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1. Introduction 

The classical theorem of Bernstein can be generalized to the form (Bochner 
[1, p. 376] and Wainger [3, Theorem 15, p. 78]): 

(i) I f  a funct ion f (q  . . . .  , t,) is periodic in each variable and belongs to Lip(a) 
with c~ >n/2  then its Fourier series converges absolutely ( i f  a is an integer then Lip (~) 
means C~; otherwise it means funct ions whose partial derivatives o f  order [~] are in 
Lip (c~-[c~]) in the ordinary sense).  

(ii) There exists a periodic function f ( q  . . . . .  t,)ELip (n/2) whose Fourier series 
does not converge absolutely. 

In this paper we present certain estimates for the absolute sums of Fourier 
series (Theorem 1 below) and derive criteria for the absolute convergence (Corollary) 
which are more precise than (i). In analogy with (ii) we show that our criteria, and 
thus also the underlying estimates cannot be very much improved (Theorem 2). 

2. Main results 

Let m = ( m l , m s  . . . . .  m,), where ml . . . .  , m, are integers, t = ( t l  . . . . .  t ,)CR" 
and e~mt=e ~(mltl+'''+".t.). Let ~m free lint be the Fourier series of a function f ( t ) ,  

integrable on 7" = {t: 0 <= tk <- 2~ ; k = 1 . . . .  , n} and 27r-periodic in each variable. 

We denote I[ f l [a=~m[f~l  and [If[12=[Ifl[L~(T.). If  Oqf/otqEL~(T") for some 
q=0 ,  1, 2 . . . .  (as usual, O~ ~ = f )  then we put 

co q) ( r Oq f t~) 2" j, kW, Y) --= -~k (q,  t j +  y, t , )--  Oqf (t . 
"" '  .... Otq " 1, .., 
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In Section 3 we prove 

Theorem 1. Let f ( t ) be aperiodic function such that 

x f  (a) 0t--[s k =  1,2 . . . . .  n; j = 0 , 1 , . . . , q - 1 ;  q =  [n/2], 

are integrable functions, essentially absolutely continuous in t k ( i f  n= 1 then (a) 
should be dropped), 

Oqf 
(b) - ~ k E L 2 ( T )  for  k = 1,2 . . . . .  n. 

Let  j l  , j2 . . . . .  j ,  be positive integers not larger than n. I f  n is even then for  some c = c(n) 
we have 

" [ O~f~ 'ru2̀ ''(q)(: ] < ~j~,kW, Y) 
(1) IlfllA = [fo ..... ~ 2-e J ~  y[lnyll/2 dy . 

Moreover, let.l'~,j~ . . . . . .  1'" and jl",j~" . . . . .  j"~" be positive integers not larger than n and 
such that each pal'rjs163 satisfies one o f  the conditions: j's or j'k#j'k'. I f  n is 
odd then for  some c = c (n) we have 

Oqf , (q)  r 1:. (q) Y) +OOj~,k(f, Y) 1"1/2 ~'g,,kW, 1 
(2) Ilfl[a <= Ifo ..... ol+c~ff=l ] [ 3+J0 :/2 dy . 

If  we choose Jk=Jk ' = k  then (2) takes the form 

c " fit ~ k,.,y) ] I l f l l .  <-- If0 ..... ol + Z2=1 tllO-~ 2 a0 y3:2 dy . 

For n = l ,  when q--0, we obtain Bernstein's theorem (this is essentially what 
Zygmund proves in [4, Theorem 3.1, p. 240]). We may also put j k = k  into (1). 

Let us denote In (1, y ) = l n  y, In (k, y ) = l n  [In ( k -  1, y)] for k - 2 ,  3 . . . . .  and 
/ - / t (y)=/Lt=l  in (k, y) for I=  1, 2 . . . .  Theorem 1 implies 

Corollary. Suppose that f ( t )  satisfies the assumptions o f  Theorem 1. Suppose 
also that for  sufficiently small y >0  and for k = 1, 2, . . . ,  n we have 

(3) o) (q) : r  [In yt 1/2 In 1, /'//-1 1 j,,kW, Y) <- C i f  n is even, 

(4) W:Lkt j ,  y)+eo)~!k(f, y)  <= cy 1:2 In l, I~1-1 i f  n is odd, 

where c, ~>0,  l is a positive integer and j'k,j'k,J7 are integers subject to the restric- 
tions stated in Theorem 1. Then ]If l id<  ~. 
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The proof  follows from (1) and (2) by elementary integration. 
We have derived the succession of criteria (3) and (4), l--- 1, 2 . . . . .  of  increasing 

generality, each of them more general than (i). In Section 4 we prove 

Theorem 2. The functions 

(5) fl(~) = Z~I=M Z~2=ml ... Z~rt . . . . .  mn n 17t -~ (mn)e lint, 

l = 1, 2 . . . . .  M = M(I), 

satisfy the assumptions of  Theorem 1. Moreover, for any integers l=Jk,Jk,J~=n 
they satisfy the inequalities (3) (when n is even) or (4) (when n is odd) with ==0,  
but Ilf~lla-- oo. 

We see that the criteria (3) and (4) are exact in the sense that the restriction 
~ > 0  can not be relaxed. 

3. Proof of Theorem 1 

Let (h,  i2 . . . . .  in) be a permutation of  the n-tuple (1, 2 . . . . .  j ,  0 . . . . .  0), where 
l=<j<:n and let Nq ..... i, be the set of  all m=(ml  . . . . .  m,) such that m k=O if 

ik=0, mk=>l if ik=l  and mk>=mt if i k = i l + l .  We shall put  Iml=(]mxl, ..., Ira, l). 
Let l<=j<n and let k be such that ik= j. I f  n is even, that is when q=n/2, 

then H61der's inequality gives 

(6) (ZI,< ~N~ . . . . . .  in If"[)z <- (ZI"I ~ Ni ...... i. m~- 2g)(Zl"l ~ N  ̀...... i. m~q[f''Iz) 

~ C Zm m2qlfml2 = g[la~fi~ 2 2 

(C will denote various constants depending on n) where the last equality follows 
from (a) and (b). 

Now let (il . . . .  , i,) be a permutation of (1, 2 . . . . .  n). For  even n we shall prove 
that 

co(q) El" v~ 
rxl~ za,~_w, ,~: d for j 1, 2, n, (7) Z =  eN, ..... , lf~l <-- CJo yllnyl,/2 -.Y . . . . .  

where k is such that ik=n. The proof  will be given only for i1=1, i2=2 . . . . .  in=n. 
It applies obviously to other permutations ( i l  . . . . .  in). 

For brevity we put N = N  x ....... co(y)=o95q),(f,y ) for j fixed and f2(y)= 
sup @(p), lpl<y) for y>0. If  f2 (y )~0  then (7) is obvious. Otherwise we can 
define 

1 = p / 2  
(8) ~p(y) = f2(y)yllny[ll2 and gin ,  aa/41,n,lr dy �9 



28 Z. Nowak 

H61der's inequalities for sums and integrals give 

--2q --1 -<- m~ ~ Z~ 2;8, (9) (ZI,,ICN If-,}) 8 (ZIml~N mn g",)(ZI,'IEN " g,-~lf,-I ) ~ 

gaff <= [fl/2 dy)-2 f lm f2(y)llnyll/2dy 
~,d l/4lmfl y ] d 1~aim j[ y 

= ln-8 (2]mat) fl(Z.,,Idl/41 ~r2 (Y) lift yli/2 dy. 
Y 

Consequently 

~1 <= C~,,,EN m2"ln-Z(2mj) f~f~ m f2(y) [ln yl~/Sdy 
J Y 

= C J orl/z f2 (y) yll n y{1/8 [.~,. ~ N, .,j~=ll,r mz" In -8 (2m j)] dy 

(10) <= c f2/z f2(y) yllny[ 1/z [~m(N, mngl/4y mn n- In-  z (2ml)] dy = 

= o f l / 2  ~'2 (y) 111"1 yl 1/2 {Zran~l/4y mn n [Z22-1=1 "'" Zmm~121 I n - 2  (2/T/I)]} d y  
Y 

ralz f2(y) dy. 
<- CJo y[ln ylV2 

In order to estimate 2 2  we first note that 

(11) gmj = 4~z J ~/Imjt r dy 

--< 4-7.]0 ~o +~o + sinZ(mjy/2)dy<= c r sinZ(miy/2)dy. 

From Parseval's formula for co(y) and from the inequalities f2(4zy)~f2(13y)~ 
130(y)  it follows that 

G ~= o f  2 [~r~.~, rn,flIf.f2sin2(mjy/2)] ~~ dy 

(12) <= c fa"  ~: ( .v )q , (5)c lv  = e f~/ '  ~:(4=y)~o(.v)dy <- c f l / '  ~:(v)O(y)cly 

_ rv2 ~(y)  dy. 

Using (9), (10), (12) and the inequality 

10 r (13) a(y) <_- T f ; -  o~(y) ay 
r 
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(Garsia [2, p. 91]) we obtain 

Z m .l ol r + r / = ,io yllnyll/~ ao ~llS--}l~/~ dy 

<= c f~/~ co(y) dy, 
y I1 n y[l/~ 

as required. Estimate (1) follows by combining all the estimates (6) and (7) with 

J = A .  
Now, let n be odd. Instead of (7) we then have 

,.,(q) r c y) 
- f l / 2  ~ j , k \ J ,  dy, (14) ~ImlCN, ...... ,. If~l <- ~Jo y~/~ 

where q=(n -1 ) /2  and k , j  are such that ik=n and zj=2," :> except when j = n =  1. 
The proof  will be given only for i1=1 . . . . .  in=n. Assuming f2 (y)>0  for y > 0 ,  
we define p ( y ) = f 2 - t ( y ) y  -3/~. Let gmj be such as in (8). H61der's inequality gives 

g~,) <= ( f , lz  y_,/z_5/, dy]-2 ftl2 f2(y)y_._t  dy 
~,d 1/41mdl I J l /4[mjI 

<: clmjl-"-al~ f~f~mj , . f2(y)y -"-~dy.  
Consequently 

~1 <- c f2/2 f2(y)y-" - ' s (y )  dy, 

where with obvious simplifications for j = n  we have 

= mj (Zmj+l=mj Z 2 . = m n - 1  1 - n ' W ' ~ m j  s ( y )  Z m j > = l / 4 y  - n - - l ~ 2  ~ m2 . . .  m n ) [ L ,  m j _ l = l  . . .  Zm~l=l  l )  

-.< e ,~7 rrt _ n _ l / 2 m l _ j t y~ j _ 1 _< ~-" ~ ~ m j ~ l ] 4 y  "'~j J " " j  : c Y  n - l ~ 2 ,  

provided that j :>2 or j=n---1 ,  as assumed (otherwise, a divergent series appears). 
Hence, 

f2 (y) d, (15) •1 <= c f~12"-v"~- y.  

As in (11) and (12) we prove that 
-~/a ~ (y) 

~2 ~ c f~la ~?2(Y)q)(y) dy = c j s --f-~-dy. 

Combining the last estimate with (9), (15) and (13) in the same way as previously 
we obtain (14) for our choice of i~ . . . .  , i,. 

We thus see that each sum appearing in (14) has a majorizing term on the right- 
hand side of (2). For  n =  1 the proof  is complete. Let  n > 1. It  is easy to see that 
the functions 

(p/(t 1 . . . . .  t l _ x ,  t l +  l . . . .  , t.) l__ fz= = 2nJO f( t )  dfi, 1 = 1 , 2  . . . . .  n 
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satisfy (a) and (b) in their variables. For each kr  l fixed, let J'kr be one of the 
integers J~,jk' appearing in (2). Applying (1) to qh we find 

( Oqq~ 1/~ (q) c,% ) 
(16) Z,..,.,=ol/,.[ = II~o/[IA <= [@30 ..... o[+CZk~ ~ ~+f2 ~'~'~'~yllny]l/2 y) dy 

<-Ifo ..... o l + c X ~  O~f + /~ ~ . . . . .  2 y3/2 d y  , 

/ = 1 , 2  . . . . .  n. 

Combining all the estimates (14) and (16) we obtain (2). 

4. P r o o f  o f  T h e o r e m  2 

We shall need the following propositions. 

Proposition 1. For sufficiently large M=M( l )  and O<y <- 1/M we have 

Sk(Y)=- ~M~_j~_alyjk]Ii-2(j)'<2k+2y-k-l lT-2(1)  for k = O ,  1, (17) 

(18) S-x (y) -- x..j_lly = , 

-- Xj~a/,J I[t (J) Ill -~ for k =2, 3, .... 

Pro@ If k=0 ,  1 . . . .  then for sufficiently large x>=M we obtain 

d 1 
- -  - 2 2 j = 1 / / j  (x)] ~- dx  ( x k + l / / ; ~ ( x ) )  = x~ I I ;~ ' ( x ) [ k  + l ' - '  >= xk II '-~ (x)' 

S~(y)<=f~'+lx~H,-"(x)ax< 2 fa/Y+l ~ x  ( -"(x) = a ~ x ~ + 1 / / ,  ) a x  

k+2 k 1 [ 1 ~  Y- - / / ' U "  
Furthermore 

d (lnx// l_2(x)) = 1 in l -1 1 dx x 1 / , - 2 ( x ) [ l + 2  xZ j=~l ]  j (x)] ~ x / / Z 2 ( x )  

s _ l ( y )  <= f ~ , _ ~  x -1  H ; ~ ( x ) a ~  <= - fS / , -1  d-~( l nx  lZl-2(x)) dx 

-= l n ( l y - 1 ) / ~ t - ~  ( 1 1) < 2 [lny[//1-2 (1}  _ = , 
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Finally, if k = 2 ,  3, ... then 

d 
dx (xl-k/ /z-2 (x)) = x - k / / - 2  (x) [ k -  1 + 2 ~ = 1 / I 7 1  (x)] ~ x -k l l l  -2 (x), 

- ~  d 1 k s_k(y)  L7 , -1  x-k II,-2 (x) dx - - lZ-2 (x)) ax 

- 2  1 

im f e i=t be the Fourier Proposition 2. Let f=~=f , . e i= tELl (T  ") and let 2 , .  j J,. 
series o f  a function ~oC L~(T"). Then f is essentially absolutely continuous in tj and 
Of/atj=rp a. e. on T". 

Proof. Let 0 = f ~  qg(t)dtj. The function 0-f~"~,, ,m~=0 Cm din' is essentially 
independent of tj. Hence, together with ~ the function f is essentially absolutely 
continuous in tj and Of/Otj=OO/Otj=q~ a .e .  on T". 

We proceed to the proof  of  Theorem 2. Let M, appearing in (5), be so large 
that (17), (18) and (19) hold for O<y<=l/M. Let N ( M ) = { m :  M<=ml<=...<=m,}. 
In view of  Proposition 2 the properties (a) and (b) will be verified if we show that 
the term-by-term differentiations OJ/Ot j ( j =  0, 1 . . . .  , q = In/2] ; k = 1 . . . . .  n) of the 
series in (5) produce functions of class L2(T"). For that purpose it is enough to note 
that 

.~mEN(M) my~n l]t-2 (mn)m~ j < .~m~=Mmn2n+2q l-lt-2 (mn)(.~m:_~=l ,,, ~m~=l 1 ) m ~  

C Zmn~zM1Tlnl lIl-'~ (ITln) = c a _ l ( 1 )  .~ oo 

By (a) and (b) the Parseval formula gives 

~j.k, = 4(2n) ~--,,,.cN(m m,, l i t  (ran)ink sin 

<= cy2 ~,.~ N(U).ms<__II~, m2 2"+2q l[t -2 (m,.)m~ 

-'}- C ~mCN(M),mj~ llY m n  2n+2q l~t -2 (mn) ~ O'lq- O" 2. 

With obvious simplifications for j =  n and n = 1 we can write 

[l/rl ~t~'r] yt~/r] m 2 I-S,~ rn~-2.+2q 0"1 : cW2 Zml=M ~am; = ml Z 2 n  = ran_• II1-2 (mn)]" "'" ,~..amj=mj_l J L.g..amj+l=mi "'" 

The sum in the square bracket is not larger than crn~q-"-Jl~t-2(mj), as 
can be shown by successive application of (19), where we put  k = 2 n - 2 q ,  
2 n - 2 q - I  . . . . .  n + j + l - 2 q > : 2  and y = l / m . _ l ,  1/m,._~ . . . . .  1/mj<:l/M, respec- 
tively. Rearranging the remaining sums we find 

Ca)2 ~'~[l/y] rr~2q--n--j+2 rr-~ ~'m )( S"J m2 a~ -" ~-~,,~=~t ""J ~ t J ~-.,m_~=M "'" ~'m~=~ 1) 
C~2 "~[1/y] 2q--n+1 --2 " ~ m , = M  mj  I l l  (m j). 
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I f  y < - l / M  then for even and odd n (q=n /2  or ( n - l ) / 2 )  the estimate (17) ( k = l ,  0) 

gives 

(20) (71 < c I I t - 2 ( 1 )  and (71 -< c y I I i - 2 ( 1 )  

respectively. Furthermore 

m -2n+2q 1T -2 rm ~ [ ~ " "  "~ 1) 
(Y2 ~= C Z m n > l / y  n .IAI \ n]\.~,tmn_l=M "'" Z m l = M  

<: C Zm.> lly m y  "+2q-111, -~ (m,). 

Now, for even and odd n the estimates (18) and (19) with k = 2  imply 

(21) (72<c,lnyl/ / / -2(1) and a2-< c y I I t - = ( 1 )  

respectively. Using (20) and (21) we obtain the inequalities (3) and (4) with ~ = 0  

for " " "" any A,  A and A �9 
Let  us note, however, that for some c = c ( M ,  n ) > 0  we have 

~ - - n  [IAI[A = 2m.=M . / / ,-~ (m.)(.~'m."_,=M "'" 2m~=U 1) 

> lI, ( ) 1I, (x) dx  = c In (I + 1, x)]~=M ~-  = M / T / n  I - 1  /g/n : > C  X - -  1 --1 x + ~  = oo 

The proof  is complete. 
The author wishes to thank Dr. Ingemar Wik for his valuable suggestions which 

made it possible to simplify the proofs and state the theorems in their present form. 
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