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A generalization of Bochner’s
extension theorem and its application

Mitsuru Sugimoto and Motoo Uchida(?)

1. Introduction

Let M be a smooth paracompact real manifold. Let Z be a closed smooth
submanifold of M. Let P be a differential operator (or a matrix of differential
operators) on M with smooth coefficients. In the following m denotes the order
of P. (This notation will be used through this paper.) For a distribution f on M,
we consider solutions of the differential equation

(L1) Pu=f

defined on M\ Z.
In [B], Bochner proved the following extension theorem.

Theorem 1.1. ([B]) Let u be a locally integrable function on M which satisfies
(1.2) Pu=0
outside Z. Let x€Z. Let p>1 and assume that
m<d(1-1/p)
with d=codim Z. If

(1.3) / fulP dz < 00
U

on a neighborhood U of x, u satisfies the equation Pu=0 on U.

In [B], the apparent singular locus Z is not assumed to be a smooth submanifold
(see also [HP]) and (1.3) is replaced by a weaker condition. See [EP], [HP], [P] and
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the references cited there for the works which generalize the result of Bochner [B]
in connection with potential theory.

In this paper, we restrict ourselves to the case when Z is a smooth submanifold
and consider equation (1.1). If the right-hand side f is locally integrable on M,
we can easily prove the same result as above for Pu=f by the same proof. We
treat the case when f is not necessarily locally integrable. At the same time, as we
state in Theorem 2.2, we weaken the boundary condition (1.3) on u (which controls
the growth of u near the boundary) from a microlocal point of view. The proof
presented in this paper is accordingly based on microlocal analysis, and it gives also
a new proof of Theorem 1.1.

In Section 6, as an application of Theorem 2.2, we extend Theorem 1.1 to
semilinear differential equations.

Notation. By D’ we denote the sheaf of distributions on M. For p>1, Ly oc
denotes the sheaf of locally p-integrable functions on M.

2. Main result
Let T™M denote the cotangent bundle of M and n: T*M — M the projection.

Definition 2.1. Let f be a distribution on M. For p>1 and 2€T*M, f is
microlocally p-integrable {or microlocally integrable, if p=1) at z if there exists an
Ly 1oc germ g at 7(z) such that f—g is microlocally smooth at z (in the usual sense).
We set

Ly(2)={f €Dy, | f is microlocally p-integrable at z}.

Let Z be a closed submanifold of M of class C*™ and let T; M denote the
conormal bundle of Z.
Let f be a distribution on M.

Theorem 2.2. Let u be a distribution on M which satisfies
(2.1) Pu=f

outside Z. Let x€Z. Let 26€(T3M), and assume that f is microlocally integrable
at z. Let p>1 and assume that

(2.2) m<d(1-1/p)
with d=codim Z. If

(2.3) u € L,y(2),
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then u satisfies the equation Pu=f on a neighborhood of .

This theorem implies that, if f is microlocally integrable and u satisfies the
microlocal p-integrability condition (2.3) instead of (1.3), the solution u of (2.1)
outside Z is locally extendable to Z. In particular, we have the following corollary.

Corollary 2.3. Let z€Z. Let f be a locally integrable function on M. Let
u be a distribution on M\Z which satisfies Pu=f. Let p>1 and assume that
m<d(1-1/p), with d=codim Z. If

(2.4) L\Z [u[?dz < oo

on a coordinate neighborhood U of x, then u is extendable to a neighborhood of =
as a distribution solution of Pu=f.

3. Proof of Theorem 2.2 (Reduction to the delta function)

The proof of Theorem 2.2 will be given in this and the next sections. In this
section, we reduce Theorem 2.2 to a microlocal estimate of the delta function.
Let n=dim M.

Notation. Let p>1 and s€R. For an open subset U of M, £} ,,.(U) denotes
the space of distributions on U locally in Lj. (Here L; denotes the L, Sobolev
space of order s on R™.)

Definition 3.1. Let f be a distribution on M. For p>1, s€R and 2€T* M, if
there exists a distribution germ g at 7(z) such that f—g is microlocally smooth at
z and g is locally in L7, we say that f is microlocally in L} at z. We set

Ly(z)={fe€ D,',(Z) | f is microlocally in L at z}.

Let us take a local coordinate (1, ..., z,) of M so that
Z={(z1,,Tn) | Tn-ds1=...=2, =0}
and z=0. We denote z'=(zy, ..., Zpn—4), T'=(Tpn—d+1, .-, Zn) and use the notation
D'=(Dy,...,Dn_q), D"=(Dn-dt1s->Dn),

where Dy=08/8zy, k=1,...,n.
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By the structure theorem of distributions with support in Z, we have
(3.1) Pu—f=Q(z',D")5(z")

for a differential operator Q(z’, D”) with distribution coefficients in z’ and inde-
pendent of D’, where §(z”) denotes the delta function in z”.

Let ze(T3M)o such that f is microlocally integrable at z and u microlocally
p-integrable at z. Then Pu is microlocally in L,™ at z (m=ord P), and locally

f=g+h, 2¢WF(h)

with g€ L 10c(M). (Here WF(h) denotes the C wavefront set of h as usual.)
Hence, from (3.1), we have

(3.2) Q(a', D")5(x")+g(z) € L;™(2)

with some g€ L; 1oc(M) compactly supported in a coordinate neighborhood.

We shall prove that (3.2) implies @=0 if m<d(1—1/p). From (3.1), this com-
pletes the proof of Theorem 2.2.

We may assume that z=(0,dz,) (by a linear coordinate transform).

Let us take a coordinate neighborhood U as U’ xU" with U’ being a bounded
open neighborhood of z'=0 in R* ¢ and U” of 2" =0 in R%. Let us take a test
function p(z')eD(U’). It is sufficient to prove that the distribution

(33) / o(a)Q(a', D")5(z") da’

is zero in a neighborhood of =0 (for any ).
We now fix ¢eD(U’) and consider the integration

/ :D'(U'xU") —D'(U"), go—)/ (z)g(z',z") dz’.

For p>1 and s€R, let us set

oloc(U X {dz}) ={ue D'(U) |u=wup+u;, with ug € L5, ,.(U) and
uy € D'(U) such that WF(u )N (U x {dz,}) =0}

and £ (U” x{dz,}) in the same manner. Then we have the following lemma.

p,loc
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Lemma 3.2. We have

[ £310eU (d50)) € L3100 x ).

Proof of Lemma 3.2. This follows from the microlocal theory of integration
and the fact that

/E;,IOC(U)CL;JOC(U”), ifp>1.
7

The proof of this fact will be given in Section 5.

Since the distribution (3.3) is of the form Q(D")é(z”), by Lemma 3.2 above,
we are reduced to proving that Q=0 if

Q(D)é(z) e L£,™(0,dzn)+ L1 j0c(U), withm<n(l-1/p),

on R™.

4. End of the proof of Theorem 2.2

In this section, we prove the following proposition, which completes the proof
of Theorem 2.2. Let d(z) denote the delta function on R™ with support at 0.

Proposition 4.1. Let Q(D) be a differential operator with constant coefficients
in n variables. If
Q(D)é(z) € £,™(0,dzn)+L110c(V),

U being a neighborhood of 0, then ord@Q<m—n(1-1/p). In particular, if m<
n(1-1/p), we have Q=0.

For the definition of £,™(0, dx,), see Definition 3.1.

In what follows, we denote by L,, the Banach space L,(R",dz), dz being the
standard volume element on R", and by || -|[z, the norm of L,. For s€R, L;
denotes the L, Sobolev space of order s with respect to dr. In this section, the
symbol D denotes —id/dzx.

Let us first recall the notion of Besov spaces. Let ®=®(£) be a function for
the Littlewood-Paley decomposition, that is, ® a smooth function satisfying the
conditions of [BL, Lemma 6.1.7], and set ¥(£)=1-Y" . ®(£/2"). Let p>1, g>1.
The Besov space BY . on R™ is defined as

]
® (22,) il < oo},
LP

where S’(R™) denotes the space of tempered distributions. We then have the fol-
lowing lemma.

B) = { fesS' R

U(D)f € Ly, @(é);)feLp, veN, Y

veN
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Lemma 4.2. ([BL, Theorem 6.4.4]) Let p>1. For g=max{p, 2}, we have
L,CB), and this embedding is bounded.

yq

The following lemma is a microlocalization of the fact that one point of an n-
dimensional manifold has g-capacity zero for 1<g<n if n>2 (see [EP, Section 2]).
Let x(£) be a smooth function, homogeneous of degree 0 on [£|>1.

Lemma 4.3. Let p>1. If x is not identically zero on a neighborhood of oo,
then x(D)é(x) is in L} if and only if s+n(1—1/p)<0.

Proof. Assume x(D)d(z)€L;. We may assume from the beginning that x=0
identically on a neighborhood of £=0. We then have, by definition, x(D)|D|*é(x)€
L,. By Lemma 4.2, letting g=max{p, 2}, we have

(4.1) > I@(D/2*)x(D)IDI*6(z),, < oo.

v20

By putting £=2"7 in the Fourier integral, we have

(4.2) 18(D/2")x(D)|D|*8(x)| ., =2+ =Vl C,if v 1,
with C'>0, independent of v. Hence (4.1) yields s+n(1—1/p)<0.

The if part also follows from (4.2) (since By, CL,). O

In the following proof, £(L;) denotes the Banach space of bounded operators
on L; with the operator norm.

Proof of Proposition 4.1. From the hypothesis, by multiplying by a cut-off
function, we may assume that

Q(D)o(z)+9(x) € £, 1o (U x{dzn})

p,loc

with some g€L; 1,.(U). Moreover we may assume that suppg is compact and
llgllz, <1/A for some sufficiently large A.
Let ¢(&) denote the Fourier transform of g; then |¢(£)|<1/A. For fe&’, let

p(D)f =Fp(O)F ()],

where F denotes the Fourier transform. The operator (D) is a bounded linear
operator on Ly, for any s€R, and

(D)l gcrsy < 1/A.
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We then have
[Q(D)+¢(D)]6(z) € L 15, (U x {dzn})-

Hence, the left-hand side being compactly supported, there is an open convex cone
A of R™ and a smooth function 3(£) such that dz,€A, S=1 on A(B), where B>0
and A(B)={¢€A||¢|> B}, and

(4.3) BD)Q(D)+p(D)s(z) € L™

Let g=ord @; we can then find an open convex cone I of R®, R>B and >0
so that 'CA and

1Q(§)| 2 61¢17 on I'(R),

where T(R)={£€l'||¢|>R}. Hence |p(£)|<1]|Q(€)| on T'(R), if R>1 and A>2/6;
in particular, @+¢0 on I'(R).

Now let R”>R'>R. Let x(£) be a smooth function, homogeneous of degree 0
on |{|>R" and supported in I'(R’). Then x/(Q+) defines, as Fourier multiplier,
a continuous linear mapping (x/(Q+))(D): Ly — L3*? for any s,

- X
49 g o= o orie)|

To see this, let x1(£) be a smooth function having the same properties as x (for some
R’ and R") and assume that [x;(£)|<1 and x1=1 identically on a neighborhood

of supp x. Then we have
xX1¥
Q+s0 Q Z( Q )

Since [¢/Q|<3 on ['(R), the right-hand side converges uniformly. Moreover, since
[D*(p/Q)| is bounded on I'(R) for any «, any derivative converges uniformly in the
right-hand side. Hence

(45) Ze -2 3 (- ’“‘”) (D).

v2>0

It follows from the L,-boundedness theorem of Fourier multipliers (cf. [T, Chap-
ter XI, Section 1]) that the first factor x/Q defines a continuous linear mapping
L;—Lz+. On the other hand, since [|¢(D)||z(zs) <1/A, we have

X1y

X1
0 (D)

5 (D)

le(D)leey) < 5
£(L3)

£(Ly)
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if A>1. Hence the infinite sum

x1e, o 1”
5]
v>0
converges in £(L3;) (for any s), and the second factor of the right-hand side of (4.5)
defines a bounded operator on L;. Thus (4.4) defines a continuous linear mapping
(x/(Q+¢))(D): Ly~ Ly*e.
Hence, from (4.3), we have

x(D)é(z) e L™+

By Lemma 4.3, we have g<m—n(1—1/p). This completes the proof. [

5. Integration of distributions of Sobolev class

In this section, we give a proof to the following proposition, by which the proof
of Lemma 3.2 is completed. Let p>1 and s€R. Recall that we denote by L; . the
sheaf of distributions locally in L; on a manifold.

Proposition 5.1. Let U’ and U” be real manifolds. Let dz’ be a volume

element on U'. Let ge Ly, (U’ xU") with compact support. Then the distribution

/ g(fL”, .T”) dI’
U’

belongs to L3, .(U").

p,loc

Proof. We may assume from the beginning that U’ and U” are open subsets
of R™ and R*, respectively, and that dz' is the standard volume element of R™.
Let =’ and z” denote the coordinate of R® and RF, respectively. The symbol D’
(resp. D") denotes —id/dz’ (resp. —id/dz").

For u€R, we set (D'Y*=(1+(D')2)*/2, (D")*=(1+(D")?)*/2.

Let us take ¢(z')€D(U’) such that p=1 on a neighborhood of suppg. Then
we have, by integration by parts,

(Dll>s/ g(z,/,xll) d.'E,:/ ((D,>_u(p)(l',)<Dl)u(D")sg($l,.’L'”) d{l,',
U R"
for any u€R. Since (D')Min{s0}(D"y3(D)~* is a bounded linear operator from

L,(R"**) to itself (see [T, Chapter XI, Theorem 1.5)), if we put u=min{s, 0}, the
right-hand side is in L,(R*) by Hélder’s inequality. This completes the proof. O
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6. Application

In this section, we extend Theorem 1.1 to semilinear differential equations.

As in Section 1, let P be a differential operator (or a matrix of differential
operators) of order m with smooth coefficients on a manifold M. Let Xi,..., X,
be smooth complex vector fields on M. For presentation simplicity, we assume
that they are commutative to one another. Letting u be the unknown function, we
consider the semilinear differential equation

(6.1) P(z, D)u= F(z, X%u; |a] <h),

where h<m, and the index « ranges through {a€N7||a|<h} in the nonlinear
term F. (For the index a, X“u denotes X" ... X u.) The nonlinear term

F =F(z,u%)

is a continuous function in the local coordinate x of M and in u®, |a|<h, and we
assume that there exist ¢>1, A€ Ly joc(M) and B€ Lj joc(M) such that

|F(z,u™)| < Alz) Y )+ B(z)

lal<h

on M. If a locally integrable function u satisfies

(6.2) M / | X%u|? dz < 00

lal<h

locally on an open subset U, with dz being a volume element on M, then F'(z, X *u)
defines a locally integrable function on U.

For zeM, let F(z) denote the C-vector subspace of C®T, M generated by
Xy (), ..., Xr(z)-

We then have the following extension theorem of weak solutions of the semi-
linear differential equation (6.1).

Theorem 6.1. Let Z be a closed submanifold of M of class C* of codimension
d>2. Let u be a locally integrable function on M. (i) Let U be an open subset of M.
Let p>d/(d—1). Assume that

(6.3) > / | X ulP dz < oo.
le|<h 7 UNE

Then X%y is in Lpioc(U) for Ja|<h.
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(ii) Assume that, for all z€Z, F(x)¢ CRT,Z. Suppose that u satisfies (6.2)
locally on M\ Z and equation (6.1) in the distribution sense. Let p>1 and assume
that p>q and

(6.4) m—h<d(1-1/p).

If u satisfies (6.3) for a neighborhood U of every t€Z, then u satisfies equation
(6.1} in D'(M).

Proof. (i) Let u*=X%u and let f? be the locally p-integrable function on U
defined by XPu on U\Z and by 0 on Z. Let B=a+e;, with e; being the i-th unit
vector of N", i=1,...,7, and apply Corollary 2.3 to

/Y,;’Ll,(1 = fﬂ.

Then we have X, f*=fP for any a, |a|<h. This implies that f*=Xu.
(ii) Let z€Z. We may assume that X, is not tangent to Z at z; we can then
find z€(T7 M), such that X, is elliptic at z: o(X1)(z)#0. By (i), we have

(6.5) ueLh(z)

and F(z, X“u) is a locally integrable function on M. Then the theorem is a conse-
quence of Theorem 2.2 with (2.2) and (2.3) replaced by (6.4) and (6.5), respectively.
This modification of Theorem 2.2 is verified if we remark that P is allowed to be
a pseudo-differential operator and apply Theorem 2.2 with P(1+|D|)~* as P and
(1+{DHPuasu. O

This theorem recovers the result of Eells and Polking [EP] on the weak exten-
sion of harmonic maps in the case where the singular locus is a submanifold.
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