On a differential equation arising in a Hele Shaw
flow moving boundary problem

Bjoin Gustafsson

1. Introduction

The present paper is mainly devoted to the following differential equation:

Given f({), analytic and univalent in a neighbourhood of |(|=1, find f(¢, 1),
analytic and univalent as a function of { in a neighbourhood of |{|=1, continuously
differentiable with respect to t for t€R in an interval containing =0, salisfying

) Re[f((, -4 ¢, D=1 for [ =1
and f((,0=£() (for |{j<l). In (1) f and f’ denote derivatives with respect to
t and [ respectively.

This differential equation arose in the paper [5] by S. Richardson as describing
the solution of a two-dimensional moving boundary problem for so called Hele
Shaw flows. The moving boundary in question then was the boundary of the domain
Q=f(D,t), where D={{cC: |{|<1} and ¢ is time. Richardson did not prove
existence or unicity for solutions of (1). However, this, essentially, was done in [10].
The existence of solutions was proved by using an iterative process, the proof of con-
vergence of which was fairly complicated. Unicity was proved only with respect
to solutions which depended analytically on 7.

The aim of the present paper is primarily to give a more elementary proof of
existence of solutions of (1) in the case that f({) is a polynomial or a rational func-
tion. In that case (1) can be reduced to a finite system of ordinary differential equa-
tions (in #) and this system has a unique solution by standard theory. This solution
is a polynomial or a rational function (as a function of {) of the same sort as f({).
(Theorem 4.)

We will also consider a generalization of the differential equation (1) in order
to prove a result on the “moment map”

(2) f’—’(COa €1, Cas )7
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where
cnszgz"dxdy, Q = f(D)

({c,} are the “analytic moments” of the domain Q= f(D)). We prove (Theorem 6)
that when (2) is viewed as a mapping from the set of univalent polynomials of degree
=r, normalized by f(0)=0 and f’(0)=0, it is an immersion, i.e. its Fréchet
derivative is one-to-one.

Treatments of the moving boundary problem lying behind (1) by other methods
are found in [4], [5], [7] and [8]. For the hydrodynamical background and the deriva-
tion ot (1), we refer to [5] and [3]. ([3] is an extended version of the present paper.)

2. Treatment of the differential equation

a) Some notations used
D(a; r) = {z€C: |z—a| <r} (if a€C, r=0),
D=D(;1),
P = Cu {c} = the Riemann sphere.

If QcC is an open set

H(Q) = {holomorphic functions on Q},

M(Q) = {meromorphic functions on Q}.
For an arbitrary set ECC let

H(E) = {functions, holomorphic in some open set containing E}.

In H(E) two functions are identified if they agree on some neighbourhood
of (i.e. open set containing) E.

0= {fcHD): f’#0 on D},
0, = {fc0: f(0) =0},
0, = {f0: f0) =0 and f(0) >0},
H(D), = {fcHD): f(0) =0 and Im f/(0) =0}
If f is a function meromorphic in an open set UCP we set

Divy f=the divisor of f in U
=the formal sum of the zeroes of f (occurring with plus signs) and poles
(with negative signs), both counted with multiplicities,
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P divy f=the pole divisor of f in U
=the formal sum of the poles of f in U counted with multiplicities
(and with plus signs),

Z divy f=the zero divisor of fin U
=the formal sum of the zeroes of f in U (counted with multiplicities).

Thus Divy f=Z divy f—P divy f.

When U=P we just write Div in place of Divp etc.
The set (or abelian group) of divisors is partially ordered in a natural way,

namely so that a divisor ] n;-({;) (n; integers, (;¢P) is non-negative,

T n;-({)=0, if and only if n;=0 for all j, assuming here that all the {; are
j=1"% J J J

distinct. Then D,=D, (D,, D, divisors) means that D;—D,=0. With respect
to this partial order the concepts max (=sup) and min (=inf) make sense and will
be used.

A&, and 2. are defined in Section 2. c.
* will denote the reflection map in dD and various associated maps, namely,

¢* =1/ for points (€P,

(S (€)= Z;mi- (L) for divisors (»; integers),
E* = {{*cP: (cE} forsets EcCP,

F*({) = F(¢*) for meromorphic functions F.

b) Reformulation of the equation

In terms of the notations introduced above, we now reformulate our problem
as follows.

Given f,€0,, findan ¢=0 and a map
(—& &>t~ f,€0,

such that the function f({, t)=£,(0) is continuously differentiable in a neighbourhood
of DX(—e,z¢) and such that

@ Re[f((, -4/ ¢ Dl =1

holds for (€dD, tc(—¢, &).

The requirement f,€0, means that the mapping function f; shall be normalized
(£,(0)=0, f{(0)>0), analytically extendible across 9D and locally univalent on
D(f;#0 on D). Since f; originally appeared as a mapping function it is natural
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to require it to be univalent on D (or D). However, in the mathematical treatment
of (3) it makes no difference whether f, is univalent on D or merely locally uni-
valent and the latter condition being simpler to work with, we have preferred to
use that one. Observe also that if f; actually is univalent on D and ¢-f; solves
(3), then if ¢=0 is chosen small enough also all f; are univalent on D.

The goal of Section 2 is to show first that (3) can be written in the form f=%(f)
for a suitable operator & (Proposition 1) and then that & can be viewed as a smooth
vector field on certain spaces of rational functions (these spaces regarded as dif-
ferential manifolds). The existence of a solution of (3) when f; is rational then
follows immediately (Theorem 4).

Proposition 1. Given f€0, the equation

O] Re[(f(D)-gQI=1 for (oD

has a unique solution g in H(D),. This solution is given by g =% (f) where F : 0,—~
H(D), is the operator defined by

NP 1 y g 2+ dz
®) FHOQ=UQ 5 [, @ —

z—{ z°

Proof. We transform the problem into a statement about two other analytic
functions, F and G, related to f and g as follows.

(6) FO =50

) 6 =22

and, conversely,

® JQ = [iF()dz
® g =1G().

Then the first statement in the proposition transforms into:
Given Fe H(D), non-vanishing on D and with F(0)=0, the equation
109 Re[F-G]l=1 on 6D
has a unique solution G in H(D) satisfying Im G(0)=0.
On dividing by |F|? in (10) we get another equivalent formulation:
Given FEH(D), non-vanishing on D and with F(0)>0, the problem
(11) Re[G/F}= [F|™2 on 0D
12) G/FEH®D), ImG/F(0)=0
has a unigue solution for G (or for G[F).
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Now in this last formulation the statement is directly seen to be true. Namely,
the solution for G/F of (11), (12) is

G/F = 2[|F|~*]

where & stands for ““the Poisson integral of”. Explicitly

1 LG =L pmpens Gtla= L f ro 2L

Actually (13) only gives G/F as an analytic function in D, but it is easy to
see that G/F extends analytically across gD as required in (12). In fact, the func-
tion |F(z)|™® in the last integral of (13) can be replaced by (F(2)F*(2))~*, which
is holomorphic in a neighbourhood of D, and then the path of integration for
that integral can be moved slightly out from dD showing that the last member
of (13) is an analytic function of ¢ in some neighbourhood of D.

Thus the statement (11)—(12) is true and so also the statement (4) of the propo-
sition is true. The expression (5) for the (hence well-defined) operator % follows
from (6), (7) and (13). This proves the proposition.

Theorem 2, Let f€0,.
(i) Let U be any open comnected set containing D. Then if fe H{U) F(f)¢
HU). Thus & is well-defined as an operator
F. OnH(U) - HU).

Moreover, with H(U) provided with the topology of uniform convergence on compact
sets, this operator is continuous.

(ii) If f is a polynomial of degree =r then sois F(f).
(iil) If 1 is a rational function with

(14) Plef< 2} 1 J (C‘])_‘— nO (OQ)
where ;¢ C\D, n;=0 and ny=1 then F(f) is a rational function with
15 Pdivg"(f)§2;=1(nj-l—1)-(§j)—l—n0-(oo).

Proof. (ii) is a special case of (iii) so only (i) and (iii) need to be proven. Returning
to the functions F and G used in the ptoof of Proposition 1, the relation

=F(f) (for fc0,, gcHD))

Re[F-G]=1 on 4D

for F and GE¢H(D) satisfying F(0)>0,Im G(0)=0, F non-vanishing on
D and related to f and g by (6) to (9). Apart from the continuity statement in
(i), (i) and (iii) now follow from the following lemma.

is equivalent to
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Lemma 3. Suppose F, G¢ H(D) satisfy
(16) Re[F-G]=1 on D
and that F has no zero on D. Then

@) if FEH(U) then GeH(U) (for UoD open and connected),
(i) if F is a rational function then so is G, and

an PdivG=PdivF.
How the theorem (except for the continuity statement) follows from the lemma:

() If feH(U) then FEH(U) and, by (i) of the lemma, G¢H(U). Hence
gEH(U) by (9).
(iii) Suppose f is rational with
Pdivf§2;=1 nj- () +ny- (=)
(where ny=1). Then F=f" is rational with
PdivF=2>7_ (n;+1)-(()+(ng—1)- (=)

and it follows from (9) and from (ii) of the lemma that

Pdivg =PdivG+1-(=) = 37_, (n;41) - () +10+ ()
as claimed.

It remains to prove the lemma and the continuity assertion in the theorem.
Proof of the lemma. Relation (16) can be written
(18) Re[F*.G—1]=0 on oD.
This shows that the function
(19) H=F*.G-1
which is holomorphic in a neighbourhood of 0D extends by reflection to be analytic
in a domain which is symmetric with respect to dD. In fact, (18) shows that

(20) H= —H™* on gD, and hence identically,

so that if H is a priori analytic in (say) ¥V (20) defines an analytic extension of
itto VuV™

To prove (i) of the lemma we observe that a priori the function H defined by
(19) will be holomorphic in U*ND (F¢ H(U), G¢ H(D)). Thus it extends analytically
to (U*nD)u(UnD*) (=UnU*, in view of U>D), in particular to UnD*. Since
F* is holomorphic and has no zeroes in UnD* it follows from (19) that G is
holomorphic there. Thus G is holomorphic in U=(UnD*)UD, and (i) is proven.
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To prove (ii) of the lemma observe first that for F a rational function, H defined
by (19) is meromorphic in D, hence by teflection is meromorphic on all P. This
means that H is a rational function. Hence also G is 1ational (by (19)).

Now (17) follows from the following computation in which the first inequality
depends on Z divy, F*=0, the second one on Pdiv, G=0 and where also the
symmetry (20) of H=F.G*—1 is used.

P div G = P divp+G = P divp«(F* - G—1) = [P divp(F* - G—1)]*
= (Pdivp F*)* = Pdivp« F = Pdiv F.

This proves Lemma 3.

It remains to prove the continuity of &:¢,nH((U)—~H(U) for U>D open
and connected. So suppose f,~f uniformly on compact subsets of U(f,, f€0,n
H(U)) and we shall prove that F(f,)~%(f) in the same topology. It is clear
(by the maximum principle) that it is enough to prove that #(f,)~Z(f) uniformly
on every compact subset of U which does not contain any zero of f” (in U\D).

Let K be such a compact subset. Then we can choose an open connected set
V' with nice boundary, such that KuDc VcV U, and such that also ¥V avoids
all zeroes of f”. Since the function (f”(z)f"*(z))~! then is holomorphic in a neigh-
bourhood of V\\D and equals |f’(z)]~2 on 9D we have, for (€D

-3 — ’ 1 ’ S Z+C dz
@1 FNHO='Q 5= [, 15 @ e

= U0 =

27

1 z+{ dz
f w D@ z-{ z

fa 1 Z+C dz

, 1
VOl Tere T

2ni

Both the first and the last members of this equation are functions (in {) holo-
morphic in V. Thus the equality between these is valid for all (€ V.

Formula (21), with equality holding between the extreme members for all
{eV, also is valid with f, in place of f whenever n is large enough. For f,—f
on compacts implies that f, has no zeroes on V for n large (since f’ has none),
and so all that has been said about f above also applies to f, (for large n).

Thus

(22) FUO =0 zimf p
for (e¥, n large.

1 ) z+{ EZ_
vI@M 2 2= =z

-
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Now f,—f uniformly on compacts implies f, —f’ uniformly on K and on

oV, and f,*—f"* uniformly on dV. Therefore, since is bounded above

Z_—.
for ze€dV, (€K and f,/(z)f,*(z) is bounded away from zero for z€dV and n large,
(22) and (21) show that F(£)(0)~Z (f)({) uniformly for (€K as n-—cs.

This proves the contintiity of & and finishes the proof of Theorem 2.

¢) Existence and uniqueness of rational solutions to the equation

We now apply Theorem 2 to the differential equation f=%(f). Given integers
Ny, My, ..., 1, =1 let

n= (Mg, Ny, ..., BYEL TY,
|} = ny+ny+...+n,,

AR, = {rational functions f which have r distinct poles (i, ..., {, (depend-
ing on f) in C of orders exactly n,, ..., n. respectively, a pole
of order at most n, at < and no other poles}.

Thus fc %, means that there exist {;=(;(f)EC (j=1,...,r), ag=au(f)eC
(k=1,..,m;, j=1,..,r) and a=a,(f)EC (k=0, ...,ny) with (;{; for i=j
and with 4, #0 (j=1,...,r) such that

(23) f(&‘) ZJ 12k 1 (C C)k Z’”o akz:k

For r=0, n=(n,) %, reduces to
Ry =2, = {polynomials of degree = ng}.

With ({;, ay, &) in (23) as local coordinates #, is given the structure of
a complex differentiable manifold of dimension r+ > n;+n,+1=|n+1|. We shall
regard %, as a real manifold, hence of dimension 2}n-+1|. Then #,n0, and
#,nH(D), are submanifolds of %, of dimension 2|n+1|—3.

Now we may consider the operator & : ¢,—~H(D), as a vector field on 0, (the
tangent space of 0, at any point f€0, may be identified with H(D), in a natural
way) and the content of part (iii) of Theorem 2 then is that the restriction of this
vector field to the submanifold 0,n%, is tangent to O,nZ%,. (We shall motivate
this in a moment.) Thus & lo,n#, may be considered as a vector field on 0,NZ,.

Moreover, this vector field is ‘smooth as can easily be seen from, say, (5). Now
a smooth vector field on a finite dimensional manifold always admits a unique
integral curve through any point on the manifold and so it follows that given
So€O,NAR, there is a unique smooth map 7—-f€0,n%, defined in some interval
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around t=0 and satisfying f,=%(f;). This is roughly the proof of Theorem 4
below, asserting existence and uniqueness of rational solutions of f,=%(f), given

fo rational.
In order to work out the details of the above discussion consider an arbitrary

differentiable curve

(249 t—~f,
in &,. With

, . _ap() no %
(25) S ()= 2_] 1Zk 1 (C {,' (I))" +2k=0ak(t)C

the tangent vector of this curve at the point f; becomes

(26)

nj a]k(t) ka}k(t)éj(t) ne k
ft(c) _1 1Lik=1 (C C (t))k 2 2 =1 (C ( (t))k+l +2k=0 ak(t)(

. 1 OLO s (k=Day_ (OO +dx®
el (G0) i (E910)s
Z =0 ak (f)C
Now for any fixed fc4, consider all curves with f,=f. As (24) varies over all

such curves the derivatives 5(0), d4(0), 4,(0) range over all C"X CZ 1N Cretl=
CI"+1 and it follows from the last member of (26) (observing that n;a;, (1)#0
there) that the tangent vector fo then ranges over all

T¢(,) = {rational functions g with Pdivg = > _ (n,+1)-({)+n,- (=)}

({;={;(0) are the poles of f= f5)- This means that the linear space T (Z,)
is the tangent space of %, at f€4#, (whence the notation for it).

Considering Z,n0, instead of 4, it is easy to see that the tangent space of
RO, at fER,NO, is

T (#,n0,) = {rational functions g with Pdivg = T (1) (€)1 ()
and with g(0)=0, Im g(0)=0}
= T/ (#)NHD), ({1, ..., {,» = are the poles of f).

In terms of the above notation, part (iii) of Theorem 2 (together with the fact
that F(f)<H(D),) say that

F (YT (R,n0) for fER,NO;.
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Thus F(f) is tangent to #,N0O, for feR,N0;, ie. F |4, no, 18 @ smooth
vector field on #,n0;, and so the problem

{ft =F(f)
JoER,NO;,  given,
has a unique smooth solution
t > fleR,NO;
defined in a neighbourhood of r=0.
We have now proved

Theorem 4. Given any rational function f which is holomorphic and locally
univalent on D and satisfies f(0)=0, f’(0)>0, choose n=(ny,ny, ...,n,) with
n;=1 so that feR, (ie. my, ...,n, shall be some enumeration of the exact orders
of the finite poles of f and n, shall be greater or equal to the order of the pole of
f at infinity). Then the problem

{ft =F(f)
Jo=1
or, equivalently, the problem (3) has a unique solution
t ‘—’ﬁE %n(W@l

defined in a neighbourhood of t=0.

d) The moment property of solutions

The next theorem shows the existence of an infinite number of simple constants
of motion for a solution ¢-f, of our differential equation, namely the analytic
moments

t=[[, #axdy = [[ fOf QR dedn €= &+in

for n=1,2,.... Here Q,=f,(D), which is regarded as a Riemann surface over
C if f, is not (globally) univalent on D. The zeroth order moment

=[], dxdy =10

will increase linearly with 7. This moment property of solutions of (3) was discovered
by Richardson ([5]).

Since the ¢, are linear in z" we also obtain constants of motion by taking
linear combinations of the z". Thus define, for arbitrary polynomials P(z) and
for fc0,

@) LN = [[,P@dxdy = [[ PFO)S QP dt dn

where Q=f(D) (as a Riemann surface). Then we have
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Theorem 5. Suppose (—e, £)>t—~£,€0, solves (3) (equivalently f,=% (f,)). Then

L1 (f) = 22P )

for each polynomial P(z).

Proof. Let Q'(z)=P(z). Then we have, using the formalism of differential
forms

d

(28) 7 AT (f) = % 2 [[, Pleydxdy = % [/, e@dza

= %ff 0,2 40(2) = :?;/f RAGL (@)

= [, F0 a0+ [f, TO 400 0)

= [ O (O)- [, S CUHO) T

= [, QRO FOL© A1, OFOX)
=2i [ P(£,Q) Im[FOf Q) &)

=21 f, PUOIR T GO 5
=2 :"P(f,(ew)) do = 2i - 2zP(£,(0)) = 2i-2zP(0).

This proves Theotem 5.

3. Generalizations and applications

a) The generalized differential equation

Now we are going to consider a generalization of equation (3), obtain similar
results for this equation as for (3), and apply these results to prove that a certain
mapping is non-singular (Theorem 6). The generalized equation is

R cos nd
9) Re U/ T ={ oo

where {=¢cOD and n€Z. For the case with cos nf in the right member and
n=0 (29) is the old equation (3). Each n>0 in Z and each choice of cosnf and
sinnf gives a new equation. For negative n€Z the same set of equations
appears again (essentially). '
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Let us therefore make the following convention in order to be avle to speak of
the equations (29) conveniently:

Choose the right member of (1) to be -
cosnd for n=0,1,2,...,
sinnf for n=-1, =2, ....
Thus there is precisely one equation (29) for each n€Z and, aside from the

zero funection and up to a sign, all possible choices of right members in (29) are

covered.
(29) can be rewritten as

_ cosnfdfd (n=0)
(30) I [0/ ©) i) = RefOT D0 ={ 0 1 P
1 n —n dC =
7(( +¢ )Y (n=0)

S @0 E 0=0
for {=é€"coD.

Using (28) this shows that if t—f=f,€0, is a solution of (29) n=0 and P(z)
is a polynomial, then

0= [ PUOmMFOQd = [, PUOE -+ S

2zP(f(0)) (n=0)

Ry I =0

{ZEP(O)
A, (HP' O +... +4,(HP™O)] (n=0)

where A;(f)j=1, ...,n are complex numbers that depend on f and, in particular,

I

4,() ==/ OF 20.

Similarly, for n<0
L 15 = inRes P(FQ)- 1 = inldy (NP O) ...+ A, (NP O

Just as for (3), equation (29) can be solved for f (uniquely with the requirement
feH(D),) whenever f€0,. Namely,
cosnd n=20,1,2,...

G Rel/()-T7@) = |

sinnf n=-—1,—1,...
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for {=e"“coD is equivalent to

f=Z.(f)
where #,: 0,—~H(D); are the operators defined by

cosne} z+¢ dz
sinng | z—¢ z

@ FDO=UO o O
0
= roz|ren{5 o

(cosnB for n=0,sinnf for n<0).

Thus F=%£.

Also Theorem 2, Lemma 3 and Theorem 4 have their generalizations to the
equation (29) for arbitrary n€Z. Theorem 2 generalizes to

Theorem 2’. Theorem 2 holds true with any F,(n€Z) in place of % under the
Jfollowing assumptions:

For (i) r=n| (jn|=+n=0), and for (i) ny=>=|n.

Proof. The proof of Theorem 2’ is essentially the same as that of Theorem 2
with the role of Lemma 3 now played by the more general Lemma 3’ below.

Lemma 3’. Suppose F,GEH(D) satisfy
33) Re[F-G}=H on 0D

where H is rational function which is real on 0D, and suppose that F has no zero
on D. Then

() if Uo>D is open and connected and UND does not contain any pole of
H, FEH(U) implies GeH(U)
(i) if F is rational then also G is rational, and

(34 P divps G = max {P divpx F, P divps« H}

How the theorem (except for the continuity statement in (i)) follows from the
lemma:

We only treat the case n=0, the case n<0 being similar. With

FQ =1
6O — f(CC) _ %(é)(@

HQ) =5+
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(31) reads
Re[F-Gj=H on 9D.

Now (i) of Theorem 2’ is proved in exactly the same way as (i) of Theorem 2,
with Lemma 3’ in place of Lemma 3. (ii) of the theorem is a special case of (iii),
To prove (iii) let f be rational with

PdivS= 3 n;- () +ng- (=)
where ny>|n|. Then F=f" is rational with

PdiVFéZ’::l(nj—l-l) . (Cj)"f’(no_l) - (=)

and since ’
Pdivp« H =n-(e) = (ny—1)- (=)
(34) shows that

Pdiv#,(f) = PdivG+1-() = 37, (m;41)- () +(15—1) - () +1 - (=)
= ;=1 (n;+1)- () +ng- ().
This proves (iii) of Theorem 2/, and also finishes the proof of that theorem.

Proof of Lemma 3. The ielation (33) shows that the function F*.G—H
is purely imaginary on D and hence extends by reflection to be holomorphic in
some region which is symmetric with respect to 9D. This gives (i) of the lemma exactly
as in the proof of Lemma 3 (i).

Moreover, it is clear (by a reflection argument) that if F is rational then so
is G. Now the rest of (ii) follows from the following series of inequalities.

P div G = P divp« G = P divp« F* - G = max {P divps (F* - G—H), P divps H}
= max {[P divp (F* - G— H)I*, Pdivp. H}
= max {[P divp, F* - GI*, [P divp HT*, P divp. H}

= max {[P divp F*T*, P divp. H} = max {P divp. F, P divp. H}.

b) Non-singularity of the moment mapping

Now we want to apply Theorem 2’ to prove the non-singularity of a certain
mapping. For €0, n=0 define

() =ffQ z"dxdyzz—liffnz"dzdz:ffon.]fqzdgdn

where Q=f(D) and where Q is regarded as a Riemann surface over C in the
first two integrals above if f is not globally univalent. The numbers c¢,, ¢;, Cp, ...
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are called the analytic moments of @ or of f. The map

(35) f_’ (005019 Ca,s )

has attracted some attention in recent years. For example, H. S. Shapiro 1aised
the question ([2], Problem 1, p. 193) whether the map (35), defined on the set of
univalent functions mapping D onto Jordan domains, was one-to-one. Shapiro
conjectured that the answer was “no”, and this was confirmed in 1978 by M. Sakai
([6]), who constructed two different Jordan domains having the same set of
moments c¢,.

Here we shall prove a modest tesult in the other direction, namely that when
restricted to the set of locally univalent polynomials of any given degree the map
(35) is at least locally one-to-one (Theorem 6 below).

Recall that 2y denotes the set (o1 linear space) of polynomials of degree =N.
It is easy to see (by a computation) that for f€@,nPy

36) e(f)=0 for n=N.

Conversely (but somewhat deeper), if (36) holds for some f€0, which is uni-
valent on D then f€%2y. (See[1] where the result on p. 16 easily implies the assertion
above.)

By (36) only the moments c¢,(f), ..., cy—1(f) are of interest for fEO;NPy.
Thus we considet the map

J: f>(co(f)s oons ey-1(f))
for fe0,nPy. Since c,(f)=|Q|=0, hence is real, we may consider J as a map
J: O0Py - Vy
where Vy=RXCV-', Notice that
dimg ¥y, = dimg O,nPy = 2N—1

(Vy 1s a linear space, 0;nPy is an open subset of a linear space).
Clearly J is smooth, even real analytic. Now we have

Theorem 6. The Fréchet derivative of J is everywhere non-singular. Hence
J is a local diffeomorphism.

Remark. C. Ullemar has proved special cases of Theorem 6. Namely, when
N=3,4 or 5 she proves that the restriction of J to polynomials f€0,n%?y with
real coefficients is locally one-to-one ([9] p. 14—16). She also conjectures an expres-
sion for the Jacobian of J for arbitrary N (p. 16 in [9]), and for N =3 she proves
that J is globally one-to-one on the set of those f¢#y which are univalent on D
and have real coefficients (p. 17—23 in [9]).
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Proof. Observe first that ¢, (f)=I,(f) with P(z)=z", whete I, is defined
by (27). If t—-f,€0,nPy is any differentiable cutve with fy=f given, then

4wty = [, PUO) DA ©) 4l

according to (28). Thus

e =, O DK ©d] (=0,1,... N-1),

and

@7 73171 (" = ([ A mFQLQdOh

= (fopIm L df, ooy [op /NI, df)).

As t—f€0,nPy traces through all curves with fy=f the tangent vector f,
at f traces through all of

(@), = {hePy: h(0) =0, Im K (0) = 0}.

In other words (), is the tangent space of ¢,nZPy at the point f. \
Now (37) shows that the Fréchet derivative of J at fc0,n2Py is the linear
(over R) map
dJs: (Py > W
defined by

38) alp(my = (f f O - ImEQS O dl),
=(f o Imdfl, .., [ A [hdf]).

We have to show that this linear map is non-singular. Since the domain and
range spaces have the same dimension (=2N-—1 over R) is enough to show that
dJ is surjective. For that purpose we shall make use of the operators %, defined
by (32).

Namely, for m=-~N+1,...,0,1,...,N—1 choose h=h,=%,(f) in (38).
(Observe that &, (f)€(2y), for |m|<N by Theorem 2’.) Then, by the definition
of #,,

. cosmfdd (m=0)
Im (2, ().f(©) dC] = {sin modo  (m =< 0)

1 m —m dc -
7(& +¢ )Y (m = 0)

—my 4¢

1 m
= @1
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as in (30). This shows that the n:th component (n=0,...,N—1) of dJ,(h,)
for m=0 is

(@70 = [ O 1 @8 @l = o [ FQPEm 0 S =

*

for n<m
_ SO Al o _
_nlg{zeos T gj 0) n=m

n=m,

Here, and in the sequel, * stands for complex numbers whose values are un-
important for us. For m=0 we obtain

2n for n=0

for n=0
and for m<0

1 wpm_pom dC_ o S dE
(@77 (s = 57 [ SO Q= {57 = —in Res i

* for n<|m|

- @ n=|m]
0 n > |m|.

In summary, the range of dJ; contains the vectors

2r, 0, ... 0 (m=0)

¢, ... %, nf (0", 0,..,0) (m=1,...,N-1)

¢, .. —inf@"0,...,00 (m=—1,..,—N+1)
4 $ 4

component 0 |m]| N-1

Since f'(0)=0 these vectors span ¥Vy=RXCY~' over R. Thus dJ, is sur-
jective, hence non-singular and so Theorem 6 is proven.
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