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0. Introduction

In this paper we study convolution equations of the form pxu=f, where
u€ sZ’(C" is an analytic functional and w€.2/(X,), f€/(X,) are analytic func-
tions in open subsets X; and X, of C". The convolution u#*u of u and u is well
defined by the formula (u*u)(z)=p(u(z— -)) and analytic in X,, if the sets X; and
X, satisfy X2~Iec,.<:X1, with K a carrier of u and If’c,, its polynomial hull. There
are two main problems that we will be concerned with. The first one is the existence
problem: to give necessary and sufficient conditions for existence of solutions
uc 4 (X,) of uxu=f for any fc.o/(X,). The second one is the approximation
problem: to decide if the space E,,, consisting of all linear combinations of exponential
solutions of uxu=0 in C", is dense in the space N(X,, X,) of all solutions u€ &7 (X;)
of uxu=0 in X,.

In Section 1 we introduce the concept of p-convexity for carriers of a pair
(X1, X,) of open subsets of C". We prove that uxwu=/ has a solution u¢.oZ(X,)
for every f€/(X,) and that E, is dense in N(X;, X,), if the pair (X, X;) 1s
p-convex for carriers and X, is a Runge domain. In the rest of the paper we study
the case where X;, X, and K are convex sets and X,=X,—K. We give a sufficient
condition for g-convexity of the pair (X;, X;) and a necessary condition for existence
of solution we o/ (X,) for every fC.o/(X,). Both of these conditions involve growth
regularities of the Fourier—Laplace transform fi of y in certain outward normal
directions of the boundary dX, of X,. In some important cases these conditions
are equivalent, for example if d.X; is a differentiable manifold or n=1. These are
the main results of the paper and they are stated and proved in Section 4. In Sec-
tion 2 we make a quite long detour from the main subject of the paper for studying
growth properties of plurisubbarmonic functions p€PSH (C") of finite type with
respect to the order ¢=0. Our main tool for characterizing growth regularities
of p is the limit set L_(p) of p. It is defined as the set of all g€ PSH (C"), such that

1

T,jp—»q in L} (C"), where 1;—+e and (T,p)(z)=1"%p(tz). We say that p is
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of regular growth in the direction of z€C*, z#0, if g(z2)=h,(z) for all gcL_(p),
where h, denotes the indicator function of p. For justifying this definition, we prove
that it is equivalent to definitions given by other authors. In Section 3 we state
a version of our earlier result on asymptotic approximation of functions p€PSH (C")
by functions of the form log ||, where uc#”(C"). This result is of fundamental
importance in our proof in Section 4. We also discuss some of our earlier results
on growth regularities of Fourier—Laplace transforms of distributions.

The study of convolution equations is mainly concerned with generalizations
of results from the theory of partial differential equations. In fact, every partial
differential operator P(d)=_2 a,0* with constant coefficients can be viewed as a
convolution operator u%, where p=> a,0%6, and J, is the Dirac delta distribution
at the origin. Equations of the type p*u=f with uc&’(R"), u in some subspace of
2’(X,), fin some subspace of 2°(X,), X; and X, open in R” and satisfying X,~—
supp u Xy, were first studied by Ehrenpreis [4—S5], Hérmander [6—8) and Mal-
grange [15—16]. The literature is now quite extensive and we refer the reader to
Hormander {10, Chapter 16).

It was Malgrange (15] who initiated the study of convolution equations in
spaces of analytic functions of several variables. He proved, without any restriction
on ucs/’(C", that puxu=f has a solution u€.o/(C") for every f€o/(C") and
that E, is dense in N(C", C"). Martineau [18] proved that the analogous statements
hold if u is carried by the origin and C” is replaced by any open convex subset of
C". Morzhakov [20] was the first to study the case, where X;, X, and K are convex
and X;=X,-K. He proved the existence of a solution u¢&/(X;) of uxu=f for
any fc./(X,) and that E, is dense in N(Xy, X;) under the assumption that /i is
of completely regular growth (in the sense of Levin [14]), and hﬁ(iZ)zH () for all
{€C", where Hy is the supporting function of K. Lelong and Gruman [13] and
Morzhakov [21] proved that

Llog|A(O| ~ He(D) in F'(C) as 1o,

15 a sufficient condition for existence of solution, and in the case where X is bounded
and has a differentiable boundary it is also necessary. A different type of sufficient
condition has been given by Meril and Struppa [19]. The approximation problem
has been studied by many authors. Krasi¢kov—Ternovskii [12] proved, without
any assumption on g, that E, is dense in N(X,, X,) if X, and X, are convex sub-
sets of C'. Napalkov [22—24] has proved that E, is dense in N(X,, X;) if X, and
X, are convex tube domains in C". We refer the reader to the recent survey by Beren-
stein and Struppa [3] for more information on these problems.
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1. Convelution operators and y-convexity for carriers

Let pcs#’(C") be an analytic functional. Then there exists a compact subset
© of C" and a positive constant C,, such that

(1.1) (@)l = Cysup @], Pe(C).

The analytic functional x is said to be carried by the compact subset K of C" if
for every neighborhood w of X, there exists a positive constant C,, such that (1.1)
holds. For ¢¢ .o/ (C") we define the convolution ux¢ of u and ¢ by the formula

(12) (*$)(2) = p(p(z2—.)), z€C".
By (1.1) it follows that u*@dc/(C") and the operator
px: L(C) - AL(CY, ¢—uxg

is continuous. The operator ux commutes with all translations, that is for every
translation operator t,: o (C")—~(C"), h¢C", defined as (7,¢)(z)=¢(z—h), we
have px*(t,¢)=1,(u* ). Itis easily shown that for every continuous linear operator
S: A (C") - (C"), which commutes with all translations, there exists a unique
analytic functional y such that S¢=pu*¢ for all ¢¢ .o/ (C*). This property allows
us to define the convolution p*v of two analytic functionals u and v as the analytic
functional corresponding to the operator

A(C) > A(C), ¢ px(yx¢).

We observe that p#v is carried by K+ L if uis carried by K and v is carried by L.
If X is an open subset of C*, uis carried by a compact subset K of C* with polynomial
hull K. contained in X, then u can be extended to a continuous linear functional
on «(X), that is p€o//(X). In fact, we can always choose a polynomially convex
neighborhood of w of K. such that K< Ke..Cwc X. Then there exists a positive
constant C,, such that (1.1) holds. If ¢€.o/(X), then there exists a sequence ¢; in
s/ (C") such that ¢;—~¢ uniformly on w. (See Hormander [9, Theorems 2.7.4 and
2.7.7].) From (1.1) it follows that {u(¢,)} is a Cauchy sequence. We denote its
limit by u(¢). From (1.1) again it follows that u(¢) is independent of the choice of
the sequence {¢;} and

(1.3 () = Cosup|dl, §€(X).

Now we let X; and X, be open subsets of C" and we assume that

(1‘4) XB——KC" C Xl'
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For every z¢X, and every ¢¢.sZ(X,), the function ww—¢(z—w) is analytic in a
neighborhood of Ken, so (ux¢)(z) is well defined by the formula (u*@)(z)=
w(¢(z— ). From (1.3) it follows that px* @€ & (X;) and

px (X)) > A (X)), (wid)(2) =p(d(z—.)), 26X,

is a continuous linear operator. Its adjoint is a convolution operator between the
dual spaces

(un) = fix: L/(Xp) = LX), v fixv,

where i denotes the analytic functional defined by u(¢)= u(¢) and P(2)=¢(—2)
for ¢/ (C).

Definition 1.1, Let X, and X, be open subsets of C" and let u be an analytic
functional carried by the compact subset K of C" satisfying X,—KcX,. The pair
(X1, X;) is said to be u-convex for carriers if for every compact subset K; of X;
there exists a compact subset K, of X, such that o is carried by K,, if ac.o/’(C")
and gxo is carried by Kj.

A solution u€ £ (C") of the homogeneous convolution equation p*u=0 in
C” is called an exponential solution, if it can be written of the form

u(z) = P(z)ei>v, z£C",

where P is a polynomial, {€C" and (z,()=2z;{;. We let E, denote the space of
all linear combinations of exponential solutions of the homogeneous equation. If
u is carried by K, the sets X; and X, are open in C* and satisfy (1.4), then we let
N, (X, X,) denote the space of all solutions of u€.s/(X;) of the homogeneous
equation pxu=0 in X,.

Theorem 1.2. Let X, and X, be open subsets of C" and assume that X, is a Runge
domain. Let u be an analytic functional, carried by a compact subset K of C" satisfying
(1.4), and assume that the pair (X, X,) is u-convex jor carriers. Then:

(i) The restrictions to X, of the elements in E, are dense in N,(Xy, X,) in the
topology induced by </ (X)).

(ii) The convolution equation pxu=f has a solution uc o/ (Xy) for all f€.sf(X,).

The proof of the theorem is based on the following two lemmas, which are
due to Malgrange [15]:

Lemma 1.3. f¢ o7’ (C") satisfies p(¢)=0 for all ¢cE, if and only if f=p*o
for some ac o’ (C").

Lemma 1.4. If a;c¢ '(C") and B;=[ixu; converges weakly to [¢ A’ (C"), then
B=lixa for some ac.f’(C").



Convolution equations in domains of C" 289

Since these lemmas are well known, we do not prove them here. The proof of
Theorem 1.2 (ii) is a standard duality argument. In fact, it is only 2 modification of
the proof of Theorem 16.5.7 in Hormander [10]. Before we give the proof, we discuss
the Fourier—Laplace transformation on «/’(C").

Let peo#’(C"), then the Fourier—Laplace transform ¢ o/ (C") is defined as

(1.5) AQ) = plexp (—i(., 1)), (eCm
We observe that the euclidean inner product on C"=R" is given by
(16) Re((Z, ) ={(x, &+ (yn), z=x+iy, {=<C+in, x, ¥, & neER

If L is a subset of C”, then its supporting function H is defined as
(L.7) HL(0) = supRe((Z, ), (eC".
zeL

The function H, is lower semi-continuous and positively homogeneous of degree 1.
If L is compact, then H, is continuous. If y is carried by the compact subset X of
C" and £=0, then we take w as an e-neighborhood of K, and it follows from (1.3)
that there exists a positive constant C, such that

(1.3) 120 = C,exp (Hx (i) +el]), (eC

Conversely, the Pdlya—Ehrenpreis—Martineau theorem states (see Hormander
[9, Theorem 4.5.3]), that every fco/(C") satisfying a growth estimate of the form
(1.8) is the Fourier—Laplace transform f=/ of some u¢ o/’ (C") carried by the
convex hull of K.

Proof of Theorem 1.2. (i) Let Bc.oZ’(X,) and assume that S(¢)=0 for all
¢€E,. By the Hahn—Banach theorem it is sufficient to prove that (¢)=0 for all
PEN,(X;, Xp). By Lemma 1.3 we have f=p %« for some x2€ oZ'(C"). Since (X;, X;)
is p-convex for carriers, o is carried by some compact subset of X,. Since X, is a
Runge domain, it follows that x can be extended to a continuous lincar functional
on #(X,), that is «€.o/’(X,). Hence

B(d) = (ix0)(¢) = 2(ux§) =0, ¢$EN, (X, X,).

(ii) In order to prove that the operator u*: <7 (X;)— o/ (X,) 1s surjective, it is
sufficient to prove that its adjoint i %: «’(X,)—~/'(X,) is injective and that its
image M=jx(2’(X,)) is weakly closed in s#’(X;). (See Schaefer [26, Chapter IV,
6.4].) The fact that i * is injective follows by taking Fourier—Laplace transforms.
In order to prove that M is weakly closed in &’ (X,) it is sufficient to show that M~ U?®
is weakly closed for every neighborhood U of 0 in «/’(X;)., where U? denotes
the polar set of U defined by U°={pc’(X,); |B(¢)|=1 for all ¢cU}. (See
Schaefer [26, Chapter IV, 7.7].) Without any restriction we may assume that
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U={¢c o (Xy); Csupg |¢p|=1} for some compact subset K, of X; and a positive
constant C. Then U? is the set of all ¢/’ (X}) such that

(1.9) 1B = Cslt(lp o], P (Xy).

Thus every f in U° is carried by K. Let 8;=j*a,cU°nM be a sequence con-
verging weakly to f¢./’(X;). From (1.9) it follows that f is carried by K,. By
Lemma 1.4 there exists «€o/’(C") such that f=jp*x Since (X;, Xy) 1s u-con-
vex for carriers and X, is a Runge domain, it follows that a€.s/’(X,). Hence =
AxacU°~M. The proof is complete.

2. Growth properties of plurisubharmonic functions

In this section we have collected definitions and basic properties of those con-
cepts that are used for characterizing growth of plurisubharmonic and analytic
functions in C”. Mean values of plurisubharmonic functions are very important
in our proofs, so we begin by introducing a notation for them. We let X be an open
subset of C" and let d(z, 3X) denote the euclidean distance from z€X to the
boundary dX of X. For feLl (X) we let (4, f)(z) denote the mean value of
the function f over the ball with center z and radius r, where O<r<d(z, 0X),

(A, X2 = wz;rz f ety SOV () = 512- f et f(z+ rw)di(w).

! =

Here d/. denotes the Lebesgue measure in C" and w,, denotes the volume of the
unit ball in C". For any r, the mean value is a continuous function L} (X)XX,—R,
(fs 2)—~(M, [)(2), where X,={weX; d(w,0X)>r}. Moreover, the function

Lo (CYXC"XR, ~ R, (fi2,7) ~ (A, f)(2)

is continuous. We let PSH (X) denote the set of all plurisubharmonic functions
not identically equal to —< in any connected component of Y. We have

PSH(X) c L{,.(X) < 2'(X).

loc

1
loc

The topology of L} (X) is defined by the semi-norms
u »fK luldi, K < X, K compact,
and the weak topology of %’(X) is defined by the semi-norms
u—{u, ¢, PeCy(X).

It turns out that these two topologies are identical on PSH (X). Moreover, PSH (X)
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is a closed convex cone, thus a complete metrizable space. We always refer to this
topology when we discuss topological properties of PSH (X).

Let McPSH (X) and assume that the functions in M have a uniform upper
bound on any compact subset of X, that is, for every compact KC X there exists a
constant Cg such that

2.1) q(z) =Cyg, ¢g¢M, zc¢K.

In general the function sup, g is not upper semi-continuous, thus not plurisub-
harmonic. On the other hand, its upper regularization (sup,, ¢q)*, defined as the
least upper semi-continuous majorant of sup, g, is plurisubharmonic. If M is
bounded in PSH (X), then the functions in M have a uniform upper bound on
any compact subset of X. In fact, if K< X is compact and 0<r<d(K, 0X), then

q(z) = (A, q)(2) =

1
o )i Jddh K, qeM,
where K, denotes the set of all points in X of distance =r from K. Since M is
bounded in PSH (X), the integral is uniformly bounded for g€M, and it follows
that (2.1) holds for some constant C. Later on the case when M is compact will be
important :

Proposition 2.1. Let X be an open subset of C" and let M be a compact subset of
PSH (X). Then sup, g¢PSH (X).

Proof. Set p=sup,cyg. We only need to prove that p is upper semi-contin-
uous. Let z,6X, acR and assume that p(z,)<a. We have to prove that there
exists a neighborhood ¥V of z, such that

2.2) p(z)<a, zev.
We choose e>0 such that p(zj))<=a—e. If ¢,M and r, is chosen sufficiently
small, then
9o(20) = (A ,,q0)(2)) = a—e.
Since the function Li,(X)XX, -~R, (f;z)—(#, f)(z) is continuous, there exists

an open neighborhood U, of ¢, in PSH (X) and an open neighborhood ¥ of z,
such that

(Mryq)(2) < a—e, qcU,, z€W,.
The mean value property implies
(23) Q(Z)< a—e, (]E U'O, ZEK)

Since g, is arbitrary and M is compact, there exists a finite covering Uy, ..., Uy
of M and open neighborhoods ¥, ..., ¥y of z, such that (2.3) holds for all ¢€U;
and ze¥. If we set V'=nV,, then (2.2) holds and the proof is complete.
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Assume now that X is connected. Then the set PSH (X) has a certain Montel
property. If McPSH (X) and the functions in M have a uniform upper bound
on any compact subset of X, then every sequence {g;} in M satisfies one of the fol-
lowing conditions :

() {g;} has a subsequence which is convergent in PSH (X).

(ii) g;— —o= uniformly in every compact subset of X.

If no sequence in M satisfies (ii), then M is relatively compact. All our un-
proved statements so far in this section are contained in Theorems 4.1.8 and 4.1.9
in Hormander [10]. See also Lelong and Gruman [13, Chapter 1 and Appendix I].

Let us now turn to the growth characteristics of plurisubharmonic functions
in C". A function p€PSH (C") is said to be of finite order if there exist positive
real numbers z, ¢ and ¢ such that

2.4) p(2) =t1+a0|zf8, zeCM

The order g, of p is defined as the infimum over all g, for which (2.4) holds for some
7 and o. For a given ¢>0 we say that p is of finite type with respect to the order g
if (2.4) holds for some 7 and ¢. If p is of finite type with respect to the order g, then
we define its fype ¢, as the infimum over all ¢ such that (2.4) holds with some
and ¢=g,. If pis of finite type with respect to the order ¢ then we define its indicator
Junction h, (with respect to the order ¢) as the least upper semi-continuous ma-
jorant of

o 1
2.5) C'5z r—»tln:‘nmwp(tz).

The function 4, is in PSH (C”) and it is positively homogeneous of degree g¢. In
order to study growth regularities of functions of finite type with respect to the
order g it is natural to introduce the group {T;},», of mappings defined by

(2.6) T,: PSH(C") - PSH(C"), (T.g)(2) = ——}g—q(tz), zeC".

This is an example of a continuous dynamical system or a flow ¢ on a metric space A4,
that is, a continuons mapping

P: AXR, ~ A

satisfying @(P(p, s), 1)=®(p,st) and ®(p,1)=p for all pc4 and s, 1R, =
{r=0}. We view & as a one parameter family of continuous mappings and write
@, p instead of ®(p,r). The set {®, p; t=1} is called the forward orbit of p and
the set {®,p; O<t=1} is called the backward orbit of p. The set of all g€ 4 that
are limits of sequences of the form {®,,p}, where 7;—~+c is called the limit set of
p at infinity and it is denoted by L_(p). The set of all g¢ A that are limits of se-
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quences of the form {<15,j p}, where t;—0 is called the limit set of p at the origin
and it is denoted by Ly(p). From the continuity of @ it follows that the sets L_(p)
and Ly(p) are & invariant, that is

P Le(p) =L.(p) and &,Ly(p)=Ly(p), ¢=0.
The most basic properties of the one parameter family T={T;},», are:

Proposition 2.2. Let pcPSH (C"). Then

(1) p is of finite type with respect to the order ¢ if and only if the forward orbit
{T,p; t=1} of pin PSH(C") is relatively compact.

(ii) If p is of finite type with respect to the order g, then L_(p) is T invariant,
compact, connected and q(0)=0 for all qcL_(p). We also have

(2.7) h,(z) = sup {q(2); g€L.(p)}, zcC™

Proof. (i) Assume that {T,p; r=1} is relatively compact and let £€(0,1). If
z€C" and t=|z|=1, then the mean value property implies

P@) = (Mup)2) = AT PN = (e [ Topl i) el

The forward orbit of p is relatively compact in PSH (C"), so the first factor in
the right-hand side is uniformly bounded for rz=1; we let ¢ be an upper bound
for it and 7 be an upper bound for p in the unit ball of C”, then p satisfies the esti-
mate (2.4).

Conversely, if p is of finite type with respect to the order g, then it follows from
(2.4), that every sequence {7;, p} with ;=1 is uniformly bounded above in every
compact subset of C". It can not tend to —< uniformly on every compact set, for
r—(#,p)(0) is an increasing function, and

(2.8) (M T,p)0) = 17¢(Myp)(0) = 17¢(M p)(0), 1= 1.

Hence {7;, p} has a subsequence converging in PSH (C").
(ii) The continuity of 7, implies that the limit set L _(p) is T invariant. It can
be written as an intersection of a decreasing sequence of compact connected sets

Le(p) = Mn=i{Tip; t = N}

Hence (i) gives that it is compact and connected. From (2.4) it follows that ¢(0)=0
for all g€L_(p) and the reverse inequality follows from (2.8).

For proving (2.7) we first observe that Proposition 2.1 implies that the right-
hand side defines a functionin PSH (C"). We obviously have h,=q forallg<L _ (p),
so we only need to prove that for every zcC", there exists g€L_(p) such that
g(@)=lim,. . (T p)(z). We let f;~+c and assume that lim;, .. 7;jp(z):
Iim,,, , .. (7; p)(z). By replacing {¢;} by a subsequence we may assume that 7;1 D
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gcL_(p). Then
@)= T @, = T\ @)

and the proof is complete.

Let fc(C") and set p=Ilog|f|. We say that fis of finite order if p is of
finite order. We define the order g, type o, and indicator function h, of fas g,, 5,
and h,, respectively. The function f'is said to be of finite type with respect to the
order g if p=log|f| satisfies (2.4). The function f'is said to be of exponential type
if it is of finite type with respect to the order 1, that is if there exist positive constans
C and ¢ such that

f(2)] = Ce®!, zeC™.

The problem of characterizing those subsets M of PSH (C") that are limit
sets of some plurisubharmonic functions was first studied by Azarin [1], Azarin
and Giner [2] and Sigurdsson [27, Section 1.2]. It was completely solved by Hor-
mander and Sigurdsson [11]. We will not state the result here but refer the reader
to [11].

If p is of finite type with respect to the order g, then its forward orbit can be
approximated by the forward orbit of a function of the form log | f|, where fis
an entire analytic function, in the following sense:

Theorem 2.4. Let pcPSH (C®) be of finite tvpe with respect to the order g.
Then there exists fc s (C") such that

Tp—Tloglf| -0 in 2'|(C") as t—~+oo.

See [27, Theorem 1.3.1]. The theorem shows that every subset M of PSH (C"),
which is the limit set at infinity M =1L _(p) of some pcPSH (C"), is the limit set at
infinity of a function of the form p=log|f] with f¢ &/ (C").

Theorem and Definition 2.5. Let pcPSH (C®) be of finite type with respect to
the order ¢ and let zeC", z5£0. Then the following conditions are equivalent:

(i) q(2)=h,(2) for all gcL..(p).
(ii) im lim (#,T;p)(2) = h,(2).

7>0¢t> 4 co

(iii) For every increasing sequence {t;} in R, with 1;~+e and t;4,/1;~1,
there exists a sequence {z;} in C" with z;—~z, such that

(T,p)(z;)) ~ h,(2) as j—+-<e.

(iv) There exists an increasing sequence {t;} in R, with 1,~+c and t;,,/1;-1,
and a sequence {z;} in C" with z;—~z, such that

(T, p)(z)) > h(2) as j—+e
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(v) If @cPSH (C") is of finite type with respect to the order g, then

hyio(2) = hy(2)+ hy(2).

We say that p is of regular growth in the direction of z, if these conditions hold. We
say that p is of regular growth in a subset X of C", if p is of regular growth in the direc-
tion of every w in X. We say that an analytic function f of finite type with respect to
the order g is of regular growth in the direction of z, or in the set X, if p=log|f| is
of regular growth in the direction of z, or in the set X.

Remark. (i) Since L_(p) is T invariant and h, is positively homogeneous of
degree g, it follows that p is of regular growth in R, z if p is of regular growth in the
direction of z. This implies that

Tt'p_’hp in g'([‘) as t -+

if p is of regular growth in the open set X and I' denotes the cone generated by X.

(i) In the classical litterature on entire functions of one variable the concept
of regular growth is defined differently. Translated into our notation the definition
is: A4 function pcPSH (C"), of finite type with respect to the order g, is said to be of
completely regular growth in the direction of zcC", z#0 if there exists a subset E
of R, such that
lim Tp(z) = hy(2) and lim MENO.9) _,

E

t I
¢

i

Functions of completely regular growth were first studied by Levin and Pfluger, see
Levin[14]. It is easy to see that if p is of completely regular growth in the direction
of z, then (iv) in Theorem 2.5 holds, so p is of regular growth in the direction of z.
On the other hand, S. Yu. Favorov has given an example of a function which is
of regular growth in C" but not of completely regular growth. See Ronkin [25] and
the references given there.

(iii) The condition (ii) in Theorem 2.5 was introduced by Lelong and Gru-
man [13] as a definition of regular growth. The condition (iv) is the notion of P-regular
growth introduced by Wiegerinck [28].

As an immediate consequence of Theorem 2.4 and Theorem 2.5 we get the
theorem of Favorov, see Ronkin [25]:

€orollary 2.6. Let fc. o4 (C") be of finite type with respect to the order ¢ and
let z¢C", z£0. Then fis of regular growth in the direction of z if and only if

hyy(2) = by (2)+hy(2),

Jor all g€ oA (C") of finite type with respect to the order g.
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Proof of Theorem 2.5. (i)=(ii). We observe that the Fatou lemma implies
,HTm (#,Tp)(2) = Tm (#,T,p)(2) = (H,h,)(2)

for all y=0, so
lim Lim (#,7,p)(2) = lim (#,h,)(2) = hy(2)-

y+0 t> + oo
Assume that inequality holds and choose ¢=0 such that

lim lm (#,T;p)(z) < hy(z)—e.

01>+ oo
Then there exists >0 and #;—~+< such that
(AT, p)(2) < hy(2)—e, j=1,2,3,....
By passing to a subsequence we may assume that 7;1 p—~qg€L_(p). Then

q9(z) = (M59)(2) = hy(2)—& < hy(2),
contradicting (i).

(i))=(ii). For any sequence {z;} in C” with z;—z, it follows from the mean
value property and the Fatou lemma that

Jm(Z,0)(2) = hy(2).
Hence it is sufficient to prove that there exists a sequence z;—~z such that

2.9) hy(2) = lim (T, p)(z;)-

J>+eo

By (ii) there exist sequences &—+0 and y,—-+0 such that
h(2)—¢g < :H-in (A, Tp)(z)= Lm (A, T, p)2).

Jotee
By induction we can choose ji<j,<j;=<...—~-+oo such that
hp(z)_sk = ("”ykT;Jp)(z) if ] >jk'
If j,=j<Ji+1, then there exists z; satisfying |z;—z|=y, such that
('/”’)'k]:jp)(z) = (].'tjp)(zj)'
With this choice of z; the inequality (2.9) holds.
(iii)=(iv). This is obvious.
(iv)=(). Assume that ij p—~q€L_(p), where t;—~+oo. By Proposition 2.2 (ii)

we have ¢(z)=h,(z), so we only need to prove h,(z)=¢(z). We take v; with Ty 1=
=<1, Then 7,/t;~1. For any y=>0 the function

PSH (C")XC*XR, -~ R, (f,w, 1) — (AT, )W)
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is continuous, S0
hy(z) = lim (T, p)(z,) = Jlim (A,T., (T, p)(z,) = (H,9)().

We let y—>+0 and get h,(z)=q(2).

()=(v). It is obvious that h,,,(w)=h,(w)+h,(w) for all weC". Let &>0.
By Proposition 2.2 (ii), there exists ¢,€L_ (¢) such that h (2)<g;(z)+e. If :’;jqo —~q
where t;—~ 4o, then we can pass to a subsequence and assume that ];j P—+qe€L_ (D).
Then go+q,€L_(p+¢) and (i) implies

hy(2)+h,(2) = go(2)+ g1 (2)+& = h,, ,(2)+e.

Since ¢ is arbitrary, (v) holds.

(v)=(@). We assume that (i) does not hold, that is g¢,(z)<h,(z) for some
q0€L_.(p), and prove that there exists @¢PSH (C"), of finite type with respect
to the order ¢, such that h,,,(z)<h,(z)+h,(z), contradicting (v). Since L_(p)
is T invariant we may assume {z|=1. The continuity of the mean value implies
that there exist y and 6 with O0<dé<y<1 and &>0 such that

(2.10) T w) = (M,T.q)(W) < hy(2)—elwl’,

for O<r<§, |w—z|<8, 1—y<t<1+y and q is in some neighborhood Uy of g,
in PSH (C"). We have T, P~ o for some #;—+<-. By passing to a subsequence we
may assume that T pE€ U0 for all j and that the balls B;={weC"; |w—t;z|=0dt;}
are disjoint.

Now we construct ¢. We let y€Cg(C?), 0=y =1, y({)=1 if [{|=1/2 and
Y()=0 if [{l=1, and then define W;cCy(B;) by ¥ (O=y(({—1;2)/t;0). If &
is sufficiently small, O<¢,<¢, then the function ¢ defined by

(2.11) P(©) = 1o +eldle 35050

is plurisubharmonic. In fact, the smallest eigenvalue of the Levi form of the func-
tion {—[{|® is ¢|¢{|*"? with c=min {g/2, ¢%/4} and the second order partial de-
rivatives of {—[{]¢ > y;({) are O(|¢le~?). Since supp y;CB; are disjoint, 0=
y;=1 and y;(t;))=1 if |{—z|=1/2, it follows that ¢ is of finite type with respect
to the order g, h,()=(1+¢)l® for all {€C" and h,(2)=(1+¢)|z[%

Now we take g, with O<g,<e¢,. Then Hartogs’ theorem implies that we can
choose 8, and T=0 such that

(2.12) (Tp)W) < hy(2)+e W% [w—2z| <6, t=>T.

We choose &, so small that 0<8;<6, (1+6,)(1—y)<(1—6) and (1—-3d;)(147y)>
(149). Then the inequalities

(2.13) [w—z] <&, and jtw—2z| <é imply (1—7y) <7< (1+9).
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In order to prove h,.,(2)<h,(z)+h,(2), we take weC" with |z—w|<6, and
t>T. Assume first that [tw—¢;z]<t;8 for some j. Then (2.13) gives 1—y<t/t;<
1+7v, and (2.10) implies

(2.14) L)W +T0)(w) = (T3, T, PYW)+(T:0) (W)
< h,(2)+ (1 +&—e)|w]e.
Assume now that |tw—t;z]=¢;6 for all j. Then (T;p)(w)=|w[®, so (2.12) gives
(2.15) TP)Y W)+ (T @) (W) < hy(2) +(1+25) W[
By combining (2.14) and (2.15) we get
hy1o(2) = Iim im (T, p) (W) +(T;0) (W) = hy(2) + b, (2)—min {e, — &, }.

Hence (v) does not hold, and the proof is complete.

3. Growth regularities of Fourier—Laplace transforms

Let puco/’(C") be carried by the compact convex subset K of C” and
let fic 2/(C") denote its Fourier—Laplace transform. Then 2 is of exponential
type. From now on we take p=1 in the definition (2.6) of T;. By (1.8) we have

T(og 1) = B L @D+l teC

which implies
q(0) = Hx(i{), q<L.(loglal), {cC"
By combining Theorem 2.4 and the PSlya—Ehrenpreis—Martineau theorem we get:
Theorem 3.1. Let pcPSH (C") be of finite type with respect to the order 1,
let K be a compact convex subset of C* and assume that
g(0) = He(i), q€L.(p), (€C
Then there exists an analytic functional u carried by K, such that

Tp—Tlogli| -0 in 2'(C") as t—+oo.

In the case when u is carried by some compact subset of R”, there is a theo-
rem of Martineau (see Hoérmander [10, Theorem 9.1.6]), which states that there
is a minimal carrier for p in R™. It is called the support of u and is denoted by supp p.
We let K=chsupp u denote the convex hull of supp u. Then Hg(i{)=Hg(Im{)
and it was proved in [27, Theorem 2.1.2] that

hy() = Hg(Im{), (€CR" = {tcC"; 1€C, ECR™).
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By the Cauchy inequalities, it follows that every distribution u€&’(R") defines
an analytic functional, u¢.s’(C®). From theorems of Beurling and Vauthier, it
follows that for almost every { in C" with respect to the Lebesgue measure, we have

J o ial(an +{/D—Hy(Im zm)]di(z) =0 as 1+,

if L is a compact subset of C and n¢R”. (See Hormander [10, Chapter 16].) This
implies :

Proposition 3.2. If uc&’(R"), then fi is of regular growth in CR" and hy({)=
Hy(Im {)=Hy(il) for {¢CR".

Let X be a convex subset of C" and assume that X C". For each z¢dX we
let Ny(z) denote the outward normal cone of 0X at z, that is

Ny (z2) = {{€C™; Re((w, {)) = Re((z,()) for all weX}
= {eC*; Hx({) = Re((Z, 1)}

The set Ny(z) is a closed convex cone in C". The tangent cone Ty(z) of X at z is
defined as the inverse dual cone of Ny(z),

Ty(z) = {weC"; Re((w,{)) =0 for all (€ Ny(2)}.

It is a closed convex cone in C" and Xc{z}+Tx(z) for all z<¢dX.
If XCR"cC", then Ny(x)=Nx(x)+iR", for all xcdX, where

NB(x) = {EeR; (3, &) = {x, &) for all yeX}.

We let ¥®(x) denote the subspace of R” generated by N¥(x). From Proposition 3.2
and the maximum principle we now get:

Proposition 3.3. Let uc&’(R") and let K=chsupp u. Then [i is of regular
growth in V& (x)+iN§(x) and hy(O)=Hx(Am)=H () for (cV&(x)+INR(x) and
x€0K, the boundary of K in R".

We state an interesting special case:

Proposition 3.4. Let K be a compact convex polyhedron in R* and let u be a

distribution with chsuppu=K. Then { is of regular growth in C" and hy({)=
Hy(Im {)=Hg(i0) for all {cC"

For a discussion of the last three propositions see [27, Section 3.1].
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4. Convolution equations in convex domains

In this section we give a relation between the growth regularities of the Fourier—
Laplace transform of y and the existence of solutions of u%u=f in convex sub-
sets of C".

Theorem 4.1. Let u be an analytic functional carried by the compact convex
subset K of C". Let X, and X, be open convex subsets of C" and assume that X;=
X,—K. Consider the following conditions:

(i) For every z€dX, and every (€N, (2), such that( lies in the relative bound-
ary of Ny (z)ntyin £;={{eC"; ‘zcEC} the complex line through { and 0,
the Fourier—Laplace transform fi of p is of regular growth in the direction
of ~il and hy(~il)=Hy(~0).

(i) The pair (X1, X;) is p-convex for carriers.

(iii) The convolution equation pxu=f has a solution uc.<f(Xy) for every
JE A (Xy).
(iv) For every { in the closure of Ny (z), where the union is taken over all dif-
Sferentiable boundary points z of :Yz, the Fourier—Laplace transform fi of
1 is of regular growth in the direction of —i{ and hy(—i0)=Hg(—{).
We have (1)=(ii) =(iii)=(iv).

It is clear that (i) and (iv) are the same condition if X, has a differentiable bound-
ary. If n=1, then every { in the boundary of N. x,(Z) in C, is the limit of a sequence
of outward normals at differentiable boundary points, so (i) and (iv) are equiv-
alent. We have seen in Section 3, that Fourier—Laplace transforms of distributions
are of regular growth in certain directions. As an immediate consequence of Proposi-
tion 3.3 we get:

Theorem 4.2, Let uc& (R") and set K=chsupp u. Let X, and X, be open
convex subsets of C" satisfying X,=X,—K. If (€C" and( lies in the relative bound-
ary of Ny (2)nty in ¢, for some z€9X,, implies —il€VR(x)+iNg(x) for some
x€0K, then the conditions in Theorem 4.1 hold.

Remark. The statement of the conditions (i) and (iv) is simply
q(—i0) = Hy(=0), g€L.(loglal).
For the proof of Theorem 4.1 we need:

Lemma 4.3. Let u be an analytic functional carried by the compact convex subset
K of C", let X, and X, be open convex subsets of C" and assume that X,=X,—K.
Let K, be a compact convex subset of X, and let M denote the closure in PSH (C") of
the union of all L_(log |8]), where ac o’ (C") and jixa is carried by K,. Then M is
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compact in PSH (C"), hA=sup,c,yq¢PSH (C*) and h is positively homogeneous of
degree 1. Moreover, there exists a compact subset L of X,, such that for every geM,
there exists pcL_(log |fi]) such that

“.1) qG) < Hy(O+Hy (=0 —p(=1), (€C™\{0}.

Proof. We set N={gc¢PSH (C"); q{0)=0, q(i{)=H, (), {eC’}. Thea N isa
compact subset of PSH (C") and L_(log |B))cN, if B¢ .;zi’(C") is carried by Kj:
Assume that B=jixa for some ac.#’(C", then log )& =log |B|—log |lil. Since
the forward orbits of the functions log )8, log |8} and log |fi| are relatively com-
pact, it follows that every g€L_(log|&|) can be written of the form

4.2) 90 = .(O-p(=0 LeC,

where ¢,€N and p€L_(log |4]). Since N and L_ (log ]4]) are compact it follows
that M is compact and that (4.2) holds for all gcM. Proposition 2.1 gives that
the function 4 is plurisubbarmonic in C*, and the T invariance of L_(log|&]) im-
plies that 4 is positively homogeneous of degree 1. Since X;=X,--K there exists
a compact convex subset L of X, such that K,cL—K. The supporting function
of L—-K is {—H ({)+Hg(—{), so (4.1) follows from (4.2). The proof is complete.

Proof of Theorem 4.1. (1)=(ii). Since X is convex it is sufficient to show that
the condition in Definition 1.1 holds for every compact convex subset K, of X;.
Let the function A€PSH (C") be chosen as in Lemma 4.3. It is sufficient to show
that for every weC™\{0}, there exists a compact convex subset L,, of X; and an
open conic neighborhood I, of w in C™\ {0} such that

43 k(i) = H, (0, (€L,

In fact, we then take a finite covering r,...r, of C™\{0} and set K,=
ch(L, v..uL,). If acs#’(C") and fixx is carried by K,, then he(iD)=h(il)=
H KS(C), {eC", which implies that « is carried by K,.

Assume first that sz(w)= +oo. We have Hy =sup H, where the supremum
is taken over all compact convex subsets L of X,, so there exists a compact subset
L, of X such that h(iw)<H, (w). Since h is upper semi-continuous, H,,_ is con-
tinuous and both 4 and H,  are homogeneous of degree 1, there exists an open
conic neighborhood I, of w such that (4.3) holds.

Assume now that Hy (w)< +eo. Then weNy (z) for some z€9X,. We let
d(Ny (z)nZ,,) denote the relative boundary of Ny, (z) ¢, in /¢, and let the com-
pact set L be chosen as in Lemma 4.3. From (i) (see the remark above) and (4.1)
we get

@4.4) h(0) = HL (), (€d(Ny, (2N l,)-
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Since L is a compact subset of X, and zc{z}—f-l;, (z), we can choose an open
convex cone G and a point 2’ in X,\L such that (‘5\{0} is contained in the in-
terior of Ty (2) and Lc{z'}+G. We now set L, =ch ({z’}vL). Then

T,.(2)\{0} € G = G\(0} C int Ty, (2),

which implies Ny, (z)\{0} is contained in the the interior of IV, Lw(z') and from (4.4) it
follows that

4.5) R =H. (), (€d(Nx,(2)n L)

We have H, ([)=Re ((7, ) for (€N, (2), so H,_ is pluriharmonic in a neigh-
Eorhood of NX’(z)\{O}. Furthermore, both & and H;  are positively homogene-
ous of degree 1. Hence the Phragmén—Lindelof principle implies that (4.3) holds for
{in Ny (z)nZ,. We replace L, by a larger compact convex subset of X, such that
strict inequality holds in (4.3) for (€(Ny (2)n7,)\{0}. Then the upper semi-
continuity and the homogeneity give that (4.3) even holds for some conic neigh-
borhood I, of w.

(ii)=(iii). This was already proved as Theorem 1.2 (ii).

(iii)=(iv). It is sufficient to prove the statement for COENX’(ZO), where it is
assumed that z, is a differentiable boundary point of X,, |{o|=1 and that there
exists a closed ball B(w,,r,) contained in X, such that B(wy, rj) NoX,={z,}.
In fact, every outward normal at a differentiable boundary point is the limit of
a sequence of outward normals at boundary points with this property and the
set {{€C"; q(—i))=Hy(~{) for all geL_(log|af)} is a closed cone. We have
Ze=wo+79{p and by replacing B(w,, 7,) by a smaller ball we may assume that
there exists y,>0 such that B(w,—7{, 7)) X, if 0<y<y,.

We assume that go(—iy)<Hg(—{,) for some g,€L_(log|Al]) and prove
that it implies that there exists a sequence «;€ .&/’(X,) such that f;=/ji*u;€ ' (X))
converges weakly to f¢o/’(X,), B=gi»a for some a€.’(C") but ais not carried
by any compact subset of X,. Then the image ji*(&’(X,) is not weakly closed in
&' (X;), and p*: o (X1)—~ 4 (X,) is not surjective, contradicting (iii). (See the proof
of Theorem 1.2.)

There exists a sequence #;—~+eco such that T (log |il)~¢,. Since go(—ilo)<
Hy(—{,) and Hy is continuous, there exist §,=>0 and g>=0 such that

(4.6) T;,(log 1A (—i) = Hx (= ~& Ll 1{—Lol < b,

holds for all sufficiently large j. By replacing #; by a subsequence we may assume that
the balls B;=B(t;{,, t;0,) are disjoint and that (4.6) holds for all j. If we com-
bine (1.8) with (4.6), then it follows that for every &=>0 there exists ¢, such that

4.7 log |A(=i)] = ¢, +ell|+Hx (=) —&lll S, 1,00, LeC,
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where x; denotes the characteristic function of the ball B;. Let ¥;cCy(B;) be
chosen as in the proof of Theorem 2.5, with {, in the role of z. We define the func-
tion ¢ by

(4.8) @ (D) = Re (= iw,, D)+ nlll+all] 27, ¥;3(0), LeCr,

where the positive constants g, and r; satisfy r,+&,=r, and O=<g=<g,. If g is
chosen sufficiently small then it follows as in the proof of Theorem 2.5, that
@€PSH (C") and ¢ is of finite type with respect to the order 1. By Theorem 3.1,
there exists o€ &#’(C") such that

4.9) To—Tlogld) -0 in 2'(C") as t—>+eo
The functional « is carried by the ball B(w,, r,), for
ha(i0) = hy (i) = Re ((Wo, )+ rolll = Hpug (), LEC™.

Furthermore, « is not carried by any compact subset of X,, for |{j]=1, zy=w,+
rolo€0X, and

hs(il,) = Re (g, Lop)+ 1o = Re((Z,, Lo)-
On the other hand, f=ji*a is carried by the compact convex subset K;=
B(wo, r)—K of X;. In fact, we have log|B|=log |fi|+log|4] and (4.9), so for

everv gcL_(log |B]) there exists 7;—~ oo such that 7:j(log Iﬁl+q>)—»q as j—-+eo.
We add (4.7) and (4.8) and use the fact that ¢ <¢g, and ¥,;=y;. Then

¢(if) = m Tm_(T,,(log |l +)(w)

= Re (W, )+ nlll+Hx (- ) = Hg, (§), (eC.

Now we set z;=—y;{,, where O<y;<y,, y;~0. Then the sequence aj=5zj*x
has the desired properties. The proof is complete.

Note added in proof. In a recent paper in Izvestija Akad. Navk SSSR 54:3
(1990), A. S. Krivoseev gave a necessary and sufficient condition for the existence of
solution of the inhomogeneous convolution equation. His results are thus stronger
than our Theorem 4.1.
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