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Introduction 

We consider uniformly elliptic operators of the form 

(*) L = Zi",i=l aii(X) "D2x, xj+ Z~=l bi(X). Dx, 

with real-valued, bounded measurable coefficients defined in R" (for n~2). The 
functions, at1, are assumed to be uniformly continuous in R" (with no restriction 
on the modulus of continuity) and satisfy aii= aji. Operators of this type correspond 
to diffusion processes in R n (see [16]) and hence will be called diffusion operators. 

Our main objective is to prove a comparison theorem (Theorem 2.1) for positive 
solutions of Lu=O in a bounded Lipschitz domain, D, in R n. The theorem asserts 
that any two positive solutions of Lu=O in D which vanish on a portion of the 
boundary must vanish at the same rate. More precisely, if QEOD, B(8r, Q) is 
a ball of radius 8r centered at Q, and ul and us are positive solutions of Lu=O 
in B(8r, Q)c~D which vanish continuously on 0D, then 

Z .  U l ( )  < u s ( x )  < c u,(x) 
r u l ( x r )  - u~(A,)  - us(-4r) 

for all X in B(r, Q)r~D. Here, Ar is a point in B(r, Q)nD whose distance from 
OD is proportional to r. The constant, c, is independent of Q, r, u~, and us. 

The comparison theorem was proved for harmonic functions in 1968 by Hunt 
and Wheeden ([9]). It was extended to solutions of Lu=O for operators with 
HSlder continuous coefficients by A. Ancona in 1978 ([2]). A consequence of the 
comparison theorem is that the representation theorem and Fatou-type results for 
positive harmonic functions in D (see [9]) extend to positive solutions of Lu=O. 
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In addition, Hunt and Wheeden's estimates of harmonic measure in D can be 
extended to the "L-harmonic measure" corresponding to the diffusion operator, 
L, in D. These results will appear in a separate publication. (See also [3].) 

Much of our work in this paper concerns the behavior of the Green's function 
and nonnegative solutions of the adjo!nt equation, L 'v=0.  This is because the 
comparison theorem is shown to be equivalent to the inequality (Theorem 2.6): 

for all XEB(r, Q)nD, where QEOD, G,(X, Y) is the Green's function for L in 
BOr, Q)nD, O(r)=[B(3r, Q)\B(2r, Q)]nD, and ~(r) is a cube in B(4r, Q)nO 
whose distance from OD is proportional to r. The constant, c, is independent 
of Q,r  and X. 

The main difficulty in proving the above inequality is that the Green's function 
for L in D, which we denote by G(X, Y), need not behave like the Green's 
function for the Laplacian. In particular, the examples of Gilbarg and Serrin ([7]) 
show that G(X, Y) need not be proportional to IX-Y[ ~-" (for n->3) when 
X is near Y in D. Moreover, we have constructed an example in which G (X, �9 ) 
L~oc(D\{X}). (See [4].) 

We prove inequality ( �9 , )  (and hence the comparison theorem) as a consequence 
of our apriori estimates of nonnegative solutions of L 'v=0.  A solution of L ' v = 0  
in D is defined to be a function, v, in L~oe(D ) such that 

fov  (Y). L~p (Y) dY = 0 

for all ~oECo(D ). The functions, G(X, .) and Gr(X, .), above satisfy L ' v = 0  
in subdomains of D\{X} and [BOr, Q)nD]\{X}, respectively. 

Our results on nonnegative solutions of L ' v = 0  include an interior A=-estimate. 
(See Corollary 3.4.) In addition, assuming the coefficients of L are smooth functions 
we prove classical estimates on suitably "normalized" adjoint solutions which are 
independent of the smoothness of the coefficients. (See Section 4.) For example, 
we prove a Harnack inequality (Theorem 4.4) for functions of the form 

~(Y) = v(Y)/G(X, Y) 

in subdomains of D\{X}, where v is a nonnegative solution of L ' v = 0  and 
G(X, Y) is the Green's function for L in D. The constants in these estimates depend 
only on the ellipticity, bounds, and modulus of continuity of the coefficients. 

It follows from the above results that the Green's function for L in D is the 
product of an A=-weight (as defined by Muckenhoupt) and a positive, continuous 
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function of X and Y (for X # Y) which satisfies a Harnack inequality in each 
variable and vanishes continuously on OD. (See Section 5.) This is the main idea 
of the proof  of  inequality ( ,  , )  and may be of independent interest. 

1. Notation 

We assume throughout this paper that L is a diffusion operator defined in 
R" (for n=>2) as described in ( . ) .  We let w: R + ~ R  + denote a nondecreasing 
function such that w(t)~O as t ~ 0  and 

sup{[a,j(X)-a,j(Y)I:  I X - Y I  ~= t, 1 ~- i , j  ~- n} ~ w(t). 

We denote by 2 a positive number such that 

[laij]lL~ta.)-t-]lbillL~tR.) ~ 1/2 for 1 ~ i , j  <- n 

and )ol~]~<-~,j=~aij(X).r for all (X, ~)CR"XR n. 
We assume that D is a bounded Lipschitz domain in R" and let m => 1 and 

r0<= 1 denote positive numbers such that the following holds: to each QCOD there 
corresponds a coordinate system (x ,y)  of  R " - ~ •  (obtained by a translation 
and rotation of  the standard coordinate system) and a function q9 : R " - ~ R  such that 

and 
8[q~(x)-rp(x')! ~ mlx-x'f 

B(10mr0, Q) c~ {(x, y): y > qg(x)} = B(lOmro, Q) n D. 

Here, B(s, Q) denotes a ball of radius s centered at Q. If  r > 0  and Q=(x0,  y0) 
with respect to this coordinate system, we define 

(2(r, Q) = {(x,y): ]X-Xol < r, IY-Yol < mr}. 

We denote by At(Q) the point in f2(r, Q) with coordinates (.'c 0, yo+mr/2). The 
set I2(r, Q)c~OD is denoted by A (r, Q). 

If  p~(1, co), we let 

and 
W2"V(D) = {u: D~uCLV(D), [ct I ~ 2} 

Wlo~(D) = {u: D~uEL~oc(D), l~l ~ 2). 

We define I)/2'P(D) to be the closure of  {uCC2(D):u=O on 019} in 
with respect to the norm 

W~,~(D) 

[lullw,,~r = Zl~l~2 IID~ullL~D) " 
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By a solution of Lu=O in D we mean a continuous function, u, in WIo~P(D) 
for some p > l  such that Lu=O pointwise almost everywhere in D. The L p- 
Schauder estimates ([1]) and the Sobolev inequalities imply that solutions as defined 
above are in Wlo~P(D) for every p > l .  

We denote by ~(r, Q) the cube of side length r centered at Q in R". I f  
N is a unit vector in R" and 0<0< l r ,  we define the truncated cone 

F(r, O, N, Q) = B(r, Q) n {XER"\{0} : cos -1 (N. ( X -  Q)/IX- Q]) < 0}. 

The Lebesgue measure of a measurable set, E, in R" is denoted by IE]. 

2. The comparison theorcm: Motivation for a study of adjoint solutions 

In this section we state the comparison theorem and show that it follows from 
an integral inequality on the Green's function (Theorem 2.6). We shall prove this 
inequality in Section 5 as a consequence of our estimates on nonnegative solutions 
of  L*v = O. 

Theorem 2.1 (Comparison Theorem). Suppose QEOD and 0<:r<ro.  I f  u and 
v are positive solutions of Lu=O in O(8r, Q)nD which vanish continuously on 
A(8r, Q), then 

1 u ( X )  < v ( X )  < u (X)  
- -  - -  C �9 - - - -  - -  - -  

c v(A,(Q)) uiA,(Q)) 

for all XE O(r, Q)nD. The constant, c, above @ends only on 2, n, w, ro, and m. 

To prove that the comparison theorem follows trom an inequality on the 
Green's function, we will need the following results (Lemmas 2.2--2.5) which are 
standard consequences of the maximum principle ([5]), Harnack principle ([I1] 
or [17]), and existence of uniform barriers on cones ([12]). 

Lemma 2.2. Suppose QEOD, 0 < r < r 0 ,  and u is a positive solution of Lu=O 
in f2(2r, Q)nD. There exists c > 0  depending only on 2, n, and m so that i f  h is 
any natural number, we have 

u ( X )  <- c h �9 u ( Y )  

for all X and YE f2(3r/2, Q)nD such that dist (X, OD)>r/2 h and dist (Y, OD)>r/2 h. 

Proof. From the Lipschitz structure of D it follows that there is a natural 
number M depending only on m so that for X and Y as above, there is a chain 
of  balls, B0 . . . . .  Bj with j<=Mh such that XEBo and YEBj; BinBi+ l r  for 
i = 0  . . . . .  j ;  and 2B/cf2(2r, Q)nD for i=0 ,  . . . , j .  (Here, 2B~ denotes the open 
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ball concentric with B i with radius twice that of Br) The Harnack principle 
implies that 

sup u <= e0. infu 
Bi Bi 

for i = 0  . . . . .  j - - I  where co depends only on 2 and n. Hence 

u ( X )  < cgJ. u ( Y )  <- c U  h �9 u( t ' ) .  

Lemma 2.3. Suppose QEOD, O<r<ro ,  and u is a positive solution o f  Lu=O 
in ~2(r, Q)nD which vanishes continuously on A(r, Q). There exists c and c~>O 
depending only on 2, n, and m such that 

u(X) <-- c . (IX-- Ql/r) ~ . M (u) 

for all XEI2(r, Q)nD, where M(u)=sup  {u(X): XEf2(r, Q)nD}. 

Proof This is an immediate consequence of the maximum principle and 
K. Miller's construction of H61der continuous barriers defined on cones in R". 

The following result is often called a Carleson estimate. 

Lemma 2.4. Suppose QEOD, 0 < r < r o ,  and u is a positive solution o f  Lu=O 
in 12(2r, Q)nD which vanishes continuously on A (2r, Q). There exists c>O depend- 
ing only on 2, n, and m such that 

u(X) <= c. u(A, (Q)) 
for all XE f2(r, Q)nD. 

Proof By Lemma 2.3 there exists c1~2 depending on 2, n, and m so that 
if PEA(2r, Q) and ~2(s, P)cf2(2r ,  Q) (where f2(s, P) is defined with respect 
to the coordinate system in ~2(2r, Q)), then 

(1) sup{u(X): XEf2(s/el, P ) n O }  <- (1/2).sup{u(X): XE f2 ( s ,P )nO} .  

Normalize u so that u(Ar(Q))=l.  By Lemma 2.2, there exists cz>l  depending 
on )t,n, rn, and cl so that if gEf2(3r/2, Q)nD and u ( Y ) > c  h, then 

(2) dist (Y, OD) < c f  h r. 

Choose M ~ I  so that 2M>c2. Let N = M + 5  and define c=c~. Suppose 
there exists Yo=(Xo, Yo) in f2(r ,Q)nD with u(Yo)>C.u(Ar(Q))=c=cn2 . Then 
dist (Yo, OD) < c~nr. If  Qo = (po, qo) is a point of OD nearest to Y0 and if Q = (p, q), 
we have 

]Po-PI <---- IPo-Xo[ + Ixo-p[ 

< c ; ~ r + r  <_ (2-5+ 1)r, 
and 

1go-- ql ~= lqo--Yol-t-lYo -- ql 

~-- c~Nr +mr <= (2-5+ 1).mr. 
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Thus QoEg2(33r/32, Q) and we conclude that f2(c;Sr, Qo)Cf2(3r/2, Q). Applying 
(1), we have: 

sup {u(X): XEf2(c75r, Oo) riD} 

= sup {u(X): XEY2(cf~+~r, Qo) c~ D} 

_-> 2 u .  sup {u(X): XEI2(c{Nr, Qo) c~ D} 

= �9 c N +  1 > 2 M u(Yo) > 2 �9 

Hence we can choose Yl=(xl, yl)Ef2(c?Sr, Qo)nD such that u(Y0>c~ +1. 
By (2), dist (Y1, ~D)<c? N-It. Let Q~-=(pl, q~) be a point of 0D closest to Y~. 
Continuing in this manner, we obtain two sequences, {Yk} and {Qk}, with Yk = 
(Xk, Yk) and Qk=(pk, qk)EgD such that: 

(i) .kE.Ot~IV ct3f~M--lV--(k-1) r, Qk-1)nD = ~Q(ClS - (k -1 ) r ,  Qk-1)nD 

(it) dist (Yk. OD) = [Yk -- Qk[ < C{ lv-~r 

(iii) f2(cV 5-(k-~)r, Qk-X) C f2(3r/2. Q) 

(iv) u (rk) > c~ + k. 

The fact that dist(Yk,0D)~0 and u(Yk)~+~o contradicts the hypothesis that 
u vanishes continuously on A (2r, Q). 

Lemma 2.5. Suppose Q=(xo, Yo)E~D,O<r<ro, and u and v are positive 
solutions of  Lu=O in f2(4r, f2)c~Dc~{(x, y): y<yo + 2mr} which vanish continuously 
on the bottom and sides, 

A (4r, Q) u [gf2(4r, O) c~ {(x, y): ] x -  x0[ = 4r, go (x) <- y < yo + 2mr}]. 

There exists c > 0  depending only on 2, n, and m such that 

u(X) v(x) 

u ( A , ( o ) )  - 

for all XEI2(4r, Q)c~Dru{(x, y): y<yo+mr}. 

Pro0fi By the maximum principle it is sufficient to prove the above inequality 

for all XEO(4r, Q)cu{(x, y): y = y o + m r } - 2 .  For simplicity, we shall denote all 
positive constants depending only on 2, n, and m by c. 

Fix PEgf2(4r, Q)n~  and let N denote the inward unit normal at P in Q(4r, Q). 
Let Po=P+rN/4 and define 

(e- e~. Ix - eol~/~,~ _ e - 4. ,~) 
h ( X )  =- ( e -" /z2  _ e -  4 . /z , )  
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An elementary calculation implies that 

Lh (X) ~= [128ne-~4"lx-eol'/~':/22r ~ (e -"/~ - e-4":~)] 

�9 [(128n I X -  Po]~/2r ~) - 2n/2] -> 0 

for all XEB(r/4, Po)nB(r/8, P) and 

inf P + tN): 0<= t =< r => c r. 

By the Harnack principle, we have 

, ( x )  _-> c .u (A, (Q))  ~ c . , ( A X Q ) ) . h ( X )  

for all XEB(r/4, Po)nOB(r/8, P). Since h is zero on OB(r/4, Po)nB(r/8, P), 
the above inequality extends (by the maximum principle) to all XEB(r/4, P0)n 
B(r/8, P) and hence 

(1) u(P + tN) >= u(A~(Q)), et/r 

whenever 0 _  <- t~r]16. 
We proceed now to prove a similar estimate on u from above. Let P t =  

P-rN/16,  with P and N as before, and define 

f (X)  ----- 1 - [r/(16 [I"-  Pa])l 2"/z' 

in f2(4r, Q). An elementary calculation implies that 

L f ( x )  _-< (r/16)~"/~ �9 [ x - P l i - ~ - ~ " :  ~' �9 ( -  4n/,~) _-< 0 

for all XEf2(4r, Q)nB(r/8, P1) and 

sup {~N (P + tN): 0<= t <= r/16} <= e/r. 

By Lemma 2.4, we have 
u(X) <= e. u(A,(Q)) 

for all XEB(r]8, P1)nf2(4r, Q). Since f_>-0 in f2(4r, Q) and f>=c on OB(r/8, P1), 
we deduce by the maximum principle that 

u(X) <- c. u(A:(Q)), f (X )  

for all XEB(r/8, P1)nO(4r, Q). Since f ( P ) = 0 ,  we obtain 

(2) u(P +tN) <= u(A,(Q)), ct/r 

whenever O<=t <=r[16. 
Inequalities (1) and (2) hold for both u and v. Thus 

u(X)Iu(A,(Q)) <= c . v(X)Iv(A,(Q)) 
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whenever XE27 and dist (X, 027)<=r/16. By the Harnack principle we may re- 
define c so that the above inequality holds for all X in 27. 

For completeness we define what we mean by the Green's function for L in 
a bounded Lipschitz domain, D. Our definition is based on the fact that for each 
f in LP(D) with p>n, there is a unique function, u, in Wlo2~P(D)nC(D) such 
that L u = - - f  in D and u = 0  on OD. (This follows by approximating f and 
the coefficients of  L with smooth functions and using the LP-Schauder estimates 
([1]) and barriers constructed in [12] to show that the corresponding solutions 
converge uniformly in /).) Pucci's estimate ([14]) says that 

IlulIL~r < -  c. IlfllLp(m. 

Hence for each fixed X in D, the mapping f ~ u ( X )  is a continuous, positive 
linear functional on LP(D). The Riesz Representation Theorem implies the existence 
of a nonnegative function, G(X, .), in Lv/(P-1)(D) such that u (X)=  
fDG(X, Y)f(Y)dY. The function, G(X, Y), is called the Green's function for 
L i n  D. 

The following result (which we state as Theorem 2.6) is proved in Section 5. 

Theorem 2.6. Suppose Q=(xo, Yo)EOD and 0 < r < r  o. Let A~(Q)= 
(Xo, yo+ 3mr) and ~(r, Q)=Dn[f2(3r, Q ) \ ~ ( 2 r ,  Q)]. There exists c > 0  depending 
only on 2, n, w, r o, and m such that 

a , (x ,  r ) d r  <= c . f o  _ , G,(x, r dr 
(,. a) (,/r a,ce)) 

for all XEO(r, Q)nD, where G,(X, Y) is the Green's function for L and the domain 
f2 (4r, Q)nD. 

We now claim that the above theorem implies the comparison theorem (Theorem 
2.1). The proof is the following: 

Proof of  the Claim. Suppose Theorem 2.6 holds. Fix Q=(x0, yo)EOD and 
r<ro, and suppose u and v are positive solutions of Lu=O in f2(8r, Q)nD 

x be the L-harmonic measure at which vanish continuously on A (8r, Q). Let ~o, 
X for the domain t'2(4r, Q)nD. (That is, for each XED, co x is the measure cor- 
responding to the linear functional: r where ~0 is a continuous function 
defined on the boundary of f2(4r, Q)nD and u is the solution of Lu=O in 
f2(4r, Q)nD with boundary values, 4o.) Let ~,=~n0f2(4r,  Q) and ~,=O0(4r, Q)n 
{(x, y): y=yo+4mr}. By Lemma 2.4 there exists c~>0 depending on 2, n, and 
m such that 

u(X) <= c1" u(A,(Q)), wx(e,) 

for all XE s Q)nD. By the Harnack principle, we have 

w x (/3,) �9 v (A, (Q)) <_- c2. v (X) 
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for all XEflr and hence for all XEI2(4r, Q)nD by the maximum principle. 
we obtain the conclusion of  Theorem 2.1 if we show that 

(1) ~ox(~,) <- c .  coy(/~,) 

for all XEI2(r, Q)nD, where c depends on 2, n, w, r0, and m. 
Choose hEC=(R ") such tha t  0~h<_-I in Rn, h = 0  in g2(2r, Q), 

R"\f2(3r ,  Q), and 
]lhllc2(R-) <= rl/r 2, 

where t/ depends only on n and m. If  XEf2(r, Q)nD, we have 

wx (~) <= f ~to(,~.o.)nD]h(P) dogX (P) = f h(P) d~ ( p ) - h ( X )  
O[D(4r, Q) ~ D] 

e3 
= ,,uf~(ar.o)nD G,(X, Y)Lh (Y)dY <= -~'f(r,~ Q)G~(X, Y)dY, 

Thus 

h = l  in 

where c3 depends only on q, 2, and n. The above inequality and Theorem 2.6 
imply that 

(2) ogX(~, ) < c3" c . f  , G,(X, Y) d r  =_ csc . f (X )  
= r 2 ~(,/r 

for all XEf2(r, Q)nD. The functions, f (X)  and cox(fir), satisfy the hypotheses 
of Lemma 2.5 in s Q)nD. In addition, it is easily seen (by a dilation argument) 
that f(A,(Q)) and war(e)(fl,) are bounded above and below by positive constants 
depending only on 2, n, and m. Hence (by Lemma 2.5) 

(3) f ( X) <= ca. ogX (flr) 

for all XEf2(r, Q)nD, where c a depends only on 2, n, and m. We obtain in- 
equality (1) by combining (2) and (3). 

3. Interior A m-estimates of nonnegative adjoint solutions 

We have reduced the proof of  the comparison theorem to an integral inequality 
on the Green's function. In Sections 3 and 4 we prove a priori estimates of  non- 
negative solutions of L'v----0 which enable us to prove this inequality. 

We defined solutions of L ' v = 0  in the introduction. We shall say that L*v>=O 
in D (or <=0) if vEL~o~(D ) and 

fDV(Y)Lq~(Y)dY~ 0 (or ~_ 0) 

for all nonnegative (pECk(D). 
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Throughout this section we denote by ~(r) an arbitrary open cube in R" of 
side length r. The concentric open cube of side length ar will be denoted by ~(ar). 

Theorem3.1. Suppose 0<r<=l, l < p < n / ( n - - 1 ) ,  and 0 < a < 7 < l .  There 
exists c>0 such that i f  vELP(~(r)), v>=O in q~(r), and L*v>-O in q~(r), then 

1 ~afp c 
I~(~r)l fo(o,) v(Y)PdY] <= I~(wr)l " f*(~o v(y)dY" 

The constant, c, depends only on 2, n, w, p, a, and 2. 

Proof. It is sufficient to prove this result in the case r=  1; the theorem then 
follows by a change of variables. 

Fix a smooth domain, g2, in #(1) such that q~(?)=f2. Choose hECo(#(?)) 
such that h=>O in #(~) and h = l  in #(a). Suppose yELP(#(1)), v~O in q~(1), 
and L*v>=O in #(1). Define fELl(f2), where l i p + l i p ' = l ,  by setting f = v  p-1 

in O(a) and f = O  in f2\O(a). Let u be the unique function in l~2'f(K2)c~C(D) 
which satisfies L u = f  in (2. From the maximum principle, we have u<_-O in ~2. 
Hence 

L v ' d Y = L  v f d Y < = L  h v . L u d Y  (~) (~,) (~) 

= f~(~) [L (uh) - u. Lh - 2aij. Dr, u. Dr~ h] v d Y  

<= f ~(~) [ -  u. Lh - 2aij . Dr, u. Drj h] v dY. 

Since p '>n ,  we deduce from the Sobolev inequalities, LP-Schauder estimates, 
and Pucci's estimate ([14]) that 

f.~o) ~" dr_<- c. Ilultw~,.'~).f.~ ~ d r  

< c. ([]LUIIL~,'(a)+ ][U[Ig~'(a)) f..) = �9 v d Y  

<= ~-IILull~.,,, , .f ~dY= c.(f~ ~" dY]"', f ~dV, �9 (~) (~) �9 ,, ~(~) 

where c depends on 2, n, w, p, h, and (2. This proves the theorem. 

Theorem3.2. Suppose r>0  and 0 < a < 7 < l .  There exists c>0 depending 
only on 2, n, a, and ? such that i f  v>=O in q~(r) and L*v<-O in cb(r), then 

f *(~o v dY  <= c . f *~.o v dY. 

Proof. The theorem follows if we show that there exists 0E(0, 1) depending 
only on 2 and n such that if 0<7<1 and r>0,  then 

f ,  v d Y  <- c. L v d Y  (1) (~o (oo 
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whenever v=>0 and L*v<=O in ~(r), where c depends only on 2, n,O, and ?. 
Iterations of the above result would imply that 

L vdY<= ck. L vdY 
(Tr) (01,rL, k -  1) 

for any natural number k; by choosing k so that ok~'~k-- lo ", w e  obtain the result 
of the theorem. 

To prove (1) we may assume r =  I and ~(1) is centered at the origin; as before, 
the general result follows by a change of variables. Consider the function in C o (R") 
defined by 

[ ~ .  - 1  

h(X)___ ] e ,=~l-~x~, if XE~(1) 
/ 
[0,  if XER"\~b (1), 

where X=(x l  . . . . .  x,). If  XE~(1) and we set s=s(X)=max{2Ix~]:l<=i<=n}, 
we have 

n - - 1  

Lh(X) = 8e 27'=1 1-4x~ 

"{ .~ , j : l  a,j(X).Sxixj , [a,i(X)(l§ bi(X)]xi]~ 
(1_4x~)2. (l_4x~)~ -~ ' i=1 [ (1_4x~)3 ~- (1-4x~) 2 JJ 

- -  (1_s2)2 .(l--s2) ~ 2(1--s z) �9 

Hence if we choose 0E(0, 1) so that 

4 .  0inf  
we have Lh>=O in ~(1)\(b(0) and Lh>=cl>O in ~(7) \~(0)  for each ?E(0, 1), 
where cl depends only on 2, n, 0, and ?. 

Now suppose v=>0 and L*v<=O in ~(1). Choose c2 depending on 2 and 
n such that ]Lh] <= c~ in ~(1). If  ? E (0, 1) and h is the function defined above, then 

~1 f ~ dY ~= f o(~)\.(o) v. Lh dY ~= f o(1)\o(o) v. Lh dY 

-fo c .fo (o) (o) 
and we conclude that 

f ,(~) v dY <- (cl + e2) " f o(o)V dY. C l .  

This proves (1) when r =  1. 
The two previous theorems imply the following "reverse-H61der" inequality. 

Theorem3.3. Suppose 0<r<=l,  l<p<n/ (n-1) ,  and 0<o-<1. There exists 
c > 0  depending only on 2, n, w,p, and ~ such that i f  vELP(~(r)), v>=O in #(r), 
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and L*v=O in r then 

1 vV d -< c..____f~, vdY. 

R. Coifman and C. Fefferman ([6]) showed that Theorems 3.2 and 3.3 imply 
the following estimates (Corollaries 3.4 and 3.5): 

Corollary 3.4. Suppose 0<r<=l,  l < p < n / ( n - 1 ) ,  and 0 < a < l .  There exist 
positive constants q > l ,  cl, c~, and 6 depending only on 2, n, w , p  and a so that 
( f  vELP(~(r)), v>-O in ~(r), and L ' v = 0  in q~(r), then: 

(i) A-es t imate :  For any measurable subset, E, o f  r we have 

v(E) ( fEI I 
V(~ (O'r)) ~ cl t I~(~r)l ) 

where v(E) = f E vdY. 
(ii) A~-estimate: 

vd  �9 - �9 v-l/(q-1)d <= c 2. 

Corollary3.5. Suppose 0 r = l ,  l < p < n / ( n - 1 ) ,  and 0 < a < l .  Given e>0,  
there exists f l>0  depending only on s, c2, and q (the constants in the A(estimate) 
so t ha t i f  vELP(r v>-O in ~(r), and L ' v = 0  in q~(r), then 

( 1 - 0 .  Ir  

<= Y<@@r): Ir r)] dZ<=v(Y)_- fllO(~r)l (:,) 

The A=-estimate of Corollary 3.4 may be interpreted as a generalized Harnack 
principle; its relationship to the classical Harnack inequality is shown in Corollary 3.5. 
It is known that if the coefficients of L are H61der continuous, nonnegative solutions 
of L ' v = 0  have continuous representatives ([15]) and satisfy a classical Harnack 
inequality ([2]). These properties do not hold without such restrictions, as shown 
by the example in which the Green's function, G(X, .), is not in L~c(D\{X} ) .  
(See [4].) 

4. Normalized adjoint solutions 

Throughout this section we assume (in addition to our previous hypotheses) 
that the coefficients of  L are smooth functions. We assume B is a fixed open ball 
in R n and A is a fixed point in B. We let GB(X, Y )  denote the representative 
of the Green's function for L and B which is continuous at all points, (X, Y) 
in B X B such that X ~ Y. 
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If  f2 is an open subset of B\{A},  we say that ~ is a normalized adjoint 
solution (with respect to L and GB(A , .)) in f2 if ~C( f2 )  and 

~(Y) = v(Y)/C~(A, Y) 

for all Y in f2, where L ' v = 0  in f2. 
Our objective in this section is to establish uniform pointwise estimates on 

normalized adjoint solutions which will be used to prove Theorem 2.6. In particular, 
we prove a maximum principle and a Harnack principle and we construct uniform 
barriers on truncated cones. Based on these properties we obtain a Carleson-type 
estimate for positive normalized adjoint solutions which vanish on a portion of the 
boundary of D. Although we consider only those operators with smooth coefficients, 
our estimates depend only on 2, n, and w. 

The maximum principle and Harnack principle will be proved as consequences 
of the following proposition. 

Proposition 4.1. Suppose f2 is a smooth domain such that ~ c B ~ { A } .  Given 
cpEC(O0), there is a unique function vEC(O), such that L ' v = 0  in f2 and v=cp 
on Of 2. Moreover, 

Q OG 
v(r) = f ( ) . - ~ Q ( a , Y ) d s ( a )  

OG 
.for all YCf2. Here, G(X, Y) is the Green's function for L in f2; --~-~(Q, Y) is 

the inward conormal derivative o f  G(. ,  Y) at Q :~Of2 (i.e., 

OG " a ~ .  
Ovt2 (Q, Y) = ~ , , j= l  o'(Q)" Ni(Q)" vr (Q' Y)' 

where N(Q)=(N1 . . . . .  iV,), the inward unit normal at Q); and ds denotes surface 
measure on Of 2. 

Proof See [13], p. 77. (The result also holds when L has H61der continuous 
coefficients; see [ 15].) 

Theorem 4.2 (Maximum Principle). Suppose f2 is a Lipschitz domain and 
OcB~{A}.  I f  ~ is a normalized adjoint solution in 12 and ~EC(O), then 

Proof If  f2 is a smooth domain, Proposition 4.1 implies that 

l~(y)l = [ f  o ~(a)" G~(A, Q) OG~ ds(O) 
GB(A, Y) Ov~ (Q' Y) 

-- GB(A ' y ) - . ~ v a (  Q )as(Q) = ilv[]L,~o m. 

The theorem now follows by applying the above result to smooth subdcmains of  f2. 
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The following result will be used in our proof of the Harnaek principle. We 
omit the proof, since it is essentially the same as the proof of Lemma 2.5. 

Lemma4.3. Suppose r>0  and P~R". There exist positive constants, c~ and 
c2, depending only on 2 and n such that i f  u is a positive solution o f  Lu=O in 
B(3r, P ) \B ( r ,  P) which vanishes continuously on OB(3r, P), then 

O U  . C 2 
- Cl"u(Q+rNa)r <= (Q) <= r "u(Q+rNQ) 

for all Q~OB(3r, P). Here, NQ=(P-Q) / ]P-QI  and Ou/OvQ is the inward eonormal 
derivative o f  u at Q. 

Theorem 4.4 (Harnaek Principle). Suppose r>0  and BOr , P)cB\{A}.  
There exists c>0 depending only on ,~ and n so that i f  ~ is a nonnegative nor- 
malized adjoint solution in B(4r, P), then 

sup ~ ~ c. inf b. 
B(r, P) B(r, 1") 

Proof Let G~(X, Y) be the Green's function for L and B(3r, P). Suppose 
YEB(r,P).  For each QC, C OB(3r, P), let XQ=Q+r(P-Q) / IP -QI .  By Lemma 4.3 
we have 

c~. G,(XQ, Y) <= OG, e~ 
r ~ (Q' Y) ~= --'r G.(XQ, r). 

Thus 

(1) f o~(~,,p)~(Q). GB(A, Q) OG, ~(Y) GB(A, Y) OvQ (Q' Y) ds(Q) 

<= ~. f o.(3r, p)V(Q). GB(A, Q) . Gr(XQ, Y) ds(Q). 
as  (A, Y) 

Fix a point PoCOB(2r, P). From inequality (1) and the Harnack principle for 
nonnegative solutions of Lu=O, we obtain 

(2) ~(Y) 
ca G~(Po, Y) 
r GB(A,Y) f oB(ar, e) v(Q) " GB(A, Q) ds(Q). 

Similarly, we deduce from Proposition 4.1 and Lemma 4.3 that 

GB(A, Y) = f oB(~r,e) GB(A, Q). ~vs (Q' Y) ds(Q) 

= > c__~4 G,(Po, Y )" fo  GB(A, Q) ds(Q). 
r B(3r, P) 
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Hence 

~(Y) <= c " f ~B(~,,P)v(Q)" GB(A' Q) ds (O) / f  ~n(3r, lO GB(A, Q) ds(Q), 

where c is a positive constant depending only on 2 and n. A completely analogous 
argument implies that 

v(Y) >~ c-1 " f o~3r, v) v(Q)" GB(A, Q) ds(Q)/f o~(,r,p)GB(A, Q) ds(Q) 

which proves the theorem. 
The Harnack principle and the fact that constants are normalized adjoint 

solutions imply the following interior Hrlder estimate. We omit the standard proof. 
(See [8], p. 190.) 

Theorem 4.5. Suppose r > 0  and B(2r, P ) ~ B \ { A } .  There exist positive 
constants c and c~ depending only on 2 and n so tha t i f  0 < t r < l  and ~ is anor- 
malized adjoint solution in B(2r, P), then 

osc ~ ~ c .o  -s- osc ~. 
B(ar,P) B(r, P) 

Here, osc J--sup {l~(~)-~(r~) l"  Y~, ~ E }  
E 

The following lemma will be used to construct uniform barriers for normalized 
adjoint solutions on small cones. 

Lemma 4,6. Suppose 0<0<~z and r>0 .  Let Br=B(r, 0), F~=B~n{XER"~{O}: 
cos-l(xJlXl)<O} (with X = ( x l  . . . . .  x,)) and A~=(0, ..., 0, 3r/4). For each e>0  
there exist positive constants R ~ I  and 5~1/4  depending only on e, O, 2, n, and 
w so that i f  0 < r < R ,  we have 

sup {G~.(A. ~)/C.~, (A. ~): Y~r. n B,3 <-- ~. 

Here Gr~ (X, Y) and GB2~ (X, Y) denote the Green's functions for L and the domains, 

1"~ and B2r, respectively. 

Proof. Suppose the lemma is false. Then there exist %>0 and sequences 
{rk}, {CSk} , and {Yk} such that O<rk<--2 -k, 0 < 6 k ~ 2  -k, YkE-F,~krk, and 

(1) Gr,k (A~k, Yk)/GB2~ (Ark, Yg) >= e o 

for all k. Let F = F ~ , B = B 2 ,  and 

Lk = ~i",j=l aij(rkX). D],xs + ~'7=1 rk" b(rkX)" Dx,. 

Let Gkr(X, Y) and Gk(X, Y) denote the Green's functions for L k in the domains, 
F and B, respectively. Inequality (1) implies that 

G~ (A~, Z~)IG~(A~, Z~) _-> ~o 

for aU k, where Zk= Yk/rk. 
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We may assume without loss of generality that aij(O)=6~j, so that the co- 
efficients of {Lk} converge uniformly on compact sets in R" to the coefficients of 
the Laplace operator. Define 

uk(x) = G~ (X, Z~)/G~(~I, Z~) 

for all XEF\{Zk}. Then Uk>=O and LkUk=O in F\{Zk}, Uk=O on OF, and 
eo~=Uk(A1)~ 1. The LP-Schauder estimates and Lemma 2.4 imply that a subsequence 
of  {uk}, which we still call {uk}, converges in L~or to a continuous, non- 
negative function, u, in /~x,{0} such that Au=O in F,u=O on 0F',,,{0}, and 

(2) ~o <= u(A~) <= 1. 
Let 

gk (X) = G~ (X, O)/G~ (At, O) 

for all XEB\{0}. Reasoning as we did above, we see that a subsequence (which 
we still call {gk}) converges in L~or to a continuous, nonnegative function, 
g, in B\{0}  such that Ag=O in B\{0}  and g = 0  on 0B. By Theorem 4.4, 
there exists c0>0 depending only on 2 and n such that 

u~(X) <- G~(X, Z~)/G~(AI, Zk) ~= co.g~(X) 

whenever XEF\B3r and ZkEBr. Since the above inequality holds for arbitrarily 
small r, we conclude that 

(3) u(X) <= Co. g (x )  

for all XEF\{0}.  
We now claim that g(X)=GB(X, O)/Gn(A~, 0), where Gn(X, Y) is the Green's 

function for the Laplacian in B. This follows because for each XEB"~,{0}, {G~(X, �9 )} 
converges weakly to GB(X, .) in LP/~P-~)(B) for p>n. On the other hand, 
Theorem 4.5 implies that {G~(X, �9 )/G~(A~, �9 )} is uniformly bounded and equi- 
continuous in B2r whenever B\B3, contains X and A~; hence a subsequence 
converges uniformly in B, to GB(X, .)/GB(A~, .). Since 0EBr, we have shown 
that a subsequence of {gk(X)} converges to GB(X, O)/G~(A1, 0) and thus 

(4) g(X) = GB(X, O)/G,(A~, O) 

for each XEB\{0}. We will show that this leads to a contradiction. 
Let v(X)=g(X)-u(X)/2Co for each XE/~'~{0}. Then vEC(F\{0}),  Av=O in 

F, v=g on OF"x{0}, and v~g/2>O in F. The results of Hunt and Wheeden on 
nonnegative harmonic functions ([9]) imply that 

v(X) = for g(Q) dcoX(Q)+ far K(X, Q) dv(Q) 

for all XEF, where co x is the harmonic measure at X in F, K(X, Q)= 
(dcoX]dcoA~)(Q), and v is a finite nonnegative Borel measure on OF such that 
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v_L~o a'. Thus 
v(X) ~ far g(O) d~~ 

for all XEF. The above inequality and equation (4) imply that ]Q[2-n (or log ]Q] 
if n--2) is in Ll(d~oX). Hence if we let Pj--(0 . . . . .  0 , - 2  -j)  for j = l ,  2 . . . .  , we 
obtain (by the dominated convergence theorem) 

v(X) ~= lim f [GB(Q, Pj)/G~(A1, 0)] dcoX(Q) 
j ~  9F 

= lim GB (-Y, Pj)/GB (A1, 0) -- g (X) 

for all XEF. Since v=g-u/2co,  this implies that u~-0 in F which contradicts (2). 
In the following theorem we construct uniform barriers for normalized adjoint 

solutions on small cones in B\{A}. The theorem is based on the A -estimates 
in Section 3 and the properties of normalized adjoint solutions established thus far. 

Theorem 4.7. Suppose 0<0<Tr and N is a unit vector in R ~. Given 8>0, 

there exist positive constants R ~ I  and 6<_-1/4 so that i f  r~=R and B(4r, P ) c  
B\{A}, there is a normalized adjoint solution, ~, in F(r, O, N, P) which satisfies." 

(i) ~EC(F(r, 0, N, P)), ~>0  in F(r, 0, N, P), and ~(P)=0,  
(ii) ~->1 on OF(r, O, N, P)c~OB(r, P), 

(iii) sup {h(Y): r~r(r, 0, N, P)nB(~r, e)}~=.. 

The constants, R and 6, above depend only on e, 0, 2, n, and w. 

Proof Suppose 0 < r ~ l  and B(4r, P ) c B \  {A}. Let Fr= F(r, O, N, P), 
F2r=F(2r, (0+z0/2, N, P), A,=P+Nr ,  and A'=P+3Nr/2 .  Let B~=B(s,P) 
for any s>0.  Choose t />0 (depending on 0 and n) so that ~(4~/r, A')cF2~\Fr 
and ~(4qr, Ar)CF2r\{A'}. Define 

H(r)  - G,.~.(A;, Y) 1 
C.(A, r )  7~'~,r,a;~ G " ( A ' / ' -  Z) dZ 

for all YE/~\{A~}, where Gr~(X, Y) is the Green's function for L in F~,. 
Then any positive multiple of H satisfies (i) in F~. 

By Theorem 3.2, Corollary 3.5, and Theorem 4.4, there exist positive constants 
c~ and c 2 depending only on 2, n, 0, and w such that 

inf / 7 ~ c l .  sup / I  
t)Frn ~B r ~(tlr, A r 

~- cx . r -2 . f  , GB(A, Z ) d Z . f  ar~.(A;, z)dz/f. G~(A,Z)dZ 
,,' ~ ( t / r ,  Ar) ~( r / r ,  Ar) OIr, A r) 

-- 2 "~w'f~(tlr , A t )  a F 2 r  �9 >= c2 �9 r ( A t ,  Z )  dZ, 
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Since Gr2(A'~, .) is a nonnegative adjoint solution in F~,\{A'~} and satisfies 
L*v<=O in F2,, Theorem 3.2 implies that 

-~'fr " f )Gr2, " r (A,, Z) dZ >= ca. r (A,, Z)  dZ. 

By the maximum principle, we have 

r- .fB ar .(x, z )  a z  c (1 - 16 I x -  A; 
(r14, A') 

for all XCB(r/4, A;), where ca depends only on 2 and n. Setting X-=A'~ and 
combining the above inequalities, we conclude that / 4 ~ c > 0  on OFrnOB ~ where 
c depends only on 2, n, 0, and w. Hence if  we define 

~ f f )  = c - l . U ( y )  

for all YEfr ,  we obtain a function which satisfies (i) and (ii). 
Now suppose e>0.  Let GB4(X, Y) denote the Green's function for L and 

B4~. Choose R and 5 depending on e, (0+r0/2,  2, n, and w as defined in Lemma 
4.6. I f  0 < 2 r < R  and YEF2,c~Bo,, we have 

ar~(A; , r3  G , , ( A ; , Y )  1 f ~  
h (Y) = a, , .  (A;, Y) G a (A, I1) ~r 2 __(,,,.g) GB(A,Z)dZ  

-3  , f ~  e. c - t .  r �9 [G.~(Ar, Ig /aa  (A, I91" (~,, a;) GB(A, Z )  dZ. 

Reasoning as in the proof  of  (ii), it follows that 

(1) ~ <= e s . . . r - 2 ,  f G,~,(A;, Z ) d Z  
,I Br/4 

in F2,c~B~, where c 5 depends on 0,2, n, and w. By Pucci's estimate (and 
a change of  variables), we have 

(2) r-2"fB GB,,(A;, Z) dZ ~ on, 
r/4 

where e 6 depends only on ~ and n. Inequalities (1) and (2) imply that h satis- 
fies (iii). 

The barrier constructed above enables us to prove a Carleson-type estimate 
on nonnegative normalized adjoint solutions which vanish on a portion of  a bounded 
Lipschitz domain, D. This estimate, Theorem 4.9, is the main result which we 
use (in Section 5) to prove Theorem 2.6. We assume in the remainder of  this section 
that B and A satisfy D c B \ { A }  and dist(OB, O)>=dist(A,D)>=lOmro. 

Lemma 4.8. Suppose r>0 ,  Q~OD, and f2(4r, Q ) c B \ { A } .  There exist 
positive constants rl~ro/2, e and ~ depending only on 2, n, w, ro, and m so that 
i f  r<=rl and ~ is a nonnegative normalized adjoint solution in f2(r, Q)c~D which 
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vanishes continuously on A(r, Q), then 

~(Y) <-- c.  ([Y-- Q]/r) ~. M(v-) 

for all YEY2(r, Q)nD, where M(~)=sup {O(Y): YEI2(r, Q)nD}. 

Proof Choose 0E(0,~z) depending only on m so that if N=(Ar(Q)-Q)/  
IAr(Q)-QI and r<ro, then B(r, Q)nDcF(r ,  O,N, Q). Set co=l /2  and let R and 
6 be the constants defined in Theorem 4.7. Set r l = mi n  {R, r0/2}. 

Suppose r and ~ satisfy the hypotheses of the theorem. Let h be the '%0- 
barrier" as constructed in Theorem 4.7. By the maximum principle for normalized 
adjoint solutions, 6_-<M(~)-~ in B(r/2, Q)nD. Since ~ M ( ~ )  in f2(r, Q)nD, 
it is sufficient to prove that 

(1) h(Y) <- c(IY- Ql/r) ~ 

for all YEB(r/2, Q)nD, where c and ~ are positive numbers depending only on 6. 
Let hi be the "e0-barrier" in F(fr/2, O, N, Q). Since h <- 1/2 in OB(6r]2, Q)nD, 

the maximum principle implies that h<-hl/2 in I'(6r]2, O, N, Q) and hence h~l]4 
in B(f2r]2, Q)nD. Iterating this procedure, we deduce that h ~ 2  - j  in B(f~r]2, Q)nD 
for j = 1, 2 . . . . .  which proves (1). 

The above lemma is the analog of Lemma 2.3 which was used to prove the 
Carleson-type estimate of Theorem 2.4. By the same argument, we obtain: 

Theorem4.9,  Suppose QEOD, and O<r<rl/2 (where r~ is the constant 
of  Lemma 4.8). There exists e > 0  depending only on )~,n, w, and m so that i f  

is a nonnegative normalized adjoint solution in f2(2r, Q)nD which vanishes conti- 
nuously on A(2r, Q), then 

~(Y) <= c. ~(Ar(Q)) 
.]'or all YEY2(r, Q)nD. 

5. The Green's function 

In this section we prove the inequality on the Green's function which we stated 
as Theorem 2.6. We also describe some properties of the Green's function which 
we feel are of independent interest. 

Proof of  Theorem 2.6. We first prove the theorem assuming L has smooth 
coefficients. (See Section 2 foI the statement of the theorem.) Choose an open ball, 
B, andapoin t ,  A, in B suchthat  / ~ B \ { A }  and 10mr0=<dist (A, D)--<dist(0B, D). 
Let GB(X, Y) denote the Green's function for L in B and q=min  {1/4, rl/ro} 
with rl as defined in Lemma 4.8. For simplicity we will denote by e any positive 
constant which depends only on 2, n, w, r0, and m. 
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Suppose XEI2(r, Q)nD. If PE~h(r, Q)nOD, then f2(2~/r, P)cf2(4r,  Q ) \  
f2(r, Q), where g2(2qr, P) is defined with respect to the coordinate system in f2(r, Q). 
By Theorems 4.4 and 4.9, there exists e>0  independent of X and P such that 

sup {G, (X, Y)/GB (A, Y): YE f2 (tlr, P) n D} <= c . G, (X, A" (Q))/G~ (A, A; (Q)) 

and hence 

sup {G, (X, Y)/Ga (A, Y): YE r (r, Q)} 

<- e.  inf {G,(X, Y)/GB(A, Y): YEq~(r/('n, A" (Q))}. 

The above inequality and Theorem 3.2 imply that if XE f2(r, Q)nD, we have 

f , .  a, (x, Y) dY ~ f . .  Ga (A, Y) dY. sup {G, (X. Y)/G, (A, r ) :  YE ~0 (r, Q)} 
Lr, Q) ~ ~tr, Q) 

(1) 
<- c . ~f .~(,/Iq. a;~Q)) Gn (.4, Y) dY. inf {G, (X, Y)/Gn (A, Y): YE q~ (r /~:n, A" (Q))} 

< e. f~(  G,(X, Y) dY. 
= ,fig. A'~)) 

This proves the theorem when L has smooth coefficients. In the general case, we 
mollity the coefficients of L to obtain a sequence of operators, {Lk}, with smooth 
coefficients such that G~(X, .)~G,(X, .) in LP(s'2(4r, Q)nD) for each 
XEI2(4r, Q)nD and l<p<n/(n-1).  (Here, G~(X, Y) is the Green's function 
for L k and f2(4r, Q)nD. The convergence of the Green's functions follows from 
Pueei's estimate, Lemma 2.4, and the L'-Schauder estimates.) We obtain the con- 
elusion of Theorem 2.6 by applying inequality (1) for each Lk and taking the limit. 

We conclude this section by making some remarks on the behavior of the 
Green's function foi L and D. Fix an open ball, B, and a point, A, in B such 
that DcB\{A} .  Let Go(X, Y) and GB(X, Y) denote the Green's functions for 
L in D and B, respectively. By mollifying the coefficients of L, we may choose 
a sequence of operators, {Lk}, with smooth coefficients such that G*o(X, . )~  
GD(X , .) in LP(D) and G~(A, .)~GB(A, .) in LP(B) for each XED and 
l<p<n/(n-1)  (where G~(X, Y) and G[(X, Y) are the Green's functions for 
L k in D and B, respectively). By the H61der estimates on normalized adjoint 
solutions (Theolems 4.5 and 4.9), it follows that {G~(X, �9 )/G[(A, �9 )} converges 
uniformly in compact subsets of D\{X} to Go(X, �9 )/GB(A, �9 ). Hence GD(X, �9 )/ 
GB(A, �9 ) has a continuous representative in D\{X} and the estimates of Section 4 
extend to GD(X, .)/GB(A, .) in D\{X}.  Moreover, by writing 

ao(x, r) = a.(A, r).  (a.(x, r)/a~(A, r)), 

we see that GD(X, Y) is the product of an A~-weight (as defined by Muekenhoupt) 
and a positive, continuous function of X and Y (for X # Y )  which satisfies 
a Harnack inequality in each variable and vanishes continuously on OD. 
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