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O. Introduction 

In this paper we study convolution equations of the form p,u=j; where 
#Eag'(C ") is an analytic functional and uqaC(X1), . f~d(Xz)  are analytic func- 
tions in open subsets X1 and X.o of  C". The convolution iz*u of  p and u is well 
defined by the formula (p.u)(z)~p(u(z- .)) and analytic in X2, if the sets X1 and 
X z satisfy X2-Rc, CX1, with K a carrier of  p and /(c,, its polynomial hull. There 
are two main problems that we will be concerned with. The first one is the existence 
problem: to give necessary and sufficient conditions for existence of  solutions 
uEaI(XI) of  g . u = f  for any fEd(X2). The second one is the approximation 
problem: to decide if  the space Eu, consisting of  all linear combinations of  exponential 
solutions of /~ . u = O  in C", is dense in the space N(XI, X,~) of  all solutions u< a/(X~) 
of  p , u = O  in X=. 

In Section 1 we introduce the concept of p-convexity for carriers of a pair 
(X~, X2) of  open subsets of  C n. We prove that /~.u---J has a solution u~(X1)  
for every fE~C(X2) and that E, is dense in N(X1, X2), if the pair (X 1, X2) is 
p-convex for carriers and X~ is a Runge domain. In the re~:t of the paper we study 
the case where X~, X2 and K are convex sets and X~=X2-K. We ~,ive a sufficient 
condition for p-convexity of  the pair (X1, X.2) and a necessary condition for existence 
of  solution uE ~r for every fE 5,'(X2), Both of these conditions involve growth 
regularities of  the Fourier--Laplace transform fi of  p in certain outward normal 
directions of  the boundary OX2 of X2. In some important cases these conditions 
are equivalent, for example if  63)( 2 is a differentiable manifold or n =  1. These are 
the main results of  the paper and they are stated and proved in Section 4. In Sec- 
tion 2 we make a quite long detour from the main subject of  the paper for studying 
growth properties of  plurisubharmonic functions pEPSH (C ~) of  finite type with 
respect to the order ~o>0. Our main tool for characterizing growth regularities 
o f p  is the limit set L ( p )  ofp .  It is defined as the set of  all qCPSH (Cn), such that 
T,~p-~q in L~jo~,~C"~, where t j ~ + o o  and (T,p)(z)=t-Qp(tz). We say that p is 
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of  regular growth in the direction of zEC", z~0,  if q(z)=hp(z) for all qEL..(p), 
where hp denotes the indicator function ofp.  For justifying this definition, we prove 
that it is equivalent to definitions given by other authors. In Section 3 we state 
a version of  our earlier result on asymptotic approximation of functions pC PSH (C") 
by functions of the form log I~l, where l~E ~r This result is of fundamental 
importance in our proof in Section 4. We also discuss some of our earlier results 
on growth regularities of Fourier--Laplace transforms of distributions. 

The study of  convolution equations is mainly concerned with generalizations 
of  results from the theory of partial differential equations. In fact, every partial 
differential operator P(O)=Z,a~O ~ with constant coefficients can be viewed as a 
convolution operator I t . ,  where ~ = Z  a~O~6o and 60 is the Dirac delta distribution 
at the origin. Equations of the type I t .u=f  with /~Eg'(R"), u in some subspace of 
9"(X1) , f in  some subspace of ~'(X2), X1 and X. open in R" and satisfying X~- 
supp ItcX1, were first studied by Ehrenpreis [4---5], H6rmander [6--8] and Mal- 
grange [15--16]. The literature is now quite extensive and we refer the reader to 
H/Srmander [10, Chapter 16]. 

It was Malgrange [15] who initiated the study of convolution equations in 
spaces of analytic functions of several variables. He proved, without any restriction 
on ItEzr that It*u=f has a solution uEd(C")  for every fE~r and 
that Eu is dense in N(C", C"). Martineau [18] proved that the analogous statements 
hold if  It is carrie d by the origin and C" is replaced by any open convex subset of 
C". Mor~hakov [20] was the first to study the case, where X1, X2 and K are convex 
and XI=X~-K. He proved the existence of a solution uE,~c(XI) of # . u = f  for 
any fE ~t(X2) and that Eu is dense in N(X~, X~) under the assumption that fi is 
of completely regular growth (in the sense of Levin [14]), and ho(i() =Hr( ( )  for all 
(EC", where Hr is the supporting function of K. Lelong and Gruman [13] and 
Mor~hakov [21] proved that 

lloglP(tOl~H~(i() in ~'(C") as t - ~ ,  
t 

is a sufficient condition for existence of solution, and in the case where X2 is bounded 
and has a differentiable boundary it is also necessary. A different type of sufficient 
condition has been given by Meril and Struppa [19]. The approximation problem 
has been studied by many authors. Krasi~kov--Ternovskii [12] proved, without 
any assumption on It, that E~ is dense in N(XI, X2) if X1 and X2 are convex sub- 
sets of C 1. Napalkov [22--24] has proved that Eu is dense in N(X1, X2) if X1 and 
X2 are convex tube domains in C". We refer the reader to the recent survey by Beren- 
stein and Struppa [3] for more information on these problems. 
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1. Convolution operators and p-convexity for carriers 

Let #E~r be an analytic functional. Then there exists a compact subset 
to of  C" and a positive constant Co, such that 

(1.1) 1~(4,)1 <= Co,sup 14,1, 4,~,r 
O, 

The analytic functional # is said to be carried by the compact subset K of C" if 
for every neighborhood r of K, there exists a positive constant Co, such that (1.1) 
holds. For 4,E ~r we define the convolution /1.4, of/~ and 4, by the formula 

(1.2) Ot*4,)(z) = It(~b(z-.)), zEC". 

By (1.1) it follows that /~*4,E~/(C") and the operator 

u*: ~ ( c " ) - ~ r  4 ,~ I~ .4 ,  

is continuous. The operator # .  commutes with all translations, that is for every 
translation operator Zn: o~r162 hEC", defined as (Zh4,)(z)=4,(z--h), we 
have # ,  (~h ~b) =- ~h(/a * tk). It is easily shown that for every continuous linear operator 
S: ~r162 which commutes with all translations, there exists a unique 
analytic functional/~ such that S 4 , = / t .  4, for all 4,E ~r This property allows 
us to define the convolution /z .  v of two analytic functionals/1 and v as the analytic 
functional corresponding to the operator 

d(c" )  --- ~ (c" ) ,  4, ~ , . ( ~ , . 4 , ) .  

We observe that #*v  is carried by K + L  i f / t  is carried by K and v is carried by L. 
If  Xis an open subset of C", It is carried by a compact subset K of C" with polynomial 
hull /~c- contained in X, then/1 can be extended to a continuous linear functional 
on ~r that is /~Ed'(X).  In fact, we can always choose a polynomially convex 
neighborhood of  to of  g'c- such that KclCc,,CtocX. Then there exists a positive 
constant C,o such that ( l , l )  holds. I f  ~bEsuc(X), then there exists a sequence q5 s in 
~r such that 4,s.--,tk uniformly on to. (See H6rmander [9, Theorems 2.7.4 and 
2.7.7].) From (1.1) it follows that {#(4,i)} is a Cauchy sequence. We denote its 
limit by p(4,). From (1.1) again it follows that/t(4,) is independent of the choice of 
the sequence {~bj} and 

(1.3) 1•(4')1 <-- Co,supl4,1, 4,E~J(X). 
O, 

Now we let X1 and X2 be open subsets of C ~ and we as.sume that 

(1.4) X2- / (c .  C X 1 . 
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For every z6aV2 and every CE~C(Xa), the function w~-~r is analytic in a 
neighborhood of /~c-, so ( /z.r  is well defined by the formula (/t , <b) (z) = 
p ( r  .)). From (1.3) it follows that i 1 - r162  and 

~ , :  ~+(xl)  -+ d ( x 0 ,  (~L~r = ~ ( r  z~x~,  

is a continuous linear operator. Its adjoint is a convolution operator between the 
dual spaces 

( ~ . ) '  = ~ . :  ~ ' ( x ~ )  - N ' (x1) ,  ,. ~ . , , ,  

where ~ denotes the analytic functional defined by /~(r162 and q~(z)=r  
for r E ~r (C"). 

Definition 1.1. Let X~ and Xz be open subsets of C" and let /z be an analytic 
functional carried by the compact subset K of C" satisfying X ~ - K c X ~ .  The pair 
(X~, X2) is said to be It-convex for carriers if  for every compact subset /s of  Xa 
there exists a compact subset K2 of  )(2 such that a is carried by /s if ~E ~r 
and /~. ~ is carried by K1. 

A solution u6~r of the homogeneous convolution equation p . u = O  in 
C" is called an exponential solution, if it can be written of the form 

u(z) - P(z)e i+'-'~>, z~C', 

where P i s  a polynomial, ~EC" and (z, ~)=~'zj~j .  We let E u denote the space of 
all linear combinations of  exponential solutions of the homogeneous equation. I f  
p is carried by K, the sets )(1 and 8"2 are open in C" and satisfy (1.4), then we let 
Nu(X1, X2) denote the space of all solutions of uC~g(X1) of the homogeneous 
equation p . u = 0  in X 2. 

Theorem 1.2. Let )(1 and Xz be open subsets oJ C" and assume that )(2 is a Runge 
domain. Let # be an analytic functional, carried by a compact subset K of  C" sati~J)'ing 
(1.4), and assume that the pair (/[1, X2) is tz-convex Jor carriers. Then: 

(i) The restrictions to X1 of  the elements in E~ are dense in Nu (X1, X2) in the 
topology induced by ~g (X1). 

(ii) The convohttion equation p + u = f  has a sohttion uE ~1 (XO Jor all J~ ~g (X.z). 
The proof of the theorem is based on the following two lemmas, which are 

due to Malgrange [15]: 

/_,emma 1.3. f l~r  satisfies f l ( r  =/or all r E u iJ and only i f  f l=~.c~ 
jor some ~ ~r 

Lemma 1.4. I f  ~j( g ' (C")  and fl~=~ *~j converges weakly to fl(~r then 
[l=~+~t for some a ~ ' ( C " ) .  
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Since these lemmas are well known, we do not prove them here. 1-he proof of 
Theorem 1.2 (ii) is a standard duality argument. In fact, it is only a modification of 
the proof of  Theorem 16.5.7 in H6rmander [t0]. Before we give the proof, we discuss 
the Fourier--Laplace transformation on d ' (C") .  

Let / tE~ ' (C") ,  then the Fourier--Laplace transform ~ ( C " )  is defined as 

(1.5) /~(~) = / ~ ( e x p ( - i ( . ,  ~))), ~.C". 

We observe that the euclidean inner product on C " = R  ~' is given by 

(1.6) Re((~,[))=(x,~')+{y,q), z=x+iy ,  [=~d-iq, x , y , ~ , t / ( R  n. 

If  L ts a subset of C', then its supporting function H L is defined as 

(1.7) HL(~) = sup Re ((_~, ~)), iCC". 
z ( L  

The function HL is lower semi-continuous and positively homogeneous of degree 1. 
I f  L is compact, then H L is continuous. If  # is carried by the compact subset K of 
C" and e>0,  then we take a~ as an e-neighborhood of K, and it follows from (1.3) 
that there exists a positive constant C, such that 

(1.8) 1/~(~)[ -<_- C~ exp (HK(i~)+e 1~1), ~ C " .  

Conversely, the P61ya--Ehrenpreis--Martineau theorem states (see HSrmander 
[9, Theorem 4.5.3]), that every f C ~ ( C " )  satisfying a growth estimate of the form 
(1.8) is the Fourier--Laplace transform f = ~  of some ~ s t ' ( C " )  carried by the 
convex hull of K. 

Proof of Theorem l.2. ( i )Le t  /~Ed'(X1) and assume that /?((p)=0 for all 
~bCE,. By the Hahn--Banach theorem it is sufficient to prove that /~(qb)=0 for all 
~P~Nu(X1, X2). By Lemma 1.3 we have /~=~.:~ for some ~C.~'(C"). Since (X1, Xz) 
is #-convex for carriers, e is carried by some compact subset of X.~. Since Xo is a 
Runge domain, it follows that :~ can be extended to a continuous lincar functional 
on ~(X2), that is ~C~"(X2). Hence 

/3(4,) = ( ~ . ~ ) @ )  - ~ ( I , ' 4 ~ )  = 0, q ~ L , ( x ~ ,  x2).  

(ii) In order to prove that the operator p . :  .c/(XO~::I(XO is surjective, it is 
sufficient to prove that its adjoint ~ . :  s#'(X2)~-~/'(XO is injective and that its 
image M = ~ , ( ~ ' ( X ~ ) )  is weakly closed in ~ ' ( X 0 .  (See Schaefer [26, Chapter IV, 
6.4].) The fact that ~ .  is injective follows by taking Fourier--Laplace transforms. 
In order to prove that M is weakly closed in ~ ' ( J ( 0  it is sufficient to show that M n U ~ 
is weakly closed for every neighborhood U of 0 in ~J'(X0, where U ~ denotes 
the polar set of U defined by U~ [fl(4~){=<l for all 4~c,U}. (See 
Schaefer [26, Chapter IV, 7.7].) Without any restriction we may assume that 
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U={~bEM(XI); C supK ~ lift ~ 1} for some compact subset/s of  ,'41 and a positive 
constant C. Then U ~ is the set of  all fie d ' (X1)  such that 

(i.9) I/~(r ~ Csup I~[, ~ 4 ( x 0 .  
K 1 

Thus every fl in U ~ is carried by/s Let fl~=/~*~iEU~ be a sequence con- 
verging weakly to fiC.~c'(Xa). From (1.9) it follows that fi is carried by /s By 
L e m m a l . 4  there exists a E ~ ' ( C ' )  such that f l=/~ .~ .  Since (X1, Xz) is #-con- 
vex for carriers and X2 is a Runge domain, it follows that aEd'(X2).  Hence f l= 
/~*aEU~ The proof  is complete. 

2. Growth properties of plurisubharmonic functions 

In this section we have collected definitions and basic properties of  those con- 
cepts that are used for characterizing growth of  plurisubharmonic and analytic 
functions in C". Mean values of  plurisubharmonic functions are very important 
in our proofs, so we begin by introducing a notation for them. We let X be an open 
subset o f  cn and let d(z, OX) denote the euclidean distance from zEX  to the 
boundary OX of  X. For  fEL~oc(X ) we let (d/ , f ) (z)  denote the mean value of  
the function f over the ball with center z and radius r, where O<r<d(z,  OX), 

1 
(.Al, f ) ( z )  -- f r 2" -.- f(w)d).(w) = f f (z+rw)dZ(w).  

Here d)~ denotes the Lebesgue measure in C" and o~2, denotes the volume of  the 
unit ball in C'. For  any r, the mean value is a continuous function L~oc(X ) X X ,+R,  
( f ,  z)~-,.(..4l, f ) (z) ,  where X,={wE X; d(w, OX)>r}. Moreover, the function 

L~or215215 -~ R, Or, z, r) ~ (Jt , . f )(z)  

is continuous. We let PSH (X) denote the set of all plnrisubharmonic functions 
not identically equal to -o~ in an), connected comFonent of  X. We have 

PSH (X) c L~or (X) c ~ ' (X).  

The topology of  L~or ) is defined by the semi-norms 

u ~ f K  luld), K c X, K compact, 

and the weak topology of  ~ ' ( X )  is defined by the senti-norms 

u ~ / u ,  4,)I, ~ c ~ ( x ) .  

It turns out that these two topologies are identical on PSH (X). Moreover, PSH (X) 
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is a closed convex cone, thus a complete metrizable space. We always refer to this 
topology when we discuss topological properties of  PSH (X). 

Let M c P S H  (X) and assume that the functions in M have a uniform upper 
bound on any compact subset of  X, that is, for every compact K c X  there exists a 
constant CK such that 

(2.1) q(z) ~ CK, q~M, zEK. 

In general the function supM q is not upper semi-continuous, thus not plurisub- 
harmonic. On the other hand, its upper regularization (supra q)*, defined as the 
least upper semi-continuous majorant of supM q, is plurisubharmonic. If  M is 
bounded in PSH (X), then the functions in M have a uniform upper bound on 
any compact subset of  X. In fact, if  K c X  is compact and O<r<d(K, OX), then 

q(z) <: < : - - 1  f Iqld)., zs qEm, 
(.02n r 2n K r 

where K, denotes the set of  all points in X of  distance <=r from K. Since M is 
bounded in PSH (X), the integral is uniformly bounded for qEM, and it follows 
that (2.1) holds for some constant CK. Later on the case when M is compact will be 
important:  

Proposition 2.1. Let X be an open subset of  C" and let M be a compact subset of  
PSH (X). Then supM qEPSH (X). 

Proof. Set p=supqEM q. We only need to prove that p is upper semi-contin- 
uous. Let zoEX, aER and assume that p(zo)<a. We have to prove that there 
exists a neighborhood V of  z 0 such that 

(2.2) p(z) < a, zEV. 

We choose e > 0  such that p(Zo)<a-e. If  qo~M and r0 is chosen sufficiently 
small, then 

qo(Zo) <= (J/l,oqo)(Zo) < a--e. 

Since the function L~oc(J()XZ, o~R , ( f ,  z)~-(~l, of)(z) is continuous, there exists 
an open neighborhood U 0 of  q0 in PSH (X) and an open neighborhood V0 of  z 0 
such that 

( ~ o q ) ( z ) < a - e ,  qCUo, zEVo. 

The mean value property implies 

(2.3) q ( z ) < a - t ,  qEDo, zEV0. 

Since qo is arbitrary and M is compact, there exists a finite covering U1 . . . . .  UN 
of  M and open neighborhoods V~ . . . . .  V~ of z 0 such that (2.3) holds for all qE Uj 
and zE~.  I f  we set V =  nVj,  then (2.2) holds and the proof  is complete. 
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Assume now that X is connected. Then the set PSH (X) has a certain Montel 
property. I f  M = P S H  (X) and the functions in M have a uniform upper bound 
on any compact subset of  X, then every sequence {q j} in M satisfies one of  the fol- 
lowing conditions : 

(i) {q J} has a subsequence which is convergent in PSH (X). 
(ii) q j ~ - o o  uniformly in every compact subset o f  X. 
I f  no sequence in M satisfies (ii), then M is relatively compact. All our un- 

proved statements so far in this section are contained in Theorems 4.1.8 and 4.1.9 
in H6rmander [10]. See also Lelong and Gruman [13, Chapter 1 and Appendix I]. 

Let us now turn to the growth characteristics of  plurisubharmonic functions 
in C". A function pEPSH (C") is said to be of finite order if  there exist positive 
real numbers -c, tr and 0 such that 

(2.4) p(z) <- ~+a[z[  Q, zEC". 

The order Op o f p  is defined as the infimum over all 0, for which (2.4) holds for some 
and or. For  a given 0 > 0  we say that p is of finite type with respect to the order Q 

i f  (2.4) holds for some z and a. I f p  is of  finite type with respect to the order 0p then 
we define its type crp as the infimum over all ~ such that (2.4) holds with some z 
and 0 = ~op. I fp  is of  finite type with respect to the order 0 then we define its indicator 
function hp (with respect W the order O) as the least upper semi-continuous ma- 
jorant of  

(2.5) C"3z ~ ~ -~ p(tz). 
t ~ + ~  t 

The function h~, is in PSH (C") and it is positively homogeneous of  degree Q. In 
order to study growth regularities of  functions of  finite type with respect to the 
order ~ it is natural to introduce the group {Tt}t> 0 of  mappings defined by 

(2.6) Tt: PSH(C") --* PSH(C"), (T,q)(z) = l q ( t z ) ,  zEC". 

This is an example of  a continuous dynamical system or a flow �9 on a metric space A, 
that is, a continuous mapping 

�9 : AXR+ ~ A 

satisfying ~ ( ~ ( p , s ) ,  t)--~O(p, st) and q~(p, 1)=p for all pEA and s, tER+ = 
{v>-0}. We view �9 as a one parameter family of  continuous mappings and write 
~tP instead of  ~(p,  t). The set {q~tP; t->l} is called the forward orbit o f p  and 
the set {~tP; 0<t--<l} is called the backward orbit o fp .  The set of  all qEA that 
are limits of  sequences of the form {~rjP}, where t j - -+oo  is called the limit set o f  
p at infinity and it is denoted by L ( p ) .  The set of all qEA that are limits of  se- 
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quences of the form {cbtjp}, where t j ~ 0  is called the limit set o fp  at the origin 
and it is denoted by L0(p). From the continuity of cb it follows that the sets L=(p) 
and L0(p) are ~ invariant, that is 

q~,L=(p) = L=(p) and q~,L~(p) = L0(p), t > 0. 

The most basic properties of the one parameter family T={Tt}t> 0 are: 

Proposition 2.2. Let pE PSH (C"). Then 
(i) p is of  finite type with respect to the order Q i f  and only i f  the.forward orbit 

{Ttp; t->l} of  p in PSH (C") is relatively compact. 
(ii) I f  p is o f  finite type with respect to the order O, then L~(p) is T invariant, 

compact, connected and q(0)=0 for all qE L=(p). We also have 

(2.7) hp(z) = sup {q(z); qEL=(p)}, z~C". 

Proof. (i) Assume that {Ttp; t=>l} is relatively compact and let eE(0, 1). I f  
zEC" and t=lzl=>l, then the mean value property implies 

p(z) <= (Jg~,p)(z) = F(Jg ytp)(z/,z[) ~: ( ~  f [Tip[ el2)[z[ 0. 

The forward orbit of p is relatively compact in PSH (C"), so the first factor in 
the right-hand side is uniformly bounded for t =  >1 ;  we let a be an upper bound 
for it and z be an upper bound for p in the unit ball of C", then p satisfies the esti- 
mate (2.4). 

Conversely, i fp  is of finite type with respect to the order 0, then it follows from 
(2.4), that every sequence {Trip} with t j ~ l  is uniformly bounded above in every 
compact subset of C ~. It can not tend to _o~ uniformly on every compact set, for 
r~-+(d/,p)(O) is an increasing function, and 

(2.8) (Jt'~Ttp)(0) = t-~(,/l~tp)(O) >= t-%//~p)(O), t >= 1. 

Hence {Ttjp} has a subsequence converging in PSH (cn). 
(ii) The continuity of Tt implies that the limit set L (p) is T invariant. It can 

be written as an intersection of a decreasing sequence of compact connected sets 

E=(p) = ~N=>I{Ttp; t => U}. 

Hence (i) gives that it is compact and connected. From (2.4) it follows that q(0)~0 
for all qEL~(p) and the reverse inequality follows from (2.8). 

For proving (2.7) we first observe that Proposition 2.1 implies that the right- 
hand side defines a function in PSH (C"). We obviously have hv>= q for all qEL~(p), 
so we only need to prove that for every z~C", there exists qEL~(p) such that 
q(z)>=lI'~to+=(Ttp)(z). We let t j ~ + ~  and assume that l imj~+=Ttjp(z)= 
]-~t~+= (TtP)(Z). By replacing {tj.} by a subsequence we may assume that Ttjp-- 
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qEL_(p). Then 
q(z) >-- ~ (Tt jp)(z)= lI~+m (Ttp)(z) 

and the proof is complete. 
Let fE~r ") and set p--log ]f[. We say that f i s  of finite order i f p  is of 

finite order. We define the order Oy, type a~c and indicator function hat of f as Op, trp 
and hp, respectively. The function f is said to be of finite type with respect to the 
order O if p= log  [f[ satisfies (2.4). The functionfis  said to be of exponential type 
if it is of finite type with respect to the order 1, that is if there exist positive constans 
C and ~r such that 

If(z)l -<- Ce ~ zEC". 

The problem of characterizing those subsets M of PSH (C") that are limit 
sets of some plurisubharmonic functions was first studied by Azarin [1], Azarin 
and Giner [2] and Sigurdsson [27, Section 1.2]. It was completely solved by H6r- 
mander and Sigurdsson [11]. We will not state the result here but refer the reader 
to Ill] .  

If p is of  finite type with respect to the order 0, then its forward orbit can be 
approximated by the forward orbit of a function of the form log [f[, where f is 
an entire analytic function, in the following sense: 

Theorem 2.4. Let  pEPSH (C ") be o f  finite O'pe with respect to the order O~ 
Then there exists fE ~r ") such that 

T e p - T ~ l o g i f l ~ 0  in ~'[(C") as t - -+oo .  

See [27, Theorem 1.3.1]. The theorem shows that every subset M of PSH (Cn), 
which is the limit set at infinity M =  L (p) of some pE PSH (C"), is the limit set at 
infinity of a function of the form p=log If[ with fE~r 

Theorem and Definition 2.5. Let  pEPSH (C n) be o f  finite type with respect to 
the order o~ and let zEC ", z~O. Then the following conditions are equivalent: 

(i) q(z)=hp(z)  for all qE L~(p).  

(ii) lim 1_~ (.llyT, p ) ( z ) =  hp(z). 
7~0 t ~ + o o  

(iii) For every increasing sequence {~j} in R+ ~lqth % ~ q - ~  and Zi+l/Zj-~l, 
there exists a sequence {zj} in C" with zj-~z, such that 

(T~jp)(zj) -~ hp(z) as j ~ + ~. 

(iv) There exists an increasing sequence {zi} in R+ with z i ~ + ~  and Tj+~/zj-*l, 
and a sequence {z~} in C" with z i ~z ,  such that 

(T~jp)(zj) ~ h,(z)  as j -~ + oo. 
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(v) I f  q~EPSH (C") is o f  finite type with respect to the order Q, then 

ha'+~(z) = ha'(z)+ h~(z). 

We say that p is of  regular growth in the direction o f  z, i f  these conditions hold. We 
say that p is o f  regular growth in a subset J( o f  C n, i f  p is o f  regular growth in the direc- 
tion of  every w in X. We say that an analytic function f o f  finite type with respect to 
the order Q is o f  regular growth in the direction o f  z, or in the set X, i f  p=log If[ is 
o f  regular growth in the direction o f  z, or in the set X. 

Remark. (i) Since L , (p )  is T invariant and h a, is positively homogeneous of 
degree Q, it follows that p is of regular growth in R+ z i fp is of regular growth in the 
direction of z. This implies that 

Tip ~ h p  in ~ ' ( r )  as t - * + ~  

if p is of regular growth in the open set X and F denotes the cone generated by X. 
(ii) In the classicaI litterature on entire functions of one variable the concept 

of regular growth is defined differently. Translated into our notation the definition 
is: A function pEPSH (C"), of  finite type with respect to the order Q, is said to be o f  
completely regular growth in the direction of  zEC", z#O i f  there exists a subset E 
of  R+ such that 

lim Tip(z) = ha'(z) and lim 2(En(0,  t)). = 0. 
tee 

Functions of completely regular growth were first studied by Levin and Pttuger, see 
Levin [14]. It is easy to see that i fp  is of completely regular growth in the direction 
of z, then (iv) in Theorem 2.5 holds, so p is of regular growth in the direction of z. 
On the other hand, S. Yu. Favorov has given an example of a function which is 
of regular growth in C" but not of completely regular growth. See Ronkin [25] and 
the references given there. 

(iii) The condition (ii) in Theorem 2.5 was introduced by Lelong and Gru- 
man [13] as a definition of regular growth. The condition (iv) is the notion of P-regular 
growth introduced by Wiegerinek [28]. 

As an immediate consequence of Theorem 2.4 and Theorem 2.5 we get the 
theorem of Favorov, see Ronkin [25]: 

Corollary 2.6. Let fE~r be o f  finite type with respect to the order Q and 
let zEC n, z#O. Then f is o f  regular growth in the direction o f  z i f  and only i f  

hsg (z) = h s (z) + h, (z), 

for all gE~r n) of  finite type with respect to the order Q. 
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Proof o f  Theorem 2.5. (i)=~(ii). We observe that the Fatou lemma implies 

(~tTT , I ~  (.gTT~p)(z) <= (~'Thp)(z) lira p) (z) _<- , -  +** 
l -*-{-  oo 

for all ?>0 ,  so 

lira lira (~r <= ~!m (.llThp)(Z) = hp(z). 
7 " 0  t-* + ~ 

Assume that inequality holds and choose e > 0  such that 

lim lira ( .g~T,p)(z)< h , ( z ) - e .  

Then there exists 6 > 0  and tj-~+o~ such that 

(..r162 <: hp(z) -e ,  j = 1, 2, 3 . . . . .  

By passing to a subsequence we may assume that Ttjp-*qCL.~(p). Then 

q(z) <= (Jg6q)(z) ~ hp(z) -e  < hp(z), 
contradicting (i). 

(ii)=~(iii). For  any sequence {zj} in C n with z j~z ,  it follows from the mean 
value property and the Fatou lemma that 

1~+~ (T~ p)(z j) < h (z) 
j ~  J = p �9 

Hence it is sufficient to prove that there exists a sequence zj-+z such that 

(2.9) hp(z) <= lira (T~jp)(zj). 
j ~ + ~  

By (ii) there exist sequences ek'-* +0 and ?k-* + 0  such that 

hl ,(Z)-e ~ < m .  (~T T, p)(z) <= lim ( ~  T~jp)(z). 
t ~ + ~  j ~ + ~  

By induction we can choose A < j 2 < J 3 <  . . . .  +oo such that 

hp(z)--ek < (Jlr~T~,p)(z) if j > A .  

I f  jk<--j<jk+~, then there exists zj satisfying Izj-zl<-~k such that 

("/r ~ p)(z) < (r~p)(zj) 

With this choice of  zj the inequality (2.9) holds. 
(iii)=~(iv). This is obvious. 
(iv)~(i). Assume that Tt~p~qEL.~(p ), where t j~  +oo. By Proposition 2.2 (ii) 

we have q(z)~_hp(z), so we only need to prove hp(z)<=q(z). We take vj with %~_~_ 
tj-<Tv. Then ~vj/tj--~l. For any ? > 0  the function 

P S H ( C " ) X C " •  ~ R, ~ w, t) ~-~(.grTtf)(w) 
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is continuous, so 

= lim (.t[~T~v/t~(Ttjp))(zvj) = (Jr q)(z). hp(z) = J-+~lim (T, vjp)(zvl ) "~ j.+.o 

We let ? - ~ + 0  and get hp(z)~=q(z). 
(i)~(v). It is obvious that hp+,(w)<=hp(w)+h,(w) for all w6C n. Let e>0.  

By Proposition 2.2 (ii), there exists qxEL~(q~) such that h,(z)<ql(z)+5. I f  Tt/p-~ql 
where tj-~ +~ ,  then we can pass to a subsequence and assume that T, jp-~qo~Lo~(p). 
Then qo+qlCL~(p+~p) and (i) implies 

hp(z)+h,(z) <-_ qo(z)+q,(z)+5 <= hp+,(z)+e. 

Since e is arbitrary, (v) holds. 
(v)~(i). We assume that (i) does not  hold, that is qo(z)<hp(z) for some 

q0~L~(p), and prove that there exists cp~PSH (Cn), of finite type with respect 
to the order Q, such that hp+,(z)<hp(z)+h,(z), contradicting (v). Since L.o(p) 
is T invariant we may assume lzl = 1. The continuity of the mean value implies 
that there exist ~ and 6 with 0 < 6 < ~ < 1  and 5>0 such that 

(2.10) (T~q)(w) <= (dC, T~q)fw) < hp(z)-elwl Q, 

for 0 < r < 6 ,  I w - z l < &  1 - 7 < z < 1 + 7  and q is in some neighborhood U0 of  qo 
in PSH (C"). We have Tt~ p ~q0 for some tj ~ +~ .  By passing to a subsequence we 
may assume that Ttjp~U o for all j and that the balls Bj={w~C"; Iw-tjzl<=6tj) 
are disjoint. 

Now we construct ~p. We let ~bECo(C"), 0_-<ff<-l, r  if  1~1<=1/2 and 
if(if)---0 if  1~1_->1, and then define ~/jECo(Bj) by tpj(()--~(((-tjz)/tj6).  I f  el 
is sufficiently small, 0<51<5, then the function ~0 defined by 

(2.11) qg(~) = 1~1~+511ffl o z ~ f ~  Cj(ff) 

is plurisubharmonic. In fact, the smallest eigenvalue of the Levi form of the func- 
tion (~lffl Q is cl~l ~-~ with c--rain {0/2, e2/4} and the second order partial de- 
rivatives of  ~ l ~ l O z ~ j ( ~ )  are O(1~1~-'~). Since supp~pjcBj are disjoint, 0_- < 
~pj<=l and ip~(t~)=l  i f  Ig--zl~l /2 ,  it follows that q9 is of finite type with respect 
to the order Q, h,(~)<=(l+el)[~l ~ for all ~EC ~ and h,(z)=(l+el)lZt ~. 

Now we take 52 with 0<52<e~. Then Hartogs' theorem implies that we can 
choose 6 x and T > 0  such that 

(2.12) (Ttp)(w) < hp(z)+521wl ~, Iw-zl  < 31, t > T. 

We choose 6~ so small that 0<6~<6,  (1 + ~ ) ( 1 - - ~ ) < ( 1 - 3 )  and ( 1 - 6 1 ) ( 1 + y ) >  
(1 + J). Then the inequalities 

(2.13) Iw-z l  < ~ and Ixw-zl  < 6 imply ( I - v )  < z < (1+~). 
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In order to prove hp+~(z)<hp(z)+h~(z), we take wEC" with Iz-w[<6~ and 
t>T.  Assume first that [tw-tjzl<tj6 for somej .  Then (2.13) gives 1 - ~ < t / t j <  
1 +V, and (2.10) implies 

(2.14) 

Assume now that 

(2.15) 

By combining (2.14) and (2.15) we get 

h o + ~ (z) =< ~ I ~  (Tip) (w) + (Tt q~) (w) _~ h o (z) + h~ (z) - rain {e~ - ca, e}. 
W ~ Z  t ~  

Hence (v) does not hold, and the proof is complete. 

(T,p)(w) + T,~o)(w) = (T,/,, T,,p)(w) + (T,~)fw) 

< h~,(z)+(1 +~x-~)lwl Q. 

Itw-tyzl~=ta6 for all.L Then (T~0)(w)=lwl ~, so (2.12) gives 

(Ttp)(w)+(Ttq~)(w) < ho(z)+(1 +ez)Iwl ~ 

3. Growth regularities of Fourier--Laplace transforms 

Let / tEd ' (C")  be carried by the compact convex subset K of  C" and 
let /~E~(C") denote its Fourier--Laplace transform. Then /~ is of  exponential 
type. From now on we take Q= 1 in the definition (2.6) of  Tt. By (1.8) we have 

T~(log I/~l)(ff) -<- logC~ ~-HK(i~)+el~I, ~EC", 
t 

which implies 
q(~) <= ng(ig), qEL..(logl/il), ffEC". 

By combining Theorem 2.4 and the P61ya--Ehrenpreis--Martineau theorem we get: 

Theorem 3.1. Let pEPSH (C ") be o f  finite type with respect to the order 1, 
let K be a compact convex subset o f  C" and assume that 

q(~) <-- H~(i~), qEL..(p), ~EC". 

Then there exists an analytic functional It carried by K, such that 

T,p--T t log [/21 ~ 0 in ~'(C")  as t -- + oo. 

In the case when It is carried by some compact subset of  R", there is a theo- 
rem of  Martineau (see H6rmander [10, Theorem 9.1.6]), which states that there 
is a minimal carrier for It in R". It is called the support o f #  and is denoted by supp/~. 
We let K = c h  supp It denote the convex hull of  supp It. Then Hx(i~)=Hx(Im 0 
and it was proved in [27, Theorem 2.1.2] that 

ha(~) = HK(Im~), ~ECR" = {z~EC"; xEC, ~ER"}. 



Convolution equations in domains of C" 299 

By the Cauchy inequalities, it follows that every distribution pEg'(R") defines 
an analytic functional, pE~g'(Cn). From theorems of  Beurling and Vauthier, it 
follows that for almost every ( in C" with respect to the Lebesgue measure, we have 

f r  [T,(log ]~])(zq+Ut)-H~(Im zq)ld2(z) -- 0 as t -~ + ~, 

i f  L is a compact subset of  C and r/ER n. (See H6rmander [I0, Chapter 16].) This 
implies : 

Proposition 3.2. I f  #Eg'(R"), then ~ is of  regular growth in CR" and h a ( 0 =  
HK(Im0=HK(i~)  for ~ECR". 

Let X be a convex subset of  C" and assume that X # C  n. For each zEOX we 
let N x (z) denote the outward normal cone of 0X at z, that is 

Nx(z) = {~EC"; Re((k ,  ~)) <= Re((~, ~)) for all wEX} 

= {(EC"; Hx(() = Re((2, ())}. 

The set Nx (z) is a closed convex cone in C". The tangent cone T x (z) of OX at z is 
defined as the inverse dual cone of  Nx(z), 

Tx(z) = {wEe"; Re((~,  ~)) <_- 0 for all ~ENx(z)}. 

It is a closed convex cone in C" and Xc{z}+Tx(z)  for all zEOX. 
If  X c R " c C  n, then Nx(x)=Nnx(x)+iR ", for all xEOX, where 

NRx(x) --- {~ER"; (y, ~) _--< (x, ~) for all yEX}. 

We let vxl~(x) denote the subspace of  R" generated by NR(x). From Proposition 3.2 
and the maximum principle we now get: 

Proposition 3.3. Let ItEg'(R") and let K = c h  supp p. Then fi is of  regular 
growth in VxR(x)+iN~(x) and ha(~)=HK(Im~)=Hx(i~) for ~EvKR(x)+iNR(x) and 
x~OK, the boundary of  K in R ~. 

We state an interesting special case: 

Proposition 3.4. Let K be a compact convex polyhedron in R ~ and let it be a 
distribution with ch supp u=K. Then ~ is of  regular growth in C" and h a ( 0 =  
HK(Im 0----Hx(i() for all ~EC". 

For a discussion of  the last three propositions see [27, Section 3.1]. 
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4. Convolution equations in convex domains 

In this section we give a relation between the growth regularities of  the Fourier--  
Laplace transform of/~ and the existence of  solutions of  # . u = f  in convex sub- 
sets of C". 

Theorem 4.1. Let It be an analytic functional carried by the compact convex 
subset K of  C ~. Let Xz and X2 be open convex subsets o f  C n and assume that X~ = 
X 2 -K .  Consider the following conditions: 

(i) For every zEOXz and every ~ENx,(Z ), such that ~ lies in the relative bound- 
al T of  Nx,(Z)C~f ~ in fr zEC} the complex line through ~ and O, 
the Fourier--Laplace transform ~ of  p is o f  regular growth fl~ the direction 
of -i~ and h~(-i~)=HK(-~).  

(ii) The pair (X1, Xz) is p-convex for carriers. 
(iii) The convolution equation I t . u = f  has a solution #EJ(X1)  for every 

fE ~ (X2). 
(iv) For every ~ in the closure of ~Nx.(Z ), where the union is taken over all dif- 

ferentiable boundary points z o f  Xz, the Fourier--Laplace transform ft o f  
It is o f  regular growth in the direction of  - i~  and h~(- i~)=HK(-~ ). 

We have (i)=~(ii)=*(iii):~(iv). 

It is clear that (i) and (iv) are the same condition if  X2 has a differentiable bound- 
ary. I f  n = l ,  then every ~ in the boundary of Nx,(Z) in C, is the limit of a sequence 
of  outward normals at differentiable boundary points, so (i) and (iv) are equiv- 
alent. We have seen in Section 3, that Fourier--Laplace transforms of distributions 
are of  regular growth in certain directions. As an immediate consequence of Proposi- 
tion 3.3 we get: 

Theorem 4.2. Let ItEo~'(R ") and set K = c h  supp It. Let Xz and Xz be open 
convex subsets o f  C" satisfying X I = X z - K .  I f  ( E C ~ and ~ lies in the relative bound- 
ary of  Nx~(Z)C~f ~ in e~for some z~OX~, implies - i (EV~(x )+iN~(x )  for some 
xEOK, then the conditions in Theorem 4.1 hold. 

Remark. The statement of  the conditions (i) and (iv) is simply 

q ( - i ( )  = HK(--(), qEt~(loglt11). 

For the proof of  Theorem 4.1 we need: 

Lemma 4.3. Let 11 be an analytic functional carried by the compact convex subset 
K of  C ~, let Xa and X2 be open convex subsets of  C ~ and assume that Xz = X 2 -  K. 
Let Kz be a compact convex subset o f  Xz and let M denote the closure in PSH (C ~) of  
the union of  all L (log I&l), where 0~E~r and [t,o~ is carried by KI. Then M is 
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compact in PSH (C~), h=supqcuqEPSH (C ~) and h is positively homogeneous of 
degree 1. Moreover, there exists a compact subset L of  Xz, such that for every qE M, 
there exists pE L..Oog I~1) such that 

(4.1) q(i~) < H,.(~)+HK(-~)-p(-i~), ~EC~,,{0}. 

Proof. We set N={qEPSH (C"); q(0)=0, q(i~)<=H~q(~), ~EC"}. Then N is a 
compact subset of PSH (C") and L (log Jl~I)~N, if flE~ar is carried by Kl: 
Assume that f l=/~.~ for some aE~r then log l~l=logl/]l-logl/]l.  Since 
the forward orbits of the functions log ]al, log I/]l and log I~1 are relatively com- 
pact, it follows that every qEL_(log I~1) can be written of the form 

(4.2) q(~) = ql(~)-P(-~) ~EC", 

where q~EN and pEL.~(log 1/~1). Since N and L:,(log I#]) are compact it follows 
that M is compact and that (4.2) holds for all qEM. Proposition 2.1 gives that 
the function h is plurisubharmonic in C", and the T invariance of L..(log lal) im- 
plies that h is positively homogeneous of degree 1. Since Xt=X~-K there exists 
a compact convex subset L of X2 such that K1cL-K .  The supporting function 
of L - K  is ~-~Hz(~)+Hx(-~) , so (4.1) follows from (4.2). The proof is complete. 

Proof of  Theorem 4.1. (i)~(ii). Since X~ is convex it is sufficient to show that 
the condition in Definition 1.1 holds for every compact convex subset Kt of X~. 
Let the function hEPSH (C") be chosen as in Lemma 4.3. It is sufficient to show 
that for every wEC",.{0}, there exists a compact convex subset Lw of X~ and an 
open conic neighborhood F,, of w in C"\{0} such that 

(4.3) h(iD ~- HLw(~), ~ r , .  

In fact, we then take a finite covering r~,, .... l'w~ of C',,.(0} and set K~= 
ch(L~lW...uLw). If aE~r and /~,~ is carried by Ka, then h~(i~)~_h(i~)~= 
H~,(~), ~EC", which implies that c~ is carried by K.~. 

Assume first that Hx,(W)= +~. We have Hx, =sup HL, where the supremum 
is taken over all compact convex subsets L of X2, so there exists a compact subset 
L~ of X~ such that h(i~)<HL(w ). Since h is upper semi-continuous, Hz, ~ is con- 
tinuous and both h and Hz~ are homogeneous of degree I, there exists an open 
conic neighborhood F~ of w such that (4.3) holds. 

Assume now that Hx,(w)<+~,. Then wENx,(Z ) for some zEOX~. We let 
O(Nx,(Z)nd,~ ) denote the relative boundary of  Nx,(Z)C~dw in d~ and let the com- 
pact set L be chosen as in Lemma 4.3. From (i) (see the remark above) and (4.1) 
we get 

(4.4) h(i~) ~ HL(~) , ~EO(Nx~(Z)t~[w). 



302 Ragnar Sigurdsson 

Since L is a compact subset of X2 and X2c{z}+Tx.(z), we can choose an open 
convex cone G and a point z' in X~\L such that b~x,,{0} is contained in the in- 
terior of Tx,(Z ) and L~{z'}+G. We now set Lw=ch ({z'}wL). Then 

TLw(Z')\{O } C G c G\{0} c intTx~(Z), 

which implies Nx,(Z)\{O } is contained in the the interior Of NLw(Z') and from (4.4)it 
follows that 

(4.5) h(i~) <= HLw(~), ~EO(Nx,(Z ) ca !,~). 

We have HL,,(~)=Re ((z', ~)) for ~ENLw(Z'), so HLw is pluriharmonic in a neigh- 
borhood of  Nx,(Z)\{O }. Furthermore, both h and HLw are positively homogene- 
ous of  degree 1. Hence the Phragm6n--Lindelffprinciple implies that (4.3)holds for 

in Nx,(Z)cad w. We replace Lw by a larger compact convex subset of )(2 such that 
strict inequality holds in (4.3) for ~E(Nx,(Z)ndw)\{O }. Then the upper semi- 
continuity and the homogeneity give that (4.3) even holds for some conic neigh- 
borhood Fw of w. 

(ii)=*(iii). This was already proved as Theorem 1.2 (ii). 
(iii)=,(iv). It is sufficient to prove the statement for ~oENx,(Zo), where it is 

assumed that z0 is a differentiable boundary point of X2, IC01 =1 and that there 
exists a closed ball B(wo, ro) contained in X2 such that B(wo, ro)nOX~={Zo}. 
In fact, every outward normal at a differentiable boundary point is the limit of 
a sequence of  outward normals at boundary points with this property and the 
set {~EC~; q(--i~)=HK(--~) for all qEL~(log 1/21)} is a closed cone. We have 
Zo=Wo+ro~o and by replacing B(wo, ro) by a smaller ball we may assume that 
there exists To>0 such that B(wo-V~o, ro)cXz if 0<V<V0. 

We assume that qo(--i~o)<Hx(-~o) for some qoEL=(logl/~l) and prove 
that it implies that there exists a sequence ~yE,~C'(X0 such that flj=~.~jE,~'(X~) 
converges weakly to flE~t'(XO, p = / 7 , ~  for some ~E~'(C") but c~ is not carried 
by any compact subset of X2. Then the image /~*(,~r is not weakly closed in 
~r and /~ . :  zg(Xa)~C(X2) is not surjective, contradicting (iii). (See the proof 
of Theorem 1.2.) 

There exists a sequence t~---+~ such that Ttj(log I~l)~qo. Since q0(-i~o)< 
Hg(-~o) and Hx is continuous, there exist 6o>0 and co>0 such that 

(4.6) Try(log I/~l)(-i() < HK(--()--eo I(l, I~-~01 < 60, 

holds for all sufficiently largej. By replacing tj by a subsequence we may assume that 
the balls B~=B(t~o, tj3o) are disjoint and that (4.6) holds for all j .  If we com- 
bine (1.8) with (4.6), then it follows that for every e>0  there exists G such that 

(4.7) logl/~(-i0I-<: G+el(l+nK(-~)-eol~l z~*=lZ~(~), (EC", 
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where Zj denotes the characteristic function of  the ball Bj. Let $j~Co(Bj)  be 
chosen as in the proof  of  Theorem 2.5, with (0 in the role of  z. We define the func- 
tion ~o by 

(4.8) tp(~) = Re ( - i (wo ,  ff))+ral~l+ell(I ~=~ ~j(i~), (EC n, 

where the positive constants ex and r~ satisfy rx+e~=ro and 0<ex<eo.  I f  el is 
chosen sufficiently small then it follows as in the p roof  of  Theorem 2.5, that 
tp~PSH (C n) and ~0 is of  finite type with respect to the order 1. By Theorem3.1,  
there exists ~ r  ~) such that 

(4.9) T,~0-T, log l&l~0  in H ' (C  ") as t ~ + ~ .  

The functional 0t is carried by the ball B(wo, ro), for 

h~(i() = h~(i() <- Re((~o,  ())+rol~l -- nB~o ,o)(0, ~ Cn. 

Furthermore, ~ is not carried by any compact subset of  X2, for I(o]=l, z o : w o +  
ro~o~0X2 and 

h~ (i(o) = Re ((v~0, (o)) + r0 : Re ((~o, (0))- 

On the other hand, f l = ~ . ~  is carried by the compact convex subset K1 = 

B(wo, r~)--K o f  Xx. In fact, we have log I~l=tog I~l+log I~l and (4.9), so for  

every q6L~(log I~l) there exists z j ~ + ~  such that T~j(log I/~l+~)~q as j ~ + ~ .  
We add (4.7) and (4.8) and use the fact that e~<eo and Oj~7.j. Then 

q(i() = 1-~ ~ (T,,(log Ifil+~)(w) 
w ~  j ~ + ~  

Re((~o, ())+rl I( I+HK(--~) = n~(O,  ~eC ~. 

Now we se t  2 j = - T j ~ o  , where 0<7 j<7o  , ~j~0.  Then the sequence ctj=j~j.:~ 
has the desired properties. The proof  is complete. 

Note added in proof. In a recent paper in lzvestija Akad. Nauk SSSR 54:3 
(1990), A. S. Krivo~eev gave a necessary and sufficient condition for the existence o f  
solution of  the inhomogeneous convolution equation. His results are thus stronger 
than our Theorem 4.1. 
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