Extension of a result of Benedek, Calderén
and Panzone
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1. Introduction

For X a Banach space and 1=p=-, L% is the usual Lebesgue space.

The theorem of Benedek, Calderén and Panzone [0] asserts that for 1<p,
r<ee, any operator T: LL(R")—~LL(R") of the form T(f)=PV. (K;xf;) is
bounded, the (K;) being a sequence of convolution kernels K satisfying the condi-
tions

(@ [Kl.=C
(b) [K&)|=Clx|™"
x|

© |Kx)—K(x—p)|=Cly|ix|7"7* for IJ’]<7

and where C is a fixed constant.

Our purpose is to show that this theorem remains true if one replaces I” by any
lattice X with the so-called UMD-property (cf. [2]). Let us recall that a Banach space
X is UMD provided for 1<p-<-< martingale difference sequences d=(d,, ds, ...)
in L%[0, 1] are unconditional, i.e. lerdi+eds+...[ ,=C(X)lld +dy+...||, whenever
&, &, ... arenumbers in {—1, 1}. This property is also equivalent to the boundedness
of the Hilberttransform on L%(R) (see [3], [1]) and can be characterized geometri-
cally by the existence of a symmetric, biconvex function { on XXX satisfying
(e, »)=lx+yl if [x|=1=|yll and {(0,0)=0. Let us point out that also for
lattices UMD is more restrictive than a condition of r-convexity, s-concavity for
some l<r, s<oo (see [9]).

Theorem. Assume X is a UMD space with a normalized unconditional basis (e;).
Then, for 1<p<eo, any operator T: L%(R")~L%(R") defined as

T(2fe;) = ZT;(fe;

where the T ; are the singular integral operators considered above, is bounded.
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We will use some results on weighted norm inequalities (for a related approach,
see [5]).
A positive, locally integrable function @ on R” satisfies (4,) provided, for

1<p< oo,
1 1 el
— - —1/p—-1 oo
Wﬂmﬁ@hﬁ” ] =

where [ runs over all cubes in R”, for p=1,

su {[—1 f ]esssu i}< :
7P | ¢ xEIp w ’
1
for p=co (cf. also [10]), there exists ¢>0 such that f Ewé; fi» whenever E

is a subset of a cube 7 for which |E|<g|l|.
The reader is referred to [6], for instance, for the basic theory. We need the
following facts

Fact 1 (see [4]). If o satisfies (A..) and T is a singular integral operator, then

f[Tflw§Cff*w where f*(x)-——i\,g)[—zfliﬂ.

Fact 2 (see [8]). If w is a function on [0, 1] satisfying dyadic (A..), one has the
equivalence »
CHfs(No=[flo=Cfs(NHe
for Walsh—Paley series f=(f1, fs, ...), where

S*=suplf] and S(f)=(Z|f—fusP V2

Of course, there is always uniform dependence between the various involved constants.

2. Proof of the result

Let us first show how to conclude from

Lemma 1. Under the hypothesis of the theorem, the “maximal operator”

M: LE(R") ~ LY (R"), M(Zf;e)) = Zf}"e;
is bounded.
Denote (¢}) the dual basis. If X has UMD, also X* is UMD and Lemma I pro-
vides a constant C=C(X) such that

1%fi"eill, = ClZfiell, and |Zojejl, = ClZg;el,, (" = p/p—1).
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In order to show the boundedness of the operator T considered in the theorem, fix
norm-1 elements F=2f;e; in Ly(R")and ®=2X¢,¢] in L%,(R"). Choose 0<d<C 1
and define, for each j, the following function

l//j = D=0 5k(l’§k)
where @™ is the k-fold maximal function of @, thus @® =(p*-)*, 0@ =|p|. Clearly
Yi=6"1;, so the function y; satisfies (4,). Hence, for each j,
KT, 5> o0 = [ 1T 10, = €O [ 174,
and
CC()

KT, )| = COIMEN, Zamo 125 0 €flly = T3

We prove lemma 1 in case n=1 (the general case is completely similar) and replace
for simplicity R by [0, 1]. In what follows, S will be the dyadic square function.

Lemma 2. 4 Banach lattice X has UMD if and only if |F|,~|S(F)l, for
Fe L% (for some or for all 1<p<oo).

Proof. The equivalence |F|,~|S(F)|l, obviously implies unconditionality of
Walsh—Paley martingale difference sequences in L% and hence UMD (cf. [2)).
Conversely, if X has UMD, then

IFll, ~ [122,4F,|,de where AF,= F,—F,_,

(¢, being the Rademacher functions) and, by convexity, the latter quantity clearly
dominates |[S(F)|,. Since X is also g-concave for some p=qg<-< (see [2], [9]),
we have

[1Ze,4F,), de = ([ ([ |22, AF, (@)]* de)' " de)''?
= C,0) (f| ([ 122, 4F, (@)1 &2)1|? d)’” = C([1IS(F)@)? do)’?
proving the reverse inequality.

Lemma 3. If w is a positive, integrable function on [0, 1] such that S(w)=Cw
a.e. then w is (A.,) (dyadic) (C=1 being some constant). '

Proof. Let I be a dyadic interval, say |I|=2"", and EcI with |[E|<¢l|l].
Considering the normalized measure 2™dx on I, we estimate

1
mew = Aoy, llollxell¢

where @, ¥ are the respective Orlicz functions

@) = (1 +log (1+1¢]), Y(1) = exp |1]—1.
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Denote I—Vl—f,co,

01 = s 7l €D

SI ((O) = w1+(2n>m }Awan)llz'

Fix ¢=0. Applying the reverse L log L result (w being positive), Davis’s result
(cf. [7]), it follows from the hypothesis

1 w w () w K 1
— [ —lo (1+—) é—’—(lo +—’+K]+———— o}
)i toell+g) = 5 lloe s, R
wl( ) "1 (01( +wI //)
=1 +=— [ S;(w) = —~|logt—=2+CK
2 e |1 /5@ o %%
where K, K’, K” are numerical constants. Thus

1 w) _ o y "

from which it follows ||wyle= Cco,

1 -1
Also, by hypothesis, |xgly= (log —) . Therefore
¢

fE @ = const. C(log 8"1)“1f1 o
giving the conclusion for £—~0.
Proof of Lemma 1. X and X* having UMD, Lemma 2 gives
IS, = ClFl,p; IS@, = CllPl,, for FeLg[0,1], P€LE.[0,1].

Proceeding as above, suppose F=ZXf;e; and &®=2X¢;e; norm-1. Fixing 0<d<C™?,
introduce for each j the function

= || +0S(lp;)+*S®P ;N +... +8*SP (|, +...
defining inductively S*+9(Jo[)=S(S®(|p])). One verifies easily that S(J;)=
671 ;. Thus from Lemma 3 and Fact 2, it follows for each j

|[ o) = [ = cO [ sWfDy;

and therefore

KM (F), &) = COISUFD, I Z¥ ;€] = ——1C_C ((;(2 -

Consequently |M(F)|,=C C(d){(1—-6C)7%, as required.



Extension of a result of Benedek, Calder6n and Panzone 95

References

[0] BENEDEK, A., CALDERON, A. and PANZONE, R., Convolution operators on Banach space valued
functions, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 356—365.

[1] BourGaAIN, J., Some remarks on Banach spaces in which martingale difference sequences are
unconditional, Ark. Mat., 22 (1984).

[2] BUurRKHOLDER, D., A geometrical characterization of Banach spaces in which martingale diffe-
rence sequences are unconditional, Aun. Probab., 9 (1981), 997—1011.

[3] BurkHOLDER D., A geometrical condition that implies the existence of ceitain singular integrals
of Banach-space-valued functions, Proc. Conf. Harmonic Analysis in Honor of Antony
Zygmund, Chicago, 1982, Wadsworth, Belmont, 1983.

[4] CorrmaN, R. R. and FerrerMAN, C., Weighted norm inequalities for maximal functions and
singular integrals, Studia Math., 51, (1974), 241—250.

[5] CorpoBA, A. and FEFFERMAN, C., A weighted norm inequality for singular integrals, Studia
Math., 57, (1976), 97—101.

[6] GARNETT, J. B., Bounded analytic functions, Academic Press, 1971.

[7] Garsia, A., Martingale Inequalities, Seminar Notes on Recent Progress, Mathematics lecture
note series, W. A. Benjamin, Reading, Massachusetts, 1973.

[8] Gunpy, R. F. and WHEEDEN, R. L., Weighted integral inequalities for the nontangential maxi-
mal function, Lusin area integral and Walsh—Paley series, Studia Math., 49, (1974),
107124,

[9] LinpensTrRAUSS, J. and TzAFRIRY, L., Classical Banach Spaces, Vol. 11, Ergebnisse der Mathe-
matik 97, Springer-Verlag, Berlin, Heidelberg, New York, 1970.

[10] MuckenHOUPT, B., The equivalence of two conditions for weight functions, Studia Math.,

49, (1974), 101—106.

Received February 22, 1983 J. Bourgain
Department of Mathematics
Vrije Universiteit Brussel
Pleinlaan 2-F7
1050 Brussels



