (X-  Xo)I <= e ]X- Xo]. 

Now take t such that lt]<6(1+e)-l<5 and then t" such that [t-t'l<q]t], 
where ~/ is chosen such that 0<~/~e.  We find that 

lt'l <_ (~+l)I t  I -<_ (~+l)Lt I < 5. 
Consider 

fl,t -I,l   t-y)- r-y))dy l 
<= 

+ - f a .  Gk-v (Y) ~ (Xo + t" -- y) dy + f R -  Gk-v (y) ~ (Xo -- y) dy + A~o (t')] 

+ [-- flyl> ItJl2 Gk-~ (y) ~ (xo + t-- y) dy + A~o (t) 

f + Irl>ltI/2 Gk-~(Y)~(x~ --y)dy--A~o(t') <= ~[t[§247 <- c~[t[. 

The estimate 

flyl>ItIl~ Gk_~(y)~(Xo+t-y )dy-  f ly[>ltl/2 Gk_~(y)~(Xo+t'-y)dy[ <- celt[ 

follows from Section 5.3.2 in the proof  of  Theorem 3. This completes the proof  of  
the theorem. 

5.4. Proof of Corollary 1 

We consider the Bessel potentials f = G k . g ,  gELP(R"), kp>n and l < p < ~ .  
Then Gk~L p', l ip+lip '=l ,  so that Gk* lg[ are finite continuous functions, v. [2], 
p. 879. Now we can use the method of the proof  of  Theorem 3, v. Section 5.3.2. 
Only the integral corresponding to 111 needs to be considered. This is the "bad"  
part of  

(5.4) It[-l[f(xo+t)-ffxo+t')[ = ltI-1](Gk*g)(xo+t)--(Gk*g)(xo+t')t. 
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Estimating the integrals above as in Section 5.3.2, the only remaining part  is /11, i.e. 

Itl -~ t--y)-- g (Xo+ t'-- y)) Gk(y) dy 

Itl-l f lyl~ltl/2 Ig(Xo+ t-Y)l Gk (y) dy + ltl-x fl,l~l,i/~ Ig(xo + t'-- y)l Gk (y) dy. 

The last two terms are treated in the same way. Using H61der's inequality we get 

1/p l y[(- ,  + k~p" dy  )1If <= c[t[-~(flyl~l,1/2[g(Xo+t-y) f dy) 

<= c([tl-"+(u-1)P f l~I~2t,t [g(x0 + s)l" ds) tip, 

which tends to zero when It[ tends to zero, v. Lemma 5. The case k>=n can be 

taken care of  as in [17], p. 15. 

5.5. Proof of Corollary 2 

For  the case kp>n we consider the Besov function f = G k _ ~ ,  7JCA~'q(R"). 
Then 7~L~,  y>f i  (v. [19], p. 441), and hence by Sobolev's theorem (v. [4], p. 97) 

1 1 fl 1 7 ~PEL r, -- > - -  ___  
r p n p n 

When ( k - v )  r>n we have Gk_~EL r', 1/r+ 1/r'= 1. These two inequalities involving 

r give n np - -  < r <  . Suchan r existswhen kp>n. We see that Gg_r~7  t is 
k - 7  n--~p 

a finite, continuous function, cf. [2], p. 879. 
Part  (a) is proved for n > l  as in [1], Theorem 5.3 for n = l .  Part  (b) is p .oved 

as Corollary 1 using ~EA~'~(R")cLP(R"). For  an Xo where (Gk_r_p*l~[)(x0)<oo, 
f i=0,  1 and wheie f is approximately differentiable we prove differentiability as in 

Section 5.3.2. For  the "bad"  part  o f  the integral we estimate 

itI- l f lyl~=ltll2 I ~ (Xo + t -  y)l Gk_~ (y ) dy 

~= c(Itl-"+(k-l-~)P; I~(xo+s)l p ds f  Ip. 
alsl~_21t 1 

This tends to zero with It I according to Lemma 7 except on a set E, 
H,_(k_I_~)p(E)=O. Here 7 can be chosen as small as we wish. The assumptions 
on f are valid A,_l,p, ca .e . ,  hence H,-(k-a)p+~-a.e. This completes the p roof  

of  the corollary. 
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6, Examples and counterexamples 

Examples showing that our conditions and exceptional sets are essentially as 
good as possible are presented in this section. The examples are stated in the Besov 
case. The Bessel case is almost identical cf. [17]. 

6.1.1. The first example shows that if  fCL~(R") or fEA~'q(R"), kp<-n, the 
Rademacher--Stepanoff Theorem cannot be generalized to yield differentiability 
Bk_1,p-a.e. or Ak_l,p,q-a.e. We construct a function fEA~'q(R ") satisfying 
a uniform LiPschitz condition on a generalized Cantor set E of positive capacity. 
The function is not  differentiable at any point of E. 

6.1.2. We start with the constluction of  the set E. Given k > l , p > l  and 
( k -  1)p ~n ,  we use the method in [2], p. 899, to construct the set E with Bk-a, p(E) > 0  
and Ak-l,p,q(E)>O, where q<=p, v. [1], p. 64. 

Let E0=[0, 1] and for w < ( k - 1 ) p < n  let /0=1, lj-2lj+l>O and 

n - - j - -  
l j = 2  ,-w,  j = 0 , 1 , 2 , . . . .  

Given Ej, Ej+I is formed by removing from the center of  each intervall Ej an 
open intervall Ij of  length 

rj = lj--Zlj+l. 

We arrive at  a set E = AT=oE~ where E~ is the Cantor product of  n copies of  Ej.  
Denote each of the 2 "j "cubes" I~ by Rij and the center of  Rij by x~j. 

6.1.3. To construct a function which is non-differentiable on the set E we use 
n p n p , q  n an example by Sj6din. Choose functions f j  in C O ( R ) = L k ( R  )hA  k ( R )  such 

that O<-f~j<=rj with the maximum value 

(6.1) f j  (x/j) = rj 
and the properties 

(6.2) l[fjllk,p,q = c2-J (n+ n(n+P)n_w +1) 

(6.3) suppJij = B(xij, r j~4). 
To get these conditions, take {xr as the set K in the definition of  the capacity 
Ak, p,q in Section 4.1. As Ak, p,q({xij})=O, kp<=n, the norm [If~s'l[k,p,~ is at 
our disposal, cf. [18]. 

- ~ ~"~ P'q (6.2) yields Define f -~=o ~ i= l f~J "  Then fCA k , as 

.~__ S,~ S,~"J _< S,~ 2 - j < c o .  (6.4) [IfJIk, p,q -- ~ j = o ~ i = x  [[fjl[k,p, q ---- ~-~j=0 

When xCE we have f ( x ) = 0 .  When x ~ E  at most one function f j (x)~O. Take 
xo6E arbitrarily and let t ~ 0 .  Then for some i , j  

(6.5) lf(xo+t)-f(xo)l : IAj (x0+t ) l  ~ r j  <_- 4It[ 
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as It] ~rfl4 when f~j differs from zero. Hence f satisfies a Lipschitz condition 
on E. 

6.1.4. We prove that f is not differentiable on E. Take xoEE arbitrarily 
and take a subsequence of {x,j}~,j, defined in Section 6.1.2, converging to x0. 
For every chosen Xij w e  choose the next from x~+l, 1, ...,x~+1,2..+1> , such 
that the distance to Xo is as small as possible. Hence 

-~ 1 If(x,j) -f(Xo)l = ]f~j(xij)~ > rj = ( 1 - 2  , - w ) _ _  > 0. 
Ix,j-Xol Ix j-Xol - l/- tj 

w 

We have used (6.1) and Ix , j -xoL<-r  where ( 1 - 2  . - - -w) / f f>O as w < n .  This 
proves that the differential of f cannot be zero. On the other hand the L p derivative 
is zero for each xoEE. To show this, take r such that 2-M<=r<=2 -M+~ and 
observe that in B(xo, r), xoCE, there are only functions f ~ # 0  in cubes Rij with 
side length rj<=2 -M+=. Hence 

w j_> n-w( )) 
M - 2 - H o g ( 1 - 2  ,-w = 3/o 

n 

and we see that M 0 - ~  oo as M ~  oo. We have 

r-"-P f [f(x)f dx <=5'7 S'.r'"-P 1" ]fij(x)lPdx 
B(xo, r) ~.-q = o , ~ t  d B(Xo, r) 

<= ~'~=Mo 2"J+~t("+P)[lfjjl[~ <= c~7=~t 0 2-J 

using (6.2). This tends to zero as M-+ ~, i.e. r-~0. I f  f were differentiable on E, 
then the L p and the ordinary derivative would be equal. Since they are not, f is 
nowhere differentiable on E. 

6.2. The second example is a function fEA~'~(R"), n>=kp, q_>-max(p, 2), 
which is nondifferentiable on a set E where Ak_l,p,q(E)=O and Ae_l+~,p,q(E)>0. 
On the set E f satisfies a uniform Lipschitz condition. In R " \ E  f is differentiable 
and has property (/~) at points where f=Gk-r* 71 is well defined in a neighbourhood, 
The construction of the set is made as in Section 6.1.2, with w=(k-1)p, v. [18], 
Section 5.1. Then Hh(E)<oo where h(r)=r "-(k-*)~, (k-1)p<n, and Bk_l,p(E)=0, 
v. [11], p. 288, Theorem 21. From (3.4) and Lemrna 4 in [13], p. 297, it follows 
that Ak_l,p.q(E)-O at least for q ~ m a x  (p, 2). Proposition A in Section 3 gives 
Ak_~,p,q(E)=0. For the generalized Cantor set E it follows from Theorem 5.1 
in [2], p. 899, that Bk_~+,/z,I,(E)>O. Then sup/~=EAk_l+,.p,~(K)>0 and thus 
A i - l + ~ , p , q ( E ) > O .  

The function f is constructed as in Section 6.1.3 and has the same properties. 
It is easy to see that f has property (l~) where f=Gk-r* 7 j is well defined. 
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6.3. The third example is a function fCA~,q(R ") which is differentiable, but 
which does not, for any 6 >0,  satisfy a condition like 

If(x0 + t)-f(xo) - A  (t)l <_- O (Iti l+a) 

on a set of  positive Ak_l,p,q-capacity. The conshuction is the same as in 6.1, 
except that the maximum values of f-~'~-/-~j=0.~i=lJij~="s Tz ale 

f i j  (xi~) = rj In -~- ---- o (r j) 

as r f -O,  v. [18], p. 28. 

p ,  q n 6.4. The fourth example is a function (p6A k (R),  (k-1)p<n, which is non- 
differentiable on a set E where Ak-l,p.q(E)=O and Ak_l+,,p,q(E)>O,e>O, 
v. [18], p. 29. Note that the construction of  the set E in our first example is possible 
for (k-1)p<n, i.e. also for kp>n. Here lj is defined by 

l~ -(k-1)p l n ~ -  - -2  -"j, s > p .  

We have to modify our earlier construction of the function q~ as Ak,p,q({x~j})>O 
for kp>n, v. [11], Theorem 20. Choose ~o~j=0 for ]x-xij]>rJ4. Take ~oij~C ~ 
and ~o~j(xi~)=r j.  The derivatives are bounded, say lDt~%(x)l<_-8 and 

Itl [Dl q~ij(x + t)-Dl q~ij(x)[ <= 8 rj . 

Now for ~o(x)=~T=o~,~o~j(x  ) we can prove non-diffelentiability on E and that 
~0CA~'q(R"), v. [18], p. 29. 

6.5. Let l < p , q < ~ o ,  O<kp<-n. There is a function f6A~'q(R ") which is 
essentially unbounded in the neighbourhood of every point and then f is non- 
differentiable everywhere. Choose P ~ ~oEA~' , ~0~0, such that (Gk_~,~p)(0)=oo, 
0 < ? < m i n ( l , k - 1 ) ,  cf. Section 4.1. Put 7~(y)=~'=~2-~q~(y-a,)where {a~} 
is a dense set in R" and put f=Gk-~*~,  cf. [16], p. 159. 

7. A remark about differentiability conditions 
in terms of generalized Morrey spaces 

Consider gELP(R ") and f=Gk*gEL~(R"), k > l .  Let gEE"P(R"), a gene- 
ralized Morrey space, see [14] for the definition. 

Convolution of a function gEE ''p, -n/p<=cr ~>=l-k and kp<=n, with 
the Bessel kernel Q gives that the resulting function Gk*g is diffelentiable ( k - 1 ,  p)- 
a.e. This is proved by showing that for gEE 1-k'p, Gk*g has property (12), v. [17], 
p. 28. Hence Gk*g is diffelentiable foi every Xo where (Gp* lg])(x0)< o% f l=k-1 ,  k, 
v. [17]. 
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