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1. Introduction 

The present paper is mainly devoted to the t011owing differential equation: 

Given f(~),  analytic and univalent in a neighbourhood of  ]~]<-1, find f(~,  t), 
analytic and univalent as a function of  ~ in a neighbourhood o f  ]~I_-<l, continuously 
differentiable with respect to t for tER in an interval containing t=0 ,  satisfying 

(1) Re [f((, t). ~f'(~, t)] = 1 for I~] = 1 

and f (~,  0)=f (~)  (for ]~1<1). In ( 1 ) f  and f"  denote derivatives with respect to 
t and ~ respectively. 

This differential equation arose in the paper [5] by S. Richardson as describing 
the solution of a two-dimensional moving boundary problem for so called Hele 
Shaw flows. The moving boundary in question then was the boundary of the domain 
• t=f (D,  t), where D={~EC:  I~1<1} and t is time. Richardson did not prove 
existence or unicity for solutions of (1). However, this, essentially, was done in [10]. 
The existence of solutions was proved by using an iterative process, the proof of con- 
vergence of which was fairly complicated. Unicity was proved only with respect 
to solutions which depended analytically on t. 

The aim of the present paper is primarily to give a more elementary proof of 
existence of solutions of (1) in the case that f (~)  is a polynomial or a iational func- 
tion. In that case (1) can be reduced to a finite system of ordinary differential equa- 
tions (in t) and this system has a unique solution by standard theory. This solution 
is a polynomial or a rational function (as a function of ~) of the same sort as f(~).  
(Theorem 4.) 

We will also consider a generalization of the differential equation (1) in order 
to prove a result on the "moment map" 

(2) f ~ (Co, cl, c2 . . . .  ), 
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where 
= f f,, z. dx dy, f2 = f (D)  Cn 

({c,} are the "analytic moments" of the domain fa=f(D)).  We prove (Theorem 6) 
that when (2) is viewed as a mapping from the set of univalent polynomials of degree 
<_-r, normalized by f ( 0 ) = 0  and f ' ( 0 ) > 0 ,  it is an immersion, i.e. its Fr&het 
derivative is one-to-one. 

Treatments of the moving boundary problem lying behind (1) by other methods 
are found in [4], [5], [7] and [8]. For the hydrodynamical background and the deriva- 
tion ot (1), we refer to [5] and [3]. ([3] is an extended version of  the present paper.) 

2. Treatment of the differential equation 

a) Some notations used 

D(a;  r) = {zEC: [z -a l  < r} (if aEC, r > 0), 

D = D(0;  1), 

P = C u {co} = the Riemann sphere. 

If  f 2 c C  is an open set 

H(f2) = {holomorphic functions on f2}, 

M(f2) = {meromorphic functions on f2}. 

For an arbitrary set E c  C let 

H(E)  = {functions, holomorphic in some open set containing E}. 

In H(E) two functions are identified if they agree on some neighbourhood 
of  (i.e. open set containing) E. 

0 =  { f E H ( D ) : f ' r  on D}, 

Oo = {fE0: f(0)  = 0}, 

01 = {fE& f(0)  = 0 and f ' (0)  > 0}, 

H(D)I = {fEH(D): f(0) = 0 and Im f ' (0)  = 0}. 

If  f is a function meromorphic in an open set U c P  we set 

D i v v f = t h e  divisor of f in U 
= the  formal sum of the zeroes of f (occurring with plus signs) and poles 

(with negative signs), both counted with multiplicities, 
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P divvf---the pole divisor of f in U 
-=the formal sum of the poles of f in U counted with multiplicities 

(and with plus signs), 

Z divvf=the zero divisor of f i n  U 
-=the formal sum of the zeroes of f in U (counted with multiplicities). 

Thus D i v v f = Z  d i v v f - P  divvf. 

When U = P  we just write Div in place of Dive etc. 
The set (or abelian group) of divisors is partially ordered in a natural way, 

namely so that a divisor z~f=~nj.((j) (n~ integers, ~EP) is non-negative, 
~af=lnj.(fj)~O, if and only if nj~>"0 for all j, assuming here that all the (j are 
distinct. Then DI>=D~ (D~,D~ divisors) means that D~-D~>-O. With respect 
to this partial order the concepts max (=sup) and rain (=inf) make sense and will 
be used. 

N, and ~, are defined in Section 2. c. 
* will denote the reflection map in OD and various associated maps, namely, 

(* = 1/( for points (EP, 

(~j  nj. ((fl)* = Z j  nj. (~*) for divisors (nj integers), 

E * = { f * E P : ( E E }  for sets E c P ,  

F*(() = F((*) for meromorphic functions F. 

b) Reformulation of the equation 

In terms of the notations introduced above, we now reformulate our problem 
as follows. 

Given f0E01, find an e>O and a map 

(-~,  ~)~t -~ f~col 

such that the function f(~,  t)--ft(() is continuously differentiable in a neighbourhood 
of DX( -e ,  e) andsuch that 

(3) Re [f(~, t). ~f'(~, t)] = 1 

holds for ~EOD, tE(-g, z). 

The requirement ftE01 means that the mapping function ft shall be normalized 
(f(O)=O,f[(O)>O), analytically extendible across 0D and locally univalent on 
D( f t ' ~0  on ~). Since f originally appeared as a mapping funclion it is natural 
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to require it to be univalent on D (or D). However, in the mathematical treatment 
of (3) it makes no difference whether ft is univalent on D or merely locally uni- 
valent and the latter condition being simpler to work with, we have preferred to 
use that one. Observe also that if f0 actually is univalent on D and t~f t  solves 
(3), then if e > 0  is chosen small enough also all ft are univalent on D. 

The goal of Section 2 is to show first that (3) can be written in the form f = ~ ( f )  
for a suitable operator ~- (Proposition 1) and then that ~ can be viewed as a smooth 
vector field on certain spaces of  rational functions (these spaces regarded as dif- 
ferential manifolds). The existence of a solution of (3) when f0 is rational then 
follows immediately (Theorem 4). 

Proposition 1. Given fE ~1 the equation 

(4) Re [ ( f ' ( ( ) .  g(()] = i for (qOO 

has a unique solution g in H(D)I. This solution is given by g = ~ ( f )  where oj : (91~ 
H(D)I is the operator defined by 

(5) f f ( f ) ( ~ )  = r f lf ,(z)l_ 2 
Z'-~ dz 

2~i 81) z--~ z 

Proof. We transform the problem into a statement about two other analytic 
functions, F and G, related to f and g as follows. 

{ r(~) = f ' (~) 

G (~) - g ( 0  

(6) 

(7) 

and, conversely, 

(s) 

(9) 
{ f(~) = f~ F(z) dz 

g(O = ~a (0. 
Then the first statement in the proposition transforms into: 

Given FEH(D), non-vanishing on D and with F(0)>0 ,  the equation 

(10) R e [ F - G ] = 1  on OD 

has auniquesolution G in H(D) satisfying Im G(0)=0. 

On dividing by IF 12 in (10) we get another equivalent formulation: 

Given FEH(D), non-vanishing on D and with F(0)>0 ,  the problem 

(11) Re[G/F]= IF[ -2 on OD 

(12) G/FEH(D), ImG/F(O) = 0 

has a unique solution for G (or for G/F). 
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Now in this last formulation the statement is directly seen to be true. Namely, 
the solution for G/F of (11), (12) is 

G/F = : [ I F I - ~ I  

where : stands for '"the Poisson integral of".  Explicitly 

ei~ + ~ I._~ i, z +____~ d___zz 
(13) G(~) = l f f = l F ( d ~  dO= 2rci .I OV lF(z)l-~'z-~ F(~) 2~ o z 

Actually (13) only gives G/F as an analytic function in D, but it is easy to 
see that G/F extends analytically across 0D as required in (12). In fact, the func- 
tion IF(z)]  -~  in the last integral of (13) can be replaced by (F(z)F*(z)) -1, which 
is holomorphic in a neighbourhood of OD, and then the path of  integration for 
that integral can be moved slightly out from OD showing that the last member 
of(13) is an analytic function of ~ in some neighbourhood of  ~ .  

Thus the statement (11)--(12) is true and so also the statement (4) of  the propo- 
sition is true. The expression (5) for the (hence well-defined) operator ~ follows 
from (6), (7) and (13). This proves the proposition. 

Theorem 2. Let fE 01. 

(i) Let U be any open connected set containing D. Then i f  fEH(U)  ~ ( f ) E  
H(U). Thus o~ is well-defined as an operator 

~: r -~ H(U). 

Moreover, with H(U) provided with the topology o f  uniform convergence on compact 
sets, this operator is continuous. 

(ii) I f  f is a polynomial o f  degree <=r then so is ~ ( f ) .  
(iii) I f  f is a rational function with 

(14) Pdivf -<  z~;=l nj .  (~) + no- (o~) 

where ~jECND, nj>-O and n0E1 then ~ ' ( f )  is a rational function with 

(15) Pdiv : ( f )  < " = Z~=I (nj + 1). (~j) + no" (~). 

Proof. (ii) is a special case of (iii) so only (i) and (iii) need to be proven. Returning 
to the functions F and G used in the proof of Proposition 1, the relation 

g = : ( f )  (for F r  gEH(D)~) 
is equivalent to 

R e [ F . G ] = I  on OD 

for F and GEH(~)  satisfying F(0)>0 ,  I m G ( 0 ) = 0 ,  F non-vanishing on 
and related to f and g by (6) to (9). Apart from the continuity statement in 

(i), (i) and (iii) now follow from the following lemma. 
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Lemma 3. Suppose F, GEH(D) satisfy 

(16) Re [F. G] = 1 

and that F has no zero on D. Then 

on OD 

(17) 

(i) i f  FEH(U) then GEH(U) (for UDD open and eonnected), 
(ii) i f  F is a rational function then so is G, and 

P div G <- P div F. 

How the theorem (except for the continuity statement) follows from the lemma: 

Hence (i) If fEH(U)  then FEH(U) and, by (i) of the lemma, GEH(U). 
gEH(U) by (9). 

(iii) Suppose f is rational with 

P divf_<-~=1 nj. (~j)+ no. (~) 

(where noel) .  Then F = f "  is rational with 

P div V <- ~ = 1  (nj + 1). (~j) + (no-  1). (co) 

and it follows from (9) and from (ii) of the lemma that 

Pdivg -< P d i v G + l  . (~)  ~ ~ = 1  (nj+ 1). (~j)+n0. (~) 
as claimed. 

It remains to prove the lemma and the continuity assertion in the theoiem. 

Proof o f  the lemma. Relation (16) can be written 

(18) R e [ F * . G - - 1 ] = 0  on 0D. 

This shows that the tianction 

(19) H = F*. G-- 1 

which is holomorphic in a neighbourhood of 0D extends by reflection to be analytic 
in a domain which is symmetric with respect to 0D. In fact, (18) shows that 

(20) H = --H* on 0D, and hence identically, 

so that if H is a priori analytic in (say) V (20) defines an analytic extension of 
it to Vu V*. 

To prove (i) of the lemma we observe that a priori the function H defined by 
(19) will be holomorphic in U*nD (FEH(U), GEH(D)). Thus it extends analytically 
to (U*n~)u(UnD*)  (=UnU*,  in view of UDD), in particular to UnD*. Since 
F* is holomorphic and has no zeroes in Un~*  it tollows from (19) that G is 
holomorphic there. Thus G is holomorphic in U = ( U n D * ) u ~ ,  and (i) is proven. 
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To prove (ii) of the lemma observe first that for F a rational function, H defined 
by (19) is meromorphic in D, hence by Ieflection is meromorphic on all P. This 
means that H is a rational function. Hence also G is lational (by (19)). 

Now (17) follows from the following computation in which the first inequality 
depends on Zd ivo ,  F*=0 ,  the second one on Pd ivDG=0 and where also the 
symmet W (20) of  H = F .  G * - I  is used. 

P div G = P divx),G ~ P diVD,(F* �9 G - l )  = [P divo(F* �9 G--l)]* 

< (P divD F*)* = = P divi), F = P div F. 

This proves Lemma 3. 
It remains to prove the continuity of ~ :  O ~ n H ( U ) ~ H ( U )  for UDD open 

and connected. So suppose f , ~ f  unifolmly on compact subsets of U ( f , ,  f E r  
H(U))  and we shall prove that ~ - ( f , ) o ~ ( f )  in the same topology. It is clear 
(by the maximum principle) that it is enough to prove that ~ - ( f , ) o ~ ( f )  uniformly 
on every compact subset of U which does not contain any zero of f '  (in U \ D ) .  

Let K be such a compact subset. Then we can choose an open connected set 
V with nice boundary, such that K u D c  V c V c U ,  and such that also V avoids 
all zeroes of f ' .  Since the function ( f ' ( z ) f ' * ( z ) )  -1 then is holomorphic in a neigh- 
bourhood of V \ D  and equals ]f'(z)l -~ on 0I) we have, for CED 

(21) 1 . . . . .  2 Z + ~  dz  
~ ( f ) ( ~ )  = Cf'(O'~[~i f~Dlf, o Lz)l ~ ~ 

D f ' ( z ) f ' * (Z )  Z--~ Z 

, 1 , 1 z + ~  dz 
= f ( z ) - ? , , ( z ) z - c  z 

Both the first and the last members of this equation are functions (in ~) holo- 
morphic in V. Thus the equality between these is valid for all ~E V. 

Formula (21), with equality holding between the extreme members for all 
~E V, also is valid with f ,  in place of f whenever n is large enough. For f , ~ f  
on compacts implies that f , '  has no zeroes on V for n large (since f "  has none), 
and so all that has been said about f above also applies to f ,  (for large n). 

Thus 

(22) ~ - ( f , , ) ( ~ )  = Cf,(O.~-f~fov f / ( z ) f , ' * ( z )  z - -~  z 
for ~EV, n large. 
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Now f , - + f  uniformly on compacts implies f ' -+f" uniformly on K and on 

OV, and f,~*--.f'* uniformly on OV. Therefore, since z + {  is bounded above 

for zEOV, ~EK and f'(Z)fn'*(Z) is bounded away from zero for zEOV and n large, 
(22) and (21) show that ~ ( f , ) ( { ) - + ~ ' ( f ) ( { )  uniformly for ~EK as n-+~.  

This proves the continuity of ~- and finishes the proof  of  Theorem 2. 

c) Existence and uniqueness o f  rational solutions to the equation 

We now apply Theorem 2 to the differential equation f = ~ - ( f ) .  Given integers 
no, nl, ..., nr>=l let 

n = (no, nl . . . . .  n,)EZ r+l, 

In] = no+n1+... + n,, 

~ ,  = {rational functions f which have r distinct poles ~ . . . . .  ~ (depend- 
ing on f )  in C of  orders exactly nl . . . . .  nr respectively, a pole 
of  order at most no at oo and no other poles}. 

Thus f E r n  means that there exist ~j---~j(f)EC ( j = l  . . . .  , r), ajk=ajk(f)EC 
( k = l  . . . . .  nj, j = l  . . . . .  r) and a~---ak(f)EC(k=O . . . . .  no) with ~ i # ~  for i # j  
and with a j , j # 0  ( j = l ,  . . . , r )  such that 

(23) f ( O  = ' "s "0 +ZL0akCk" 
For  r = 0, n = (no) ~ ,  reduces to 

~ ,  = ~0o = {polynomials of  degree ~ no}. 

With ((i ,  ajk, ak) in (23) as local coordinates ~ ,  is given the structure of  
a complex differentiable manifold of  dimension r + ~ (  nj + n o + 1 = In + 1 ]. We shall 
regard ~ ,  as a real manifold, hence of  dimension 21n+l  ]. Then ~,nOz and 
~ , n H ( D ) I  are submanifolds of  ~ ,  of  dimension 2 1 n + I [ - 3 .  

Now we may consider the operator ~-: r as a vector field on r (the 
tangent space of d~ 1 at any point fE t~  may be identified with H(D)~ in a natural 
way) and the content of  part (iii) of  Theorem 2 then is that the restriction of  this 
vector field to the submanifold r is tangent to ~ 1 c ~ , .  (We shall motivate 
this in a moment.) Thus ~-Ir may be considered as a vector field on r 

Moreover, this vector field is smooth as can easily be seen from, say, (5). Now 
a smooth vector field on a finite dimensional manifold always admits a unique 
integral curve through any point on the manifold and so it follows that given 
f0Ed~n~ ,  there is a unique smooth map t -* fEr  defined in some interval 
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around t=0  and satisfying f~---~-(f). This is roughly the proof of Theorem 4 
below, asserting existence and uniqueness of rational solutions of ft=~-(f,) ,  given 
f0 rational. 

In order to work out the details of the above discussion consider an arbitrary 
different/able curve 

(24) 

in ~ . .  With 

(25) 

t--f ,  

, . j  a j~  ( t )  .o 
f,(0 = X~=~Z~=~ (~_~(t))~ 4-ZL0a~(0~ ~ 

the tangent vector of this curve at the point f, becomes 

(26) 

St(~)~- r n,, ajk(t) r nj kajk(t)~j(t)  Av ~jno ~=IX2=I  (~_~j( t))k  -[-~aj=l,d~k=l (~_~j(t))k+l l.ak=0 ak( t)~k 

njaj"s(t)~j(t) q-z~j=az~k=l 

+Z2"-- 0 ~ (0~ ~, 

(~-~j(O) ~ 

Now for any fixed f ~ n  consider all curves with fo=f As (24) varies over all 

such curves the derivatives (~(0), fij~(0), ~i~(0) range over all C ' •  C 2;~"j • C"o+1= 
C1.+11 and it follows from the last member of (26) (observing that nja~.j(t)#O 
there) that  the tangent vector f0 then ranges over all 

Tr(~.)  = {rational functions g with P divg =< z~f=~ (nj+ l)- ((s)+no. (~)}. 

( ( i=  (j(0) are the poles of  f=f0)-  This means that the linear space Ts(~.) 
is the tangent space of ~ .  at fC~/. (whence the notation for it). 

Considering ~,,c~(9~ instead of ~ ,  it is easy to see that the tangent space of 
~ ,n01  at f@~nNO1 is 

Ts(~,nd) 0 = {rational functions g with P divg <= z~=~(nj+ 1). (~)+n0-(=,) 

and with g(0)=0, Im g(0)=0} 

= Ts(~,)nH(D)~ (~  . . . . .  ~,, ~ are the poles of f ) .  

In terms of  the above notation, part (iii) of Theorem 2 (together with the fact 
that o~(f)~H(~)~) say that 

~( f ) c r s ( a .n r  for fc~.nC01. 
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Thus ~ ( f )  is tangent to ~ ' , ,n~  for fEN, ,nr  i.e. "~l~,,n~ is a smooth 
vector field on N, n0~, and so the problem 

has a unique smooth solution 
{ Z  = • ( f , )  

foe ~ .n01  given, 

t --'- ftE.-~, n ~1 

defined in a neighbourhood of  t =0.  
We have now proved 

Theorem 4. Given any rational function f which is holomorphic and locally 
univalent on ~ and satisfies f ( 0 ) = 0 , f ' ( 0 ) > 0 ,  choose n=(n0, nt, ..., n,) with 
nj~=l so that f E ~ ,  (i.e. n~ . . . .  , n, shall be some enumeration o f  the exact orders 
o f  the finite poles o f  f and n o shall be greater or equal to the order o f  the pole of  
f at infinity). Then the problem 

or, equivalently, the problem (3) has a unique solution 

t ~ N E ~ . n ~ I  

defined in a neighbourhood of  t = O. 

d) The moment property o f  solutions 

The next theorem shows the existence of  an infinite number of simple constants 
of motion for a solution t-~ft of our differential equation, namely the analytic 
moments 

c. = f f ., z .  dx dy = f f . f ({)" if,({)]2 d{  dq (~ = ~ + #1) 

for n =  1, 2, . . . .  Here Ot=ft(D),  which is regarded as a Riemann surface over 
C if  f is not (globally) univalent on D. The zeroth order moment 

Co = f l a t  dx dy = I(2t] 

will increase linearly with t. This moment property of solutions of (3) was discovered 
by Richardson ([5]). 

Since the c, are linear in z" we also obtain constants of motion by taking 
linear combinations of the z". Thus define, for arbitrary polynomials P(z) and 
for fEr  

(27) I e ( f )  = fro dx dy = f f D P(f(~)) [f'(~)I2 d~ dq 

where t2 = f ( D )  (as a Riemann surface). Then we have 
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Theorem 5. Suppose (-5,  e))t~ftE(9~ solves (3) (equivalently f t=~-(f t )) .  Then 

d Sp(fb 2"e(0) 
dt 

Jbr each polynomial P(z). 

Let Q'(z)=P(z). Then we have, using the formalism of differential Proof 
forms 

(28) d--{ 2 i sp ( f  ,) = 2i dx dy = dz  

d d 
= --dTff~d~dO(z) = ~ f f .  d:;(OdO(f,(O) 

= f j t ( O  dQ(f ,(o)- fo D d (Q (f,(0)) df, (0 

: f=, r (Oi:(OdO 

= 2i fop e(f ,(())  ~m [f,(r162 dr 
dr 

= 2i fop P (f' (0) Re [/, (0  (L'(0l - U  

= 2ifo= P ( f , ( : ) )  d0 = 2i. 2=P(f,(0)) = 2i. 2=?(0). 

This proves Theoxem 5. 

3. Generalizations and applications 

a) The generalized differential equation 

Now we are going to consider a generalization of  equation (3), obtain similar 
results for this equation as for (3), and apply these results to prove that a certain 
mapping is non-singular (Theorem 6). The generalized equation is 

cos nO 
(29) Re [ f (o"  ~f'(O] = sin nO 

where (=e~~ and n6Z. For the case with cos nO in the right member and 
n = 0  (29) is the old equation (3). Each n>O in Z and each choice of cos nO and 
sin n0 gives a new equation. For negative nEZ the same set of equations 
appears again (essentially). 
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Let us therefore make the following convention in order to be at~le to speak of 
the equations (29) conveniently: 

Choose  the r ight  m e m b e r  o f ( l )  to be - 

cos nO .for n = O, 1, 2 . . . . .  

sinn0 f o r  n = - l , - 2  . . . . .  

Thus there is precisely one equation (29) for each nE Z and, aside from the 
zero function and up to a sign, all possible choices of  right members in (29) are 
covered. 

(29) can be rewritten as 
cos nO dO (n >- O) 

(30) I m [ f ( ~ ) f ' ( ~ ) d ~ ]  = Re[f (~)-~f ' (~)]dO = [ s i n n O d O  (n <31 

1 n - .- d~ (n_- ->0)  ~-(; +r  ~-U 

I 1 . . . d (  

t 157(~ -+- ) ~  (" <o) 
for ~=ei~ 

Using (28) this shows that if t + f = f E ( 9 ~  is a solution of (29) n=~0 and P ( z )  

is a polynomial, then 

d 1 
--~ Ip ( f )  = f a d  P (f(~)) Im [](~) f ' (~) d~] = -~- f+ P (f(~)) (~. + ~-.) d f.~ r 

[ 2rcP(f(0)) (n = 0) 

= ~ P ( f ( O )  /re Res ~ (n > 0) 
t ~=0 ~ ++- 

2rcP (0) 

rc [Al( f )P ' (0)+. . .+A,( f )P(") (0) ]  (n > 0) 

where A i ( f ) j =  1 . . . . .  n are complex numbers that depend on f and, in particular, 

1 t n 
A, ( f )  = --~-. f (0) # O. 

Similarly, for n<O 

- ~  Ip ( f )  = iz~ R e s  ~ P ( f ( ~ ) ) .  ~ . -1  = i~ [A1 (f)P '(0)  + . . .  + A _ ,  ( f ) P ( - n )  (0)1. 

Just as for (3), equation (29) can be solved for ] (uniquely with the requirement 
fEH(Dh)  whenever fE01. Namely, 

cos nO n = 0 ~ l ,  2, . . .  
01)  Re [f(~). ~f'(~)] = sin nO n = - I ,  - -  1 . . . .  
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for ~=e~~ is equivalent to 
f = ~ . ( f )  

where ~. :  (~1~H(~)1 are the operators defined by 

1 f a  ' -2 fcosn01 z + ~  dz 
(32) ~ - . ( f ) ( 0  = ~ f ' ( 0 " T ~  D If  (Z)I "~sinn0 J~" z -  ~ z 

~f,(~)#[]f,(elO)[ 2 [cos nOI1 
= - " I s i n  nO 

(cos n0 for n->0, sin n0 for n<0). 
Thus ~ o = ~ .  
Also Theorem 2, Lemma 3 and Theorem 4 have their generalizations to the 

equation (29) for arbitrary nE Z. Theorem 2 generalizes to 

Theorem 2'. Theorem 2 holds true with any ~,(nEZ) in place of  ~ under the 
following assumptions." 

For (ii) r>lni (lnl=_+n-->0), and for (iii) n0>]n I. 

Proof. The proof of Theorem 2" is essentially the same as that of Theorem 2 
with the role of Lemma 3 now played by the more general Lemma 3' below. 

Lemma 3'. Suppose F, GEH(D) satisfy 

(33) R e [ F . G ] = H  on OD 

where H is rational function which is real on OD, and suppose that F has no zero 
on ~ .  Then 

(i) i f  UDD is open and connected and U ~ D  does not contain any pole of 
H, FEH(U) implies GEH(U) 

(ii) i f  F is rational then also G is rational, and 

(34) P div,,  G <= max {P diVD. F, P div,.  H}. 

How the theorem (except for the continuity statement in (i)) follows from the 
lemma: 

We only treat the case n~0,  the case n <0  being similar. With 

F(~) = f '(~) 

G(~) = f(~) = ff"(f)(~) 

H(0  = ~ (~" + ~-") 
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(31) reads 
R e [ F . G ] = H  on OD. 

Now (i) of  Theorem 2' is proved in exactly the same way as (i) of  Theorem 2, 
with Lemma 3" in place of  Lemma 3. (ii) of the theoiem is a special case of  (iii). 

To prove (iii) let f be rational with 

P d i v f  -<_ ~,s=l nj .  (~j) + n o �9 (~)  

where n0>rn[. Then F=f"  is rational with 

P d i v r ~  ~,~=1 (n j+  1). (~j)+ (n0 -1 ) .  (~o) 
and since 

P divo, H = n. (oo) = (n0-- 1). (~)  
(34) shows that 

P div Y,  0 c) ~ P div G + 1. (~o) ___ ~,~= 1 (ni + 1). (~j) + (no -- 1). (oo) + 1. (co) 

= 2~=1 (nff-1).  (~,) + no. (~). 

This proves (iii) of  Theorem 2", and also finishes the proof  of  that theorem. 

Proof of Lemma 3". The i elation (33) shows that the function F*. G - H  
is purely imaginary on OD and hence extends by reflection to be holomorphic in 
some region which is symmetric with respect to OD. This gives (i) of the lemma exactly 
as in the proof of  Lemma 3 (i). 

Moreover, it is clear (by a reflection argument) that if F is rational then so 
is G. Now the rest of (ii) follows from the following series of  inequalities. 

P div G = P diVD, G =< P diVD, F* .  G -<: max {P divD, (F*- G-H) ,  P diVD, H} 

= max {[P divD(F*. G - H ) ] * ,  P diVD, H} 

=< max {[P divD F*.  G]*, [P div D HI*, P divn, H} 

<= max {[P divD F*]*, P divD, H} = max {P diVD, F, P diVD, H}. 

b) Non-singularity of  the moment mapping 

Now we want to apply Theorem 2" to pIove the non-singularity of a certain 
mapping. For f6 (~ ,  n=>0 define 

= f f .  z" xay = z" d ,  dz = ffof".lf'j a  dq 

where f a=f (D)  and where *2 is regarded as a Riemann surface over C in the 
first two integrals above if f is not globally univalent. The numbers c0, cl, e2 . . . .  
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are called the analytic moments of s or of f The map 

(35) f ~  (Co, cl, c~,.. .) 

has attracted some attention in recent years. For  example, H. S. Shapiro laised 
the question ([2], Problem 1, p. 193) whether the map (35), defined on the set of 
univalent functions mapping D onto Jordan domains, was one-to-one. Shapiro 
conjectured that the answer was "no" ,  and this was confirmed in 1978 by M. Sakai 
([6]), who constructed two different Jordan domains having the same set of  

moments c,. 
Here we shall prove a modest lesult in the other direction, namely that when 

restricted to the set of  locally univalent polynomials of  any given degree the map 
(35) is at least locally one-to-one (Theorem 6 below). 

Recall that ~N denotes the set (oI linear space) of  polynomials of  degree <-N. 
It is easy to see (by a computation) that tot f ~ d ) l n ~  u 

(36) c , ( f ) = 0  for n=>N.  

Conversely (but somew.hat deeper), if (36) holds for some fC IV1 which is uni- 
valent on D then fE Nu. (See [1] where the result on p. 16 easily implies the assertion 
above.) 

By (36) only the moments co(f) . . . . .  cN-~(f) are of interest for f601c~Nu. 
Thus we consider the map 

J: f - , -  (c0(f) , ..., CN-l(f)) 

for fE01c~N N. Since Co(f)=]~l_->0, hence is real, we may consider J as a map 

J:  o~c~r -~ 

where V ~ = R X C  N-~. Not i ce tha t  

diml~ VN = dima ~c~NN = 2N--  1 

(VN is a linear space, 0tc~NN is an open subset of  a linear space). 
Clearly J is smooth, even real analytic. Now we have 

Theorem 6. The Frdchet derivative of  J is everywhere non-singular. Hence 
J is a local diffeomorphism. 

Remark. C. Ullemar has proved special cases of  Theorem 6. Namely, when 
N = 3 ,  4 or 5 she proves that the restriction of J to polynomials f~)lc~NN with 
real coefficients is locally one-to-one ([9] p. 14---16). She also conjectures an expres- 
sion for the Jacobian of  J for arbitrary N (p. 16 in [9]), and for N = 3  she proves 
that J is globally one-to-one on the set of  those fC~N which are univalent on D 
and have real coefficients (p. 17--23 in [9]). 
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Proof Observe first that c,(f)=11,(f) with P(z)=z", whele 11, is defined 
by (27). If t--,ftE$ln#~ is any differentiable crave with f o = f  given, then 

d 
-37 (f') = fox, e ( f ,  (r Im (of, ' (r 

according to (28). Thus 

d c .  (f,) = faDf~(r Im[ f t (Of '  (~)d~] 

and 

(37) 

As 

(n = 0, 1 . . . . .  N-1 ) ,  

= I - - ' - -  t N--1 
-ff'TJ(f) ( foDf  (0" �9 m [ ~ (Of  (0  d~]).=o 

= (feDIm[~df,] . . . .  , f o D f f - ' I m f f ,  df,]). 
t~fEr traces through all curves with f o=f  the tangent vectoi f0 

at f traces through all of 

(~u)l = {hE~N: h(0) = 0, Imh'(0) = 0}. 

In other words (~u)l is the tangent space of d71n~N at the point f. 
Now (37) shows that the Fr6chet derivative of J at fEOln~ N is the linear 

(over R) map 
d Jr: (~v)~ -" V~ 

defined by 

(38) dJf  (h) - ( L a  f (0"" Im [h (0 f ' (O  d~]).~o ~ 

= (LDIm [//df] . . . . .  foDfN-1Im[hdf]). 

We have to show that this linear map is non-singular. Since the domain and 
range spaces have the same dimension ( = 2 N - 1  over R) is enough to show that 
a7r is surjective. For that purpose we shall make use of the operators ~-, defined 
by (32). 

Namely, for m = - N + l  ..... 0,1 . . . . .  N - 1  choose h=hm=~,,(f) in (38). 
(Observe that ~m(f)E(#u)l for Im[<N by Theorem 2".) Then, by the definition 
of ~',., 

cosmOdO (m >= O) 
Im [hm(~)f'(O d(l = / sin mO dO (m < O) 

= -~(~ +~- ) ~  (m=O) 

I 1 ,,, m.d~ 
t ]-~'(~ - ~ -  )'~-" (m O) 
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as in (30). This shows that  the n : th  componen t  ( n = 0  . . . .  , N - - l )  o f  dJi(hm) 
for m > 0  is 

1 n m (dJ,(hm)). = f oi)f(r Im[hm(~)f'(~)d~] = ~ f oDf(r (~ +~-")~  = 

) j  for  n < m  
f (~)"  d(  , 

= n Res ~m = (0) m n = m 
~=0  ~ /'/ > m .  

Here, and in the sequel, * stands for complex numbers  whose values are un- 
impor tan t  for us. For  m=O we obtain 

{20~ f~  n = 0  
(dJf(hm)) .= for n > 0  

and  for rn < 0 

1 ( .  m d~ f(~)" d~ 
= -~-  -~-  =-ircResr ~l,,i (d Jr (hm))n fo. f ~) (~ -- ~-m) r 

{i  f~ n<lml 
= iTCJ'(O) [ml n = [ml 

n > ]ml. 

In  summary,  the range o f  dJy contains the vectors 

(2re, 0 . . . .  0) ( m = 0 )  
(* . . . . .  *,ztf'(O) m, 0 . . . . .  0) (m = 1 . . . .  , N - - l )  
(*, ..., *, - -  i / z / " ( 0 )  [m], 0 . . . . .  0 )  ( m  = - 1 , . . . ,  - N +  1)  

l t t 
component 0 Iml N - 1  

Since f ' ( 0 ) r  these vectors span V N = R •  N-1 over R. Thus dJy is sur- 
jective, hence non-singular and so Theorem 6 is proven. 
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