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1. Introduction

The classical theorem of Bernstein can be generalized to the form (Bochner
[1, p. 376] and Wainger [3, Theorem 15, p. 78]):

(D) If a function f(t,, ..., t,) is periodic in each variable and belongs to Lip(x)
with a>nf2 then its Fourier series converges absolutely (if o is an integer then Lip (&)
means C*; otherwise it means functions whose partial derivatives of order [«] are in
Lip (e —[«]) in the ordinary sense).

(ii) There exists a periodic function f(t, ..., t,)eLip (n/2) whose Fourier series
does not converge absolutely.

In this paper we present certain estimates for the absolute sums of Fourier
series (Theorem 1 below) and derive criteria for the absolute convergence (Corollary)
which are more precise than (i). In analogy with (ii) we show that our criteria, and
thus also the underlying estimates cannot be very much improved (Theorem 2).

2. Main results

Let m=(m,,my,...,m,), where m, ..., m, are integers, t=(f, ..., )ER"
and eM=glmittmt) et 3 f o™ be the Fourier series of a function f(¢),
integrable on T"={t: 0=¢,=2n; k=1, ..., n} and 2r-periodic in each variable.
We denote | fla=S, ful and [fls=flpqm. If OYIEELLT™ for some
g=0,1,2, ... (as usual, 8°%/d10=f) then we put
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In Section 3 we prove

Theorem 1. Let f(t) be a periodic function such that

of k=12,

(a) W& P J=0a 19---3 q_la q:[n/2],
k

are integrable functions, essentially absolutely continuous in t, (if n=1 then (a)
should be dropped),

®) (;{ELz(T") for k=1,2,...,n
Let ji, Jas ..., Jj, be positive integers not larger than n. If n is even then for some c¢=c(n)
we have
L o 1) L e o 9) ]
@ /14 = lfo,‘..,ol+02k=1[ 3_1;‘1 . ./0 y}lny|1/2 dyl-

Moreover, let ji, jys ... jn G0d Jyi,Js o ... Jr be positive integers not larger than n and
such that each pair ji, Ji satisfies one of the conditions: j,=j.=k or ji#j,. If nis
odd then for some c=c(n) we have

o
017 1l

+f1/2 k(f y)y‘::) ”k(f )’) ]

) Ifla= 15, 0|+021:=1[
If we choose j,=j; =k then (2) takes the form

9%f]
31‘1

fl/z oG Y) ]

y3/2

71 = oo e 0|

For n=1, when ¢=0, we obtain Bernstein’s theorem (this is essentially what
Zygmund proves in {4, Theorem 3.1, p. 240]). We may also put j,=k into (1).

Let us denote In(l,y)=Iny, In(k,y)=In[ln (k—1,y)] for k=2,3,..., and
IIO=II} ., In(k,y) for I=1,2,... Theorem 1 implies

Corollary. Suppose that f(t) satisfies the assumptions of Theorem 1. Suppose
also that for sufficiently small y=0 and for k=1,2, ..., n we have

3) a)(q)k(f y)=c|n y{l/z[ln [l —] _a]],'l(%) if n is even,

(4) 0 (f, N+ 0P (f, y) = 2 [m [1 _)]_“ I [%] if n is odd,

where ¢, a>0,1 is a positive integer and j,, j;.J, are integers subject to the restric-
tions stated in Theorem 1. Then | f]| 4=< .
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The proof follows from (1) and (2) by elementary integration.
We have derived the succession of criteria (3) and (4), /=1, 2, ..., of increasing
generality, each of them more general than (i). In Section 4 we prove

Theorem 2. The functions

(5) 'ﬁ(t) = :1=M '::;=m1 :n=mn-1 my" ]]l_l (mn)eimta
1=1,2, .., M= M(),

satisfy the assumptions of Theorem 1. Moreover, for any integers 1=j,j;,j.=n
they satisfy the inequalities (3) (when n is even) or (4) (when n is odd) with a=0,

but | fi] 4= ==

We see that the criteria (3) and (4) are exact in the sense that the restriction
a=0 can not be relaxed.

3. Proof of Theorem 1

Let (iy, i3, ..., i,) be a permutation of the n-tuple (1,2, ...,/, 0, ..., 0), where
1=j=n and let N ,..,i, be the set of all m=(my, ..., m,) such that m,=0 if
=0, m=1 if zk—l and m=m, if i,=i;+1. We shall put |m|=(my|, ..., |m,).

Let 1=j<n and let k be such that i,=j. If nis even, that is when g=n/2,
then Holder’s inequality gives

(6) (Z\m[ENiv_“,i" ful)? = (Z\"‘\ENil,...,in mk_zq)(Z\m\eNilw,in mi| f,|%)

= ¢ St = o2

(c will denote various constants depending on ») where the last equality follows
from (a) and (b).

Now let (iy, ..., ,) be a permutation of (1, 2, ..., n). For even n we shall prove
that '

(q)
— . oY) .
© Shwien,.. Ml =cf, Sy dy for =12 .m,
where k is such that #,=n. The proof will be given only for i,=1, i,=2, ...,i,=n.
It applies obviously to other permutations (iy, ..., Z,).

For brevity we put N=N, ., o(y)= a)(q) )(f,y) for j fixed and Q(y)=
sup (w(P), [§|<y) for y=0. If Q(y) 0 then (7) is obvious. Otherwise we can
define

@® ) P

2
oy 2 Em = i 0OV



28 Z. Nowak

Holder’s inequalities for sums and integrals give

O (Sen Vb = (Simiewma N Zimen migmlful’) = 21 2,
= () L, S

8m; = yalmyl y 1/41m;| y

1/2
v 2@y
1/41m;] y

= In=22m)) [

Consequently

1= C ey Myt In"2 (2m))
_ [0 Iny

0 ¥ [ mEN,m;=1/dy

vz Q(y) |In y|/2 dy
1/4m; y

m;"In"2(2mp] dy

1 1/2
(10) = Cf0/2 ‘Q_(y)-l)l)n—yl [ZmEN m >1/4y nln -2 (zml)] dy -

Il

1/2 12
cf n20) llnyl Dz M [ 2y Dy In 7R @my)]}dy

0

:cf1/2 Q(y) dy.

o y|ln y[2

In order to estimate 2, we first note that
Emy = Tnfn/xmjl ¢ 47r 7

=30 ol veliran
T 4nJo @ +te +4|m
From Parseval’s formula for @(y) and from the inequalities Q@my)=Q(13y)=
13Q2(y) it follows that

30 = ¢ [ [ Siugen w1l sint om0 o[

1) =cfTe0)p(L)dr = [ eEme0)dy = [ R0 0)dy

)] sin?(m; y/2)dy = cf @[{;) sin?(m; y/2) dy.

i

_ e 20)
S

Using (9), (10), (12) and the inequality

(13) 20) =7 flo0)dy
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(Garsia [2, p. 91]) we obtain
2 0 9 dy
Zimen 1l = C/;/ ——@——dy = cf;/ w(y) (f;ﬂ}:)?“—z:—-] dy

¥ |ln y[H/2 n p|*2
- fl/z o(y)
T J0 ylin y[e

as required. Estimate (1) follows by combining all the estimates (6) and (7) with
J=Jk.
Now, let # be odd. Instead of (7) we then have

ol = ¢ [ 28U g

ya/z 4

(14) 2|m[€N

iy esiy

where g=(n—1)/2 and k, j are such that {;=n and i;=2, except when j=n=1.
The proof will be given only for i,=1, ...,7{,=n. Assuming Q(y)=0 for y=0,
we define @ (3)=Q-1(y)y~%2 Let &n, be such as in (8). Holder’s inequality gives

1/2 —nja—5/4 3.)~2 (12 e
(-/.1/4"”11 Y dy) fl/4{mj| Q(y)yy=tdy

= clmy| e [0 Q@) dy.

i

-1
ng'

Consequently
=[P ey () dy,

where with obvious simplifications for j=n we have

s(y)Zij>1/4ym_n 1/2( mj1=m; " :Zl=m,l 1m1 n)( mj 1=1" 21:1”12=1 1)
— ch =14y M —n— 1/2m1 ij 1<cy" 1/2

provided that j=2 or j=n=1, as assumed (otherwise, a divergent series appears).
Hence,

(15) Siscf)” ig’j d

As in (11) and (12) we prove that

2= cf/ (e () dy = cfm QS;)

Combining the last estimate with (9), (15) and (13) in the same way as previously
we obtain (14) for our choice of iy, ..., i,.

We thus see that each sum appearing in (14) has a majorizing term on the right-
hand side of (2). For n=1 the proof is complete. Let n=>1. It is easy to see that
the functions

Ortys ceos logs Bsts von 1) =75 fmf(t)dtz, 1=1,2,.
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satisfy (a) and (b) in their variables. For each k=/, [ fixed, let j,#! be one of the
integers j;, j, appearing in (2). Applying (1) to ¢, we find

B 01 12 05 (@, ¥)
(16) Zm,m,=0 [l = I @l 4 = (@, ..ol + ¢ 2y [ W 2+f0 "yL“n e d
_ | L e oW 5)
= fo,.0l e 2 (|3,£ L"’fo ‘ - o2 dy),
=12, ..,n

Combining all the estimates (14) and (16) we obtain (2).

4. Proof of Theorem 2

We shall need the following propositions. _
Proposition 1. For sufficiently large M=M () and O0<y=1/M we have

e TT—2  : _of 1
(1D $.0) = Zuspmn* 720 22972 73] for k=01,
, 2, _af1
(18) S0 = Saspd 20 = 210 11745
, 2, a1
(19) S_.(») EZj_E_lly]—kIL () = 21T 2(—y—] for k=23, ...
Proof. If k=0, 1, ... then for sufficiently large x=M we obtain

A @) = [ @k 230, I 0] = 2 [,

S = [T () dx = 2f;l/y+1%(x"+lﬂl'2(x)) dx

1
= 2k+2y—k—1]]l [;] .

Furthermore
—dix(ln 7)) = é]];_z [t +21nx2’;=2]]j“1 ] = % JIAE))

S = f;y_lx‘l I xdx = —f;y_lj—x(lnx]],'z(x)) dx

— In (—;——1] T (%—1) =2ny| ]],'2(%].



Criteria for absolute convergence of multiple Fourier series 31
Finally, if k=2, 3, ... then
d _ - - _
——= (T @) =x"* [ (x0)[k—1 +22}=1]]j Y] = xR,

S0V = [, T dx = — [ 1dx (xl I ) dx
1) (G- =2 ()
=|—=-1 ——1] =241 —~1.
(y ]L Y 7 ]Il y
Proposition 2. Let =23, frne™eL,(T" and let 3, im,f,e™ be the Fourier

series of a function € L,(T"). Then f is essentially absolutely continuous in t; and
Iot;=¢ a.e.onT"

Proof. Let Y= [{ @(t)dt;. The function ¥ —f~2, my=0 O e™ is essentially
independent of #;. Hence, together with ¥ the function f is essentially absolutely
continuous in ¢; and 09f]dt;=0y/0t;=¢ a.e.on T".

We proceed to the proof of Theorem 2. Let M, appearing in (5), be so large
that (17), (18) and (19) hold for O<y=1/M. Let N(M)={m: M=m=...=m,}.
In view of Proposition 2 the properties (a) and (b) will be verified if we show that
the term-by-term differentiations ¢//9t] (j=0,1, ..., g=[n/2]; k=1, ...,n) of the
series in (5) produce functions of class L,(T™). For that purpose it is enough to note
that

Swevon M [T (mymd = 30 mi2 24 [T m) (S e S 1)

=C2m=m m;1]]l‘2(mn) = cS_l[-j?) < oo,
By (a) and (b) the Parseval formula gives

- 1 m _.
(0§D? = 4Q2n)" 3, cnan i 2 I1 2 (m,) md sin? ( éJ’)

_ -2
= oy® ZmeN(M),mjélly my 242 175 (m,)m3

- -2 _
+ch€N(M),mj>1/y my e [17°(m,) = 04+ 0,.

With obvious simplifications for j=»n and n=1 we can write

— [1/¥1 [1/y] [1/y1 oo - -2
01 = cyZZmlf:MZmziml ijimj 1 [ mj=my "t Ldmy=m, my 2n+2q]]l (m'l)]

The sum in the square bracket is not larger than cm3~""/ 172 (my), as
can be shown by successive application of (19), where we put k=2n—2g,
2n—2q—1, ...,n+j+1-29=2 and y=1/m,_,, 1/m,_,, ..., 1/m;=1/M, respec-
tively. Rearranging the remaining sums we find

01 = 0 Sl m I I ) (S s S )

1 _
=cy? Ir:nj/i]M m3 L 17 (my).
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If y=1/M then for even and odd n (g=n/2 or (n—1)/2) the estimate (17) (k=1, 0)
gives
21 _af 1
(20) or=c]l[°|—=] and o =cy ][] 7|1
y y
respectively. Furthermore

— -2
522 ¢ Sy [T ) (ZR g )
= m,>1[y mn—n+2q—1 ]]1_2 (mn)‘

Now, for even and odd n the estimates (18) and (19) with k=2 imply

1) oy =cllny| J[* (%] and o, = cy J]7° (%],

respectively. Using (20) and (21) we obtain the inequalities (3) and (4) with «=0
for any j,, j, and jy .
Let us note, however, that for some c¢=c(M,n)=0 we have

Alla= S g I ) (S cng - S 1)
=37 _ym [[TNm) = [rx [T dx = cln(+1, 055 = -

The proof is complete.
The author wishes to thank Dr. Ingemar Wik for his valuable suggestions which
made it possible to simplify the proofs and state the theorems in their present form.
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