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Introduction

We consider uniformly elliptic operators of the form
(%) L= Z’Zj:]_ aij(X)'D§1Xj+2?=1bi(X)'DXg

with real-valued, bounded measurable coefficients defined in R" (for n=2). The
functions, a;;, are assumed to be uniformly continuous in R” (with no restriction
on the modulus of continuity) and satisfy a;;=a;. Operators of this type correspond
to diffusion processes in R" (see [16]) and hence will be called diffusion operators.
Our main objective is to prove a comparison theorem (Theorem 2.1} for positive
solutions of Lu=0 in a bounded Lipschitz domain, D, in R". The theorem asserts
that any two positive solutions of Lu=0 in D which vanish on a portion of the
boundary must vanish at the same rate. More precisely, if Q¢dD, B(8, Q) is
a ball of radius 8r centered at Q, and u;, and u, are positive solutions of Lu=0
in B(8r, @Q)nD which vanish continuously on 9D, then
l.ul(X)< uz(X)< u; (X)

¢ n(4) T w(4) = 4,

for all X in B(r, Q)nD. Here, A, is a point in B(r, Q)nD whose distance from
oD is proportional to r. The constant, ¢, is independent of Q,r,u;, and u,.

The comparison theorem was proved for harmonic functions in 1968 by Hunt
and Wheeden ([9]). It was extended to solutions of Lu=0 for operators with
Holder continuous coefficients by A. Ancona in 1978 ([2]). A consequence of the
comparison theorem is that the representation theorem and Fatou-type results for
positive harmonic functions in D (see [9]) extend to positive solutions of Lu=0.
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In addition, Hunt and Wheeden’s estimates of harmonic measure in D can be
extended to the ‘“L-harmonic measure” corresponding to the diffusion operator,
L, in D. These results will appear in a separate publication. (See also [3].)

Much of our work in this paper concerns the behavior of the Green’s function
and nonnegative solutions of the adjomt equation, L*v=0. This is because the
comparison theorem is shown to be equivalent to the inequality (Theorem 2.6):

(% %) fw) G,(X,Y)dY = c.fm G.(X,Y)dY

for all X€B(r, Q)nD, where Q¢dD, G,(X,Y) is the Green’s function for L in
B(dr, ))nD, y(r)=[B3r, O)\B(Q2r, Q)InD, and &(r) is a cube in B(4r, Q)nD
whose distance from @D is proportional to r. The constant, ¢, is independent
of Q,r and X.

The main difficulty in proving the above inequality is that the Green’s function
for L in D, which we denote by G(X,Y), need not behave like the Green’s
function for the Laplacian. In particular, the examples of Gilbarg and Serrin ([7])
show that G(X,Y) need not be proportional to |(X—Y[*~" (for n=3) when
X isnear Y in D. Moreover, we have constructed an example in which G(X, -)¢
Ly (D\{X}). (See [4])

We prove inequality (* %) (and hence the comparison theorem) as a consequence
of our a priori estimates of nonnegative solutions of L*»=0. A solution of L*»v=0
in D is defined to be a function, v, in L{ (D) such that

va(Y)-ch(Y)dY= 0

for all @€Cy(D). The functions, G(X, -) and G,.(X, -), above satisfy L*v=0
in subdomains of DN\{X} and [B(4r, Q)nDI\{X}, respectively.

Our resuits on nonnegative solutions of L*»=0 include an interior 4 .-estimate.
(See Corollary 3.4.) In addition, assuming the coefficients of L are smooth functions
we prove classical estimates on suitably “normalized” adjoint solutions which are
independent of the smoothness of the coefficients. (See Section 4.) For example,
we prove a Harnack inequality (Theorem 4.4) for functions of the form

5(Y) = v(¥)/G(X,Y)

in subdomains of D\ {X}, where v is a nonnegative solution of L*»=0 and
G(X, Y) is the Green’s function for L in D. The constants in these estimates depend
only on the ellipticity, bounds, and modulus of continuity of the coefficients.

It follows from the above results that the Green’s function for L in D is the
product of an A..-weight (as defined by Muckenhoupt) and a positive, continuous
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function of X and Y (for X Y) which satisfies a Harnack inequality in each
variable and vanishes continuously on 9D. (See Section 5.) This is the main idea
of the proof of inequality (# x) and may be of independent interest.

1. Notation

We assume throughout this paper that L is a diffusion operator defined in
R” (for n=2) as described in (%). We let w: R+—R+* denote a nondecreasing
function such that w(f)—~0 as -0 and

sup {ja;;(X)—a;(¥)|: |X-Y|=1t 1=1ij=n}=w().
We denote by 1 a positive number such that
(@il Lo@my + 10l =@y = /A for 1=ij=n

and A[EP=27 . a;;(X)-&¢; for all (X, HER'™XR"

We assume that D is a bounded Lipschitz domain in R” and let m=1 and
ro=1 denote positive numbers such that the following holds: to each Q€0D there
corresponds a coordinate system (x,y) of R""!XR (obtained by a translation
and rotation of the standard coordinate system) and a function ¢: R"~*-R such that

8lp(x) —@(x)] = m|x—x'|
B(10mry, Q) {(x, »): ¥y > @(x)} = B(10mr,, Q)N D.

Here, B(s, Q) denotes a ball of radius s centered at Q. If r=0 and Q=(x,, o)
with respect to this coordinate system, we define

and

Q(r, Q) = {(x,5): Ix—xol <r, [y—yo| < mr}.

We denote by A4,(Q) the point in Q(r, Q) with coordinates (x,, yo+mr/2). The
set Q(r, Q)ndD is denoted by A(r, Q).
If pe(l, «<), we let
W*?(D) = {u: D*ucL*(D), |o| = 2}

and
WP (D) = {u: D*u€Lfo(D), |o = 2}.

We define W22(D) to be the closure of {u€C2(D):u=0 on 4D} in W>?(D)
with respect to the norm

lulwe. o) = Zajze 10"l Loy -
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By a solution of Lu=0 in D we mean a continuous function, u, in W2:?(D)
for some p>1 such that Lu=0 pointwise almost everywhere in D. The L*-
Schauder estimates ([1]) and the Sobolev inequalities imply that solutions as defined
above are in WZP(D) for every p>1.

We denote by @(r, Q) the cube of side length » centered at @ in R" If
N 1is a unit vector in R* and 0<60<n, we define the truncated cone

I'(r,0,N, Q)= B(r, Q) n{XeR™\{0}: cos™*(N-(X—Q)/|X— Q]) < 6}.

The Lebesgue measure of a measurable set, E, in R* is denoted by |E|.

2. The comparison theorem: Motivation for a study of adjoint solutions

In this section we state the comparison theorem and show that it follows from
an integral inequality on the Green’s function (Theorem 2.6). We shall prove this
inequality in Section 5 as a consequence of our estimates on nonnegative solutions
of L*v=0.

Theorem 2.1 (Comparison Theorem). Suppose Q€oD and O<r<ry. If u and
v are positive solutions of Lu=0 in Q(8r, Q)nD which vanish continuously on
A@8r, Q), then
1 uX) v(X) _ ulX)
< u4,Q) - o(A(Q) ~ * u(4,(0))

for all XeQ(r, O)nD. The constant, ¢, above depends only on A,n,w,r,, and m.

TA

To prove that the comparison theorem follows from an inequality on the
Green’s function, we will need the following results (Lemmas 2.2—2.5) which are
standard consequences of the maximum principle ([5]), Harnack principle ([11]
or [17]), and existence of uniform barriers on cones ([12]).

Lemma 2.2. Suppose Qc0D, O<r<r,, and u is a positive solution of Lu=0
in QQ2r, Q)nD. There exists ¢>0 depending only on A, n, and m so thatif h is
any natural number, we have

uX) = " u()

forall X and YEQ(3r/2, Q)nD such that dist (X, dD)=>r/2" and dist (Y, dD)=>r/2".

Proof. From the Lipschitz structure of D it follows that there is a natural
number M depending only on m so that for X and Y as above, there is a chain
of balls, B, ...,B; with j=Mh such that X¢B, and Y€B;; B,nB;,,#0 for
i=0, ...,j; and 2B;cQ2r, Q)nD for i=0,...,j. (Here, 2B; denotes the open
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ball concentric with B; with radius twice that of B;) The Harnack principle
implies that
supu = co-i]rslfu

for i=0, ...,j—1 where ¢, depends only on A and »n. Hence
u(X) =¥ u@) = M. u().

Lemma 2.3. Suppose Q€dD, O<r=<r,, and u is a positive solution of Lu=0
in Q(r, Q)nD which vanishes continuously on A(r, Q). There exists ¢ and «=0
depending only on A, n, and m such that

u(X) = c- (X 0|y Mu)
for all XcQ(r, Q)nD, where M(u)=sup {u(X): Xe Q(r, Q)nD}.

Proof. This is an immediate consequence of the maximum principle and
K. Miller’s construction of Hélder continuous barriers defined on cones in R™
The following result is often called a Carleson estimate.

Lemma 2.4. Suppose Q¢dD, O<r<r,, and u is a positive solution of Lu=0
in 2Q2r, Q)nD which vanishes continuously on AQr, Q). There exists ¢=0 depend-
ing only on A,n, and m such that

u(X) = c-u(4,(0)
Jfor all XeQ(r, Q)nD.

Proof. By Lemma 2.3 there exists ¢;=2 depending on A,n, and m so that
if P€EAQ2r,Q) and Q(s, P)cQ(2r, Q) (where Q(s, P) is defined with respect
to the coordinate system in Q(2r, Q)), then

) sup {u(X): X€Q(s/e,, PYn D} = (1/2) - sup {u(X): X€Q(s, P)n D}.
Normalize u so that u(4,(Q))=1. By Lemma 2.2, there exists ¢,>1 depending
on A, n,m, and ¢; so that if Y€Q(3r/2, 0)nD and u(Y)=>c!, then

@) dist (Y, dD) < c*r.

Choose M=1 so that 2M=>c,. Let N=M+5 and define c=c). Suppose
there exists Yo=(xp, ¥o) in Q(r, nD with u(Ye)>c u(4,(Q))=c=c). Then
dist (Yo, 0D)<c;Vr. If Qo=(py, o) is a point of 9D nearestto Y,andif Q=(p, q),
we have

|Po~p| = |po— ol + |0 — Pl

<ci¥r+r=Q7 %+ r,
and

A

[do— ol +1v0— 4l
=cVr+mr=Q2734+1)-mr.

90— 4l
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Thus Q,€2(33r/32, @) and we conclude that Q(c;°r, Qy)< 2(3r/2, Q). Applying
(1), we have:
sup {u(X): XeQ(cr®r, Qo) n D}

= sup {u(X): X€Q(c; ¥ Mr, Q) n D}

= 2M.sup {u(X): X€Q(cTNr, Qy) N D}

= 2M-U(Y0) = Cév+1.

Hence we can choose Yi=(xy, y)€Q(cy®r, Q)nD such that u(¥y)>c)tt.

By (2), dist (¥, d0D)<c V" r. Let Q;=(p;,q1) be a point of 9D closest to Y;.

Continuing in this manner, we obtain two sequences, {¥;} and {Q,}, with ¥;=
(x> ¥o) and Qy=(py, q)€OD such that:

) Y, €Q(cM-N-¢=Df 0. YA D = Q(c;* % Vr, Q) D
(i) dist (Yy, OD) = |¥,— Q4 < c7N~Fr
(iif) Q% Dr, 0,_)) < QGr/2, Q)
(iv) u¥) = ey +*.

The fact that dist (¥, 0D)—~0 and u(¥)-+< contradicts the hypothesis that
u vanishes continuously on 4(2r, Q).

Lemma 2.5. Suppose Q=(x,y, ¥o)€0D,0<r<r,, and u and v are positive
solutions of Lu=0 in Q(4r, QnDn{(x, y): y<yo+2mr} which vanish continuously
on the bottom and sides,

4(4r, Qu[0Q@4r,0) n{(x, »): [x—x| = 4r, ¢(x) =y < yo+2mr}].

There exists ¢>0 depending only on A, n, and m such that

u(X) _ v
W(4,0) = 0(4,0)

SJor all XeQ(4r, Q)nDn{(x, y): y<yo+mr}.

Proof. By the maximum principle it is sufficient to prove the above inequality
for all XeQ(4r, Q)n{(x, y): y=yo+mr}=X. For simplicity, we shall denote all
positive constants depending only on 4,7, and m by c.

Fix PcoQ(4r, Q)nZ andlet N denote theinward unit normalat Pin Q4r, Q).
Let Py=P+rN/4 and define

(e—G4nIX-P0|2/}.2r2 — e—4n'}.2)

h(X) = (e~ "% = g~ a7
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An elementary calcunlation implies that
Lh(X) = [128ne~64n1X—Pol2/3%2 32,2 (o=n/A2 __ o—4n/i%)]
-[(128n|X — Py|?/Ar%)—2n/A] = O
for all X€B(rj4, Po))nB(r/8, P) and

inf {3%‘}\!7— (P+tN): 0=t = r/16} = c/r.

By the Harnack principle, we have
M(X) =c: u(Ar(Q)) =cC- u(Ar(Q)) : h(X)

for all X¢B(r/4, P)ndB(r/8, P). Since h is zero on 0B(r/4, P,)NnB(r/8, P),
the above inequality extends (by the maximum principle) to all XeB(r/4, Py)n
B(r/8, P) and hence

1) u(P+tN) = u(4,(Q))- ctjr

whenever 0=¢=r/16.
We proceed now to prove a similar estimate on u from above. Let P,=
P—rN/16, with P and N as before, and define

fX) = 1—[r[(16|X — P,P/**
in Q4r, Q). An elementary calculation implies that
LE(X) = (11624 . | X — Py|=2~2/2 . (—4nfl) = 0
for all X¢Q(4r, Q)nB(r/8, P;) and

sup {;—{,(F—f-tN): O=t= r/16} = c/r.

By Lemma 2.4, we have

u(X) = c-u(4,(0))

for all X€B(r/8, P)nQAr, Q). Since f=0 in Q(4r, Q) and f=c on IB(r/8, Py,
we deduce by the maximum principle that

u(X) = c-u(4,(0) f(X)
for all XeB(r/8, PY)nQ(4r, Q). Since f(P)=0, we obtain
) u(P+1N) = u(4,(Q)) - ct/r

whenever 0=¢=r/16.
Inequalities (1) and (2) hold for both u and v. Thus

#(X)/u(A4.(Q) = c-v(X)/v(4,(Q))
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whenever X€X and dist (X, #X)=r/16. By the Harnack principle we may re-
define ¢ so that the above inequality holds for all X in Z.

For completeness we define what we mean by the Green’s function for L in
a bounded Lipschitz domain, D. Our definition is based on the fact that for each
f in LP(D) with p=>n, there is a unique function, u, in W2Z:P(D)nC(D) such
that Lu=—f in D and u=0 on AD. (This follows by approximating f and
the coefficients of L with smooth functions and using the L?-Schauder estimates
([1]) and barriers constructed in [12] to show that the corresponding solutions
converge uniformly in D.) Pucci’s estimate ([14]) says that

lull oy = ¢+ | fllLey-

Hence for each fixed X in D, the mapping f-u(X) is a continuous, positive
linear functional on L?(D). The Riesz Representation Theorem implies the existence
of a nonnegative function, G(X, -), in LP?-D(D) such that u(X)=
f »G(X, Y)f(¥Y)dY. The function, G(X,Y), is called the Green’s function for
L in D.

The following result (which we stafe as Theorem 2.6) is proved in Section 5.

Theorem 2.6. Suppose Q=(x,, yo)€0D and O<r<r,. Let A(Q)=
(X9, Yo+ 3mr) and Y (r, Q)=Dn[QQ3r, ON\RQQ2r, Q). There exists ¢=0 depending
only on A, n,w, ry, and m such that

f 0.0 X AY = ¢ G.(X,Y)dY

(/Y n, A1)

Jorall XeQ(r, Q)nD, where G.(X,Y) is the Green’s function for L and the domain
Q4r, Q)nD. .

We now claim that the above theorem implies the comparison theorem (Theorem
2.1). The proof is the following:

Proof of the Claim. Suppose Theorem 2.6 holds. Fix Q=(xy, ¥,)€0D and
r<ry, and suppose u and v are positive solutions of Lu=0 in Q(8r, Q)nD
which vanish continuously on 4(8r, Q). Let of be the L-harmonic measure at
X for the domain Q(4r, Q)nD. (That is, for each X€D, wf is the measure cor-
responding to the linear functional: ¢—->u(X), where ¢ is a continuous function
defined on the boundary of Q(4r, Q)nD and wu is the solution of Lu=0 in
Q(4r, Q)nD with boundary values, ¢.) Let o,=DndQ(4r, Q) and B,=0Q(4r, Q)
{(x, y): y=yo+4mr}. By Lemma 2.4 there exists ¢,>0 depending on 1,n, and
m such that

u(X) =0 u(Ar(Q)) ) (O,).((OC,)

for all X¢ Q(4r, Q)nD. By the Harnack principle, we have
F (B)-v(4,(Q)) = ¢5- v(X)
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for all X¢pB, and hence for all X¢ Q(4r, Q)nD by the maximum principle. Thus
we obtain the conclusion of Theorem 2.1 if we show that

(1) a)z((ar) = c'wz((ﬂr)

for all X¢€Q(r, @)nD, where ¢ depends on 4,n, w,r,, and m.
Choose hcC=(R") such that 0=h=1 in R*, h=0 in Q(2r,Q), h=1 in
R™NQ2(3r, ), and
1Pl = n/r%,

where # depends only on n and m. If X€Q(r, Q)nD, we have

X - X - X _
@ (ar) - '/‘319(4"; ND] h(P) d(l),. (P) - -/'8[!2(4;', 0)ND) h(P) da), (P) h(X)
- Q@r,0)ND Gr(Xa Y)Lh(Y) dY = I'Z v Q) Gr(X, Y) dY,

where ¢, depends only on #, A, and n. The above inequality and Theorem 2.6
imply that

@) w¥ (@) = 25,

¥ f o(¢/Vn, 47(0)) G(X,Y)dY = cse- f(X)

for all Xe€Q(r, Q)nD. The functions, f(X) and wX(B,), satisfy the hypotheses
of Lemma 2.5 in Q(4r, Q)nD. In addition, it is easily seen (by a dilation argument)
that f(4,(Q)) and w*@(B,) are bounded above and below by positive constants
depending only on A, n, and m. Hence (by Lemma 2.5)

3 J(X) = ey oF (B)

for all Xe€Q(r, Q)nD, where ¢, depends only on A,n, and m. We obtain in-
equality (1) by combining (2) and (3).

3. Interior A_-estimates of nonnegative adjoint solutions

We have reduced the proof of the comparison theorem to an integral inequality
on the Green’s function. In Sections 3 and 4 we prove a priori estimates of non-
negative solutions of L*»=0 which enable us to prove this inequality.

We defined solutions of L*y=0 in the introduction. We shall say that L*»v=0
in D (or =0)if veL] (D) and

va(Y)Lgo(Y) dY =0 (or = 0)

for all nonnegative @€Cg (D).
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Throughout this section we denote by @(r) an arbitrary open cube in R" of
side length r. The concentric open cube of side length or will be denoted by ®(or).

Theorem 3.1. Suppose O<r=1, 1l=<p=<nf(n—1), and O<oc<y<l. There
exists ¢>0 such that if ve€L?(P(r)), v=0 in D(r), and L*v=0 in ®(r), then

[

1 P llp< .
(T Lo 074} = iy S "0

The constant, ¢, depends only on A, n,w,p, o, and 7.

Proof. 1t is sufficient to prove this result in the case r=1; the theorem then
follows by a change of variables.

Fix a smooth domain, Q, in &(1) such that &(y)c Q. Choose hcCy(P())
such that =0 in &(y) and h=1 in &(c). Suppose v€L?(P(1)), v=0 in &(1),
and L*»=0 in &(1). Define fcL”(Q), where 1/p+1/p’=1, by setting f=v"~!
in ®(¢) and f=0 in @\ @(0). Let u be the unique function in W27 (Q)nC(Q)
which satisfies Lu=f in Q. From the maximum principle, we have #=0 in Q.
Hence

f oy Y = f oy Y = f oy 0 LudY

[L(uh)“—U'Lh—‘zaU ‘Dyiu'Dyjh]UdY

T Jaowm

= ["“u'Lh“zaij‘Dyiu'Dth]UdY.

“Jaow

Since p’>n, we deduce from the Sobolev inequalities, LP-Schauder estimates,
and Pucci’s estimate ([14]) that

fds(a) vPdY = c- |ullw gy ¢(v)de
= ¢+ (| Lull ooyt el Lo (o)) .fq)('y) vdY

I

¢ ”Lu”u'(g)'f(b(y)de: c-(fq)(o)v” dY)ll”/-fw(y)de,

where ¢ dependson A, n, w, p, h, and Q. This proves the theorem.

Theorem 3.2. Suppose r=0 and O<o<y<l1. There exists ¢=>0 depending
only on A,n,6, and y such that if v=0 in &) and L*v=0 in &), then
foonvdY=c- [ pmvdY.

Proof. The theorem follows if we show that there exists 0¢(0, 1) depending
only on 4 and » such thatif 8<y<1 and r=0, then

) f@(mdeé c vdY

D(0r)
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whenever v=0 and L*»=0 in &(r), where ¢ depends only on A,n,0, and 7.
Iterations of the above result would imply that

f vdY = c*. f vdY
D(yr) DO*r [y~

for any natural number k; by choosing k so that 0*<y*~'c, we obtain the result
of the theorem. ‘
To prove (1) we may assume r=1 and &(1) is centered at the origin; as before,
the general result follows by a change of variables. Consider the function in Cy (R")
defined by
> -1
h ={e T O Xee)
0, if XcR™N2(),

where X=(x,...,x,). If Xc®(1) and we set s=s(X)=max{2|x;|: | =i=n},

we have
n -1

i 3
Lh(X) = 8¢ o
a;; X '8xiX' a; X 1+]2x,2 bi X - X;
.{Zin‘=1 J(?. 2) 122 —Zin=1[ ( )( 233 )+ ( )22]}
=L (1—4x)?-(1—4x3) (1—4x?) (1-4x3)
8e—n/(1—s?) [ (24s®)  4n _ﬂ]
-5 0= 70-55 1l
Hence if we choose 6€(0, 1) so that

f { 225 4n }ng
o=s=1 L (1—-s%)2 A(l—s®) — A
we have Lh=0 in &N\ P(H) and Lh=c,>0 in S\ P(O) for each y€(4, 1),
where ¢; depends only on 4, n,0, and y.
Now suppose v=0 and L*»=0 in @(1). Choose ¢, depending on A and
n such that |Lh|=c, in @(1). If y€(0, 1) and h is the function defined above, then

“ f“’(v)\@(") VY = [ onom? LAY = J NN +Lhdy

= —f¢(a)u-LhdY§ cz-fw)udy

Iy

and we conclude that
cye ‘/;m vdY = (1 +¢y) '-/qsw)de'

This proves (1) when r=1.
The two previous theorems imply the following “reverse-Holder” inequality.

Theorem 3.3. Suppose O<r=1, l<p=n/(n—1), and O<oc<1. There exists
¢>0 depending only on A, n,w,p, and o such that if vEL*(P(r)), v=0 in P(r),
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and L*v=0 in &(r), then
1 ]1/” c
————— P = — .
[|Q)(ar)| f o " ar) = |®(o7)] f ®(or) vdr.

R. Coifman and C. Fefferman ([6]) showed that Theorems 3.2 and 3.3 imply
the following estimates (Corollaries 3.4 and 3.5):

Corollary 3.4. Suppose O<r=1, l<p<n/(n—1), and O<oc<]1. There exist
positive constants q=1, ¢;, ¢, and & depending only on A,n,w,p and o so that
if veLP(P(r)),v=0 in ®(r), and L*v=0 in &(r), then:

(1) A_-estimate: For any measurable subset, E, of ®(or), we have
o(B) _ ( |E| ]
v(@(n) = enl)’

where v(E)= [ vdY.
(ii) A -estimate:

Corollary 3.5. Suppose O<r=1, l<p<n/n—1), and O0<o<l1. Given e=0,
there exists B=0 depending only on s, cy, and q (the constants in the Aj-estimate)
so that if v€LP(®(r)), v=0 in ®(r), and L*v=0 in D(r), then

(1—8)-|@(or)|
== . ﬁ = = —1 .
= ‘{YE@(ar). IR f@(ar)v(Z) dZ =v(¥) = FE ] fq}(ﬂ)v(Z)dZ}

The A_-estimate of Corollary 3.4 may be interpreted as a generalized Harnack
principle; its relationship to the classical Harnack inequality is shown in Corollary 3.5.
It is known that if the coefficients of L are Holder continuous, nonnegative solutions
of L*»=0 have continuous representatives ([15]) and satisfy a classical Harnack
inequality ([2]). These properties do not hold without such restrictions, as shown
by the example in which the Green’s function, G(X, -), is not in L (D\{X}).
(See [4])

4. Normalized adjoint solutions

Throughout this section we assume (in addition to our previous hypotheses)
that the coefficients of L are smooth functions. We assume B is a fixed open ball
in R* and A is a fixed point in B. We let Ggx(X, Y) denote the representative
of the Green’s function for L and B which is continuous at all points, (X, Y)
in BXB such that X =Y.
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If @ is an open subset of B\ {4}, we say that § is a normalized adjoint

solution (with respect to L and Gy(4, -)) in Q if 5¢C(Q) and
5(Y) = v(Y)/Gg(4, Y)
forall ¥ in @, where L*»=0 in Q.

Our objective in this section is to establish uniform pointwise estimates on
normalized adjoint solutions which will be used to prove Theorem 2.6. In particular,
we prove a maximum principle and a Harnack principle and we construct uniform
barriers on truncated cones. Based on these properties we obtain a Carleson-type
estimate for positive normalized adjoint solutions which vanish on a portion of the
boundary of D. Although we consider only those operators with smooth coefficients,
our estimates depend only on 4, n, and w.

The maximum principle and Harnack principle will be proved as consequences
of the following proposition.

Proposition 4.1. Suppose Q is a smooth domain such that QcB\{A4}. Given
@€EC(0Q), there is a unique function vEC(RQ), such that L*v=0 in Q and v=¢
on 0Q. Moreover,

v@) = [, #(Q)- 3 ¢ ©,7)ds(0)
for all YeQ. Here, G(X,Y) is the Green’s function for L in Q; 31‘)6— (0,Y) is
Q

the inward conormal derivative of G(-,Y) at Q :0Q (ie.,

oG " oG

g @1 =311, 6, Ny@)-52@. ),
where N{(Q)=(Ny, ..., N,), the inward unit normal at Q),; and ds denotes surface
measure on 0LQ.

Proof. See [13], p. 77. (The result also holds when L has Holder continuous
coefficients; see [15].)

Theorem 4.2 (Maximum Principle). Suppose Q is a Lipschitz domain and
QcB\{4}. If ? is a normalized adjoint solution in Q and $€C(Q), then

150y = 180 oy -
Proof. If Q is a smooth domain, Proposition 4.1 implies that

@) =]/, 10 2D T2 0. nas@)

. Gg(4, oG, o
= “v”L""(bﬂ)'fm—é%% 3v!2 (@, 1) ds(Q) = ol oy -

The theorem now follows by applying the above result to smooth subdcmains of Q.
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The following result will be used in our proof of the Harnack principle. We
omit the proof, since it is essentially the same as the proof of Lemma 2.5.

Lemma 4.3. Suppose r=>0 and P¢R" There exist positive constants, ¢, and
¢, depending only on A and n such that if u is a positive solution of Lu=0 in
B(3r, P)\B_(r,_P—) which vanishes continuously on 9B(3r, P), then

Leu(Q 41Ny = i (0) = 2eu(@ 411

Sfor all Q€0B(3r, P). Here, No=(P—Q)/|P—Q| and duldv, is the inward conormal
derivative of u at Q.

Theorem 4.4 (Harnack Principle). Suppose r=>0 and B(4r, PYCB\{4}.
There exists ¢=>0 depending only on A and n so that if § is a nonnegative nor-
malized adjoint solution in B(4r, P), then

sup ¥ = ¢+ inf &.
B(r, P) B(r, P)

Proof. Let G,(X,Y) be the Green’s function for L and B(3r, P). Suppose
Y€B(r, P). For cach Q<dB(3r, P), let Xp=0+r(P—0)/|P—Q|. By Lemma 4.3
we have

c JG, _c
%' Gr(XQs Y) = TVQ_ (Q7 Y) = _j" Gr(XQavY)'
Thus
o ~con. Oa(4,0) 3G,
M D) = [ 14,07 D GGy B, @V BQ)

Fix a point P,£0B(2r, P). From inequality (1) and the Harnack principle for
nonnegative solutions of Lu=0, we obtain

Cs . Gr(PO’ Y)

@ oY) = Gu(4,Y)

[

.‘/.88(3r,P) 3(Q) - Ga(4, Q) ds(Q).

Similarly, we deduce from Proposition 4.1 and Lemma 4.3 that

G D) = [, Gald, O 522 @, 7)ds(0)

dB(3r, P) o

=2G (P, Y) [, Ga(d, 0)ds(Q).

B(3r, P)
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Hence

B(Y) = c- #Q)+ G4, Q) dsQ)/f,

dB(3r, P)

Gy(4, Q) ds(Q),

where ¢ is a positive constant depending only on A and n. A completely analogous
argument implies that

B¥) = ¢t [

JIB(3r, P)

B(3r, P)

5(Q)-Gs(4, @) ds(Q)[ [

dB(3r, P)

Gg(4, Q) ds(Q)

which proves the theorem.

The Harnack principle and the fact that constants are normalized adjoint
solutions imply the following interior Holder estimate. We omit the standard proof.
(See [8], p. 190.)

Theorem 4.5. Suppose r=0 and B(Q2r, P)cB\{4}. There exist positive
constants ¢ and o depending only on A and n so that if 0<o<1 and ¥ is a nor-
malized adjoint solution in B(Q2r, P), then

osc ¥ = ¢+0%- 0sC 7.
B(ov,P) B(r, P)

Here, osc t=sup {5 —5(X)|: Y1, VL€ E}.

The following lemma will be used to construct uniform barriers for normalized
adjoint solutions on small cones.

Lemma 4.6. Suppose 0<0<n and r=0. Let B,=B(r,0), I'.=B,n {Xc¢R™\{0}:
cos~Y(x,/|X ) <0} (with X=(x,,...,x,)) and A,=(0, ...,0,3r/4). For each &>0
there exist positive constants R=1 and 0=1/4 depending only on ¢,0,,n, and
w so that if O<r<R, we have

sup {Gr,(4,,Y)/Gp, (4,,Y): YEI,N B} = e.
Here G (X, Y) and Gp, (X, Y) denote the Green’s functions for L and the domains,
I'. and B,,, respectively.

Proof. Suppose the lemma is false. Then there exist g=0 and sequences
{r} {8}, and {¥,} such that O0<=rn=27% 0<§,=27" Y&l ,, and

1 Gr,k(Ark, Kc)/GB2,k(Ark: Y) =&
for all k. Let I'=I;, B=B,, and
L= 27 ;-1 ;X)) « Dy, x,+ 2=y 1 b (e X) - Dy,.
Let G%(X,Y) and G%(X, Y) denote the Green’s functions for L, in the domains,
I' and B, respectively. Inequality (1) implies that
Gt (4, Z)[Gy(4,, Z) = &
for all k, where Z,=Y,/r,.
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We may assume without loss of generality that g;;(0)=4,;, so that the co-
efficients of {L,} converge uniformly on compact sets in R” to the coefficients of
the Laplace operator. Define

w(X) = (X Z)|G% (43, Zy)

for all XeI'\{Z,}. Then #,=0 and L,u,=0 in I'\{Z,}, 4,=0 on oI, and
g=u(A,)=1. The LP-Schauder estimates and Lemma 2.4 imply that a subsequence
of {u}, which we still call {u,}, converges in L3 (I'\{0}) to a continuous, non-
negative function, u, in I'\{0} such that 4u=0 in I,u=0 on AIN\{0}, and

9)) g =u(dy) = 1.
Let

g(X) = Gj(X, 0)/G§(4,, 0)
for all X¢ B\ {0}. Reasoning as we did above, we see that a subsequence (which
we still call {g,}) converges in Lj,.(B\{0}) to a continuous, nonnegative function,
g, in B\{0} such that 4g=0 in B\{0} and g=0 on #B. By Theorem 4.4,
there exists ¢,>0 depending only on A and # such that

u (X) = Gy(X, Z)[|Gy(4r, Zy) = o+ gi(X)

whenever X€I'\B,;, and ZB,. Since the above inequality holds for arbitrarily
small r, we conclude that

(3 u(X) = ¢o-g(X)

for all XeI\{0}.

We now claim that g(X)=Gz(X, 0)/Gy(A4;1, 0), where GR(X, Y ) is the Green’s
function for the Laplacian in B. This follows because for each X¢ B\ {0}, {Gh(X, -)}
converges weakly to Ggy(X, ) in LP®-Y(B) for p>n. On the other hand,
Theorem 4.5 implies that {G%(X, -)/G%(4,, )} is uniformly bounded and equi-
continuous in B, whenever B\ B, contains X and A;; hence a subsequence
converges uniformly in B, to Gg(X, -)/Gy(4;, -). Since 0€B,, we have shown
that a subsequence of {g,(X)} converges to Gg(X, 0)/G5(A4,,0) and thus

Q) g(X) = Gp(X, 0)/Gp(4,, 0)

for each X€B\ {0}. We will show that this leads to a contradiction.

Let o(X)=g(X)—u(X)/2¢, for each XeI'\{0}. Then ve¢C(I"\{0}), 40=0 in
I',v=g on I\{0}, and v=g/2>0 in I'. The results of Hunt and Wheeden on
nonnegative harmonic functions ([9]) imply that

v(X) = [, 8(Qdo*(@)+ [, KX, Q)dv(Q)

for all XeI', where o* is the harmonic measure at X in I, K(X, Q)=
(dw*/dw*1)(Q), and v is a finite nonnegative Borel measure on 9I' such that
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v L w4, Thus
o) = [, g(Q)do™(Q)

for all X¢I'. The above inequality and equation (4) imply that |Q[*~" (or log |Q|
if n=2) isin LYdw®). Hence if we let P;=(0,...,0, —277) for j=1,2,..., we
obtain (by the dominated convergence theorem)

o(X) = lim [, [Ga(Q, P)/Gs(A:, 0)] do*(Q)
= lim Gp(X, P)/Gs(41,0) = g(X)

for all X€I. Since v=g—u/2c,, this implies that ¥=0 in I' which contradicts (2).

In the following theorem we construct uniform barriers for normalized adjoint
solutions on small cones in B\ {4}. The theorem is based on the A_-estimates
in Section 3 and the properties of normalized adjoint solutions established thus far.

Theorem 4.7. Suppose 0<B8-<=n and N is a unit vector in R". Given g=0,
there exist positive constants R=1 and 6=1/4 so that if r=R and B(4r, P)C
B\{4)}, there is a normalized adjoint solution, h, in I'(r,0, N, P) which satisfies:

(@) heC(I'(r, 0, N, P)), k=0 in I(r,0, N, P), and h(P)=0,
(i) =1 on Or(r, 0, N, P)ndB(r, P),
(i) sup {A(Y): YEI'(r, 0, N, P)nB(dr, P)}=e.

The constants, R and 6, above depend only on &, 0, A, n, and w.

Proof. Suppose O<r=1 and B(4r, P)cB\fd4}. Let I,=I(r,6,N,P),
Iy, =I(2r, (0+m)/2,N, P), A,=P+Nr, and A;=P+3Nr/2. Let B,=B(s, P)
for any s=>0. Choose >0 (depending on 6 and n) so that @ (dyr, A))<I', NI,
and @ (4nr, A,)c T, \{4,}. Define

Gr, (4;,Y) 1
Gp(4,Y) ~*
for all Yel,\{4,}, where Gr, (X, Y) is the Green’s function for L in Ty,
Then any positive multiple of H satisfies (i)in T,.
By Theorem 3.2, Corollary 3.5, and Theorem 4.4, there exist positive constants
¢, and ¢, depending only on A,7n,0, and w such that

HY) = [ a0, G4 Z)dZ

inff A=c,- sup A

or,.MoB, D(yr, A,

= ¢ r2 f¢(nr,A;> Gp(4, Z2)dZ- [ or 1, O (e Z) dZ / f o 1, T8 2) dZ

nr, 4,) ,

= Cz-r"2.f¢(m’Ar)Gr2r(A;, Z)dZz,
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Since G,—ZT(A;, .) is a nonnegative adjoint solution in I',\{4;} and satisfies
L*v»=0 in I, Theorem 3.2 implies that

r_2.f¢(m',A,) Gr, (47, Z)dZ = c5-r7* f Gr, (4;, Z)dZ.

B(rf4, 4})
By the maximum principle, we have

2. me 0 Gr,, (X, Z)dZ = c,(1—16|X— 4] ]*/r®)
for all X¢B(r/4, A]), where ¢, depends only on A and n. Setting X=4, and

combining the above inequalities, we conclude that H=c=>0 on 9I,ndB, where
¢ depends only on A, n, 8, and w. Hence if we define

h(Y) = c='-H(Y)

for all Y&I',, we obtain a function which satisfies (i) and (ii).

Now suppose &>0. Let Gy (X, Y) denote the Green’s function for L and
B,,. Choose R and ¢ dependingron g (0+m)/2, A, n, and w as defined in Lemma
4.6. If O0<2r<R and Y€rI',.nB;, we have

h@) = Tl 1) Gn (1) L
T G, (4],Y) Gg(4,Y) o

gecter 2.[Gg, (4;,Y)/Ga(4, Y)] "/;p(m 0 Gp(4, Z) dZ.

f son Al Gy(4,2)dZ

fIh

Reasoning as in the proof of (ii), it follows that
) h=c, -e3~r‘2-fBr/4 G, (4;, Z)dZ

in IyNB;., where ¢; depends on 6,4,n, and w. By Pucci’s estimate (and
a change of variables), we have :

) r* [, G4, 2)dZ = co,

i

where ¢, depends only on 4 and n. Inequalities (1) and (2) imply that / satis-
fies (iti).

The barrier constructed above enables us to prove a Carleson-type estimate
on nonnegative normalized adjoint solutions which vanish on a portion of a bounded
Lipschitz domain, D. This estimate, Theorem 4.9, is the main result which we
use (in Section 5) to prove Theorem 2.6. We assume in the remainder of this section
that B and A4 satisfy DcB\{4} and dist (6B, D)=dist (4, D)=10mr,.

Lemma 4.8. Suppose r>0, Q€dD, and Q(4r, O)CB\{4). There exist
positive constants ry=ry/2, ¢ and o depending only on A, n,w,r,, . and m so that
if r=r, and ¥ is a nonnegative normalized adjoint solution in Sr, Q)nD which
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vanishes continuously on A(r, Q), then
B(Y) = c- (Y- QU M)
for all YEQ(r, Q)nD, where M(®)=sup {§(Y): YEQ(r, Q)nD}.

Proof. Choose 6¢(0,n) depending only on m so that if N=(4,(Q)—0)/
|4,(0)—Q] and r<r,, then B(r, Q)nDcI(r,0, N, Q). Set &=1/2 andlet R and
5 be the constants defined in Theorem 4.7. Set r;=min {R, ry/2}.

Suppose r and § satisfy the hypotheses of the theorem. Let % be the “ep-
barrier” as constructed in Theorem 4.7. By the maximum principle for normalized
adjoint solutions, #=M(%)-% in B(r/2, Q)nD. Since =M (@) in (r, Q)nD,
it is sufficient to prove that

M) h(Y) = c(Y— Qi)

for all Y€B(r/2, 0)nD, where ¢ and « are positive numbers depending only on 4.
Let [, be the “g,-barrier” in I'(6r/2, 0, N, Q). Since h=1/2 in dB(d+/2, Q)nD,
the maximum principle implies that h=h,/2 in I'(6r/2, 0, N, Q) and hence h=1/4
in B(6%r/2, Q)nD. lterating this procedure, we deduce that 2=2"7 in B(6'r/2,Q)nD
for j=1,2,..., which proves (1).
The above lemma is the analog of Lemma 2.3 which was used to prove the
Carleson-type estimate of Theorem 2 4. By the same argument, we obtain:

Theorem 4.9. Suppose Q€0D, and O<r=r,/2 (where ry is the constant
of Lemma 4.8). There exists ¢>0 depending only on A,n,w, and m so that if
# is a nonnegative normalized adjoint solution in QQ2r, Q)nD which vanishes conti-

nuously on A(2r, Q), then
F(¥) = c-5(4,(0)
for all YeQ(r, Q)nD.

5. The Green’s function

In this section we prove the inequality on the Green’s function which we stated
as Theorem 2.6. We also describe some properties of the Green’s function which
we feel are of independent interest.

Proof of Theorem 2.6. We first prove the theorem assuming L has smooth
coefficients. (See Section 2 fot the statement of the theorem.) Choose an open ball,
B, and a point, 4, in B suchthat DB\ {4} and 10mr,=dist (4, D)=dist (4B, D).
Let Gyx(X,Y) denote the Green’s function for L in B and n=min {1/4, r,/r,}
with r; as defined in Lemma 4.8. For simplicity we will denote by ¢ any positive
constant which depends only on 4, n, w, ry, and m.
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Suppose XcQ(r, Q)nD. If Pcy(r, Q)ndD, then QQ2nr, P)<Q(4r, Q)\
Q(r, Q), where Q(2yr, P) is defined with respect to the coordinate systemin Q(r, Q).
By Theorems 4.4 and 4.9, there exists ¢>0 independent of X and P such that

sup {G,(X, Y)/Gg(4, Y): Y€Q(yr, P)n D} = c- G, (X, 4/(Q))/Gy(4, 4(Q))
and hence
sup {G,(X, Y)/Gg(4, Y): Yey (r, Q)}
= c¢-inf {G,(X, Y)/Gy(4, Y): Yed(r[Vn, 4,(Q))}.
The above inequality and Theorem 3.2 imply that if X€ Q(r, Q)nD, we have

Sy GENAY = [ Ga(4,Y)dY-sup (G,(X. )/Gy(4, Y): YU (r, OO}
M

=cC- o1 . (— 47
= [ gy B3 DAY inf (G, (X VG4, Y): Yeolr[Vn, 4, ()}

G.(X,Y)dY.

=

) f o(r/Vn, 41(Q))

This proves the theorem when L has smooth coefficients. In the general case, we
mollify the coefficients of L to obtain a sequence of operators, {L;}, with smooth
coefficients such that G*(X, -)-G.(X,-) in L?(Q@4r,Q)nD) for each
XeQ(@r, Q)nD and l<p<n/(n—1). (Here, GE(X,Y) is the Green’s function
for L, and Q(4r, Q)nD. The convergence of the Green’s functions follows from
Pucci’s estimate, Lemma 2.4, and the L”-Schauder estimates.) We obtain the con-
clusion of Theorem 2.6 by applying inequality (1) for each L, and taking the limit.

We conclude this section by making some remarks on the behavior of the
Green’s function for L and D. Fix an open ball, B, and a point, 4, in B such
that DB\ {4}. Let G,(X,Y) and Gx(X,Y) denote the Green’s functions for
L in D and B, respectively. By mollifying the coefficients of L, we may choose
a sequence of operators, {L;}, with smooth coefficients such that G%(X, -)—
Gp(X, ) in LP(D) and Gk(4, -)>Gyx(4, -) in LP(B) for each X€D and
l<p<nf(n—1) (where G%(X,Y) and GE(X,Y) are the Green’s functions for
L, in D and B, respectively). By the Holder estimates on normalized adjoint
solutions (Theotems 4.5 and 4.9), it follows that {G%(X, -)/GL(4, )} converges
uniformly in compact subsets of D\{X} to G,(X, -)/Gg(4, +). Hence G, (X, -)/
Gy(4, ) has a continuous representative in D\ {X} and the estimates of Section 4
extend to G, (X, -)/Gg(4, -) in D\{X}. Moreover, by writing

Gp(X,Y) = Gg(4,Y)+(Gp(X, Y)/Gy(4, Y)),

we see that G (X, Y) is the product of an A -weight (as defined by Muckenhoupt)
and a positive, continuous function of X and Y (for XY) which satisfies
a Harnack inequality in each variable and vanishes continuously on 9D.
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