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A generalization of Bochner's 
extension theorem and its application 

Mitsuru Sugimoto and Motoo Uchida(l) 

1. Introduct ion 

Let M be a smooth paracompact real manifold. Let Z be a closed smooth 
submanifold of M. Let P be a differential operator (or a matrix of differential 
operators) on M with smooth coefficients. In the following m denotes the order 
of P. (This notation will be used through this paper.) For a distribution f on M, 
we consider solutions of the differential equation 

(1.1) P u  = f 

defined on M \ Z .  

In [B], Bochner proved the following extension theorem. 

T h e o r e m  1.1. ([B]) Let u be a locally integrable function on M which satisfies 

(1.2) Pu  = 0  

outside Z. Let x E Z .  Let p > l  and assume that 

with d=codim Z. I f  

rn <_ d (1 -1 /p )  

s 
(1.3) Ju lulp dx < 

on a neighborhood U of x, u satisfies the equation Pu=O on U. 

In [B], the apparent singular locus Z is not assumed to be a smooth submanifold 
(see also [HP]) and (1.3) is replaced by a weaker condition. See [EP], [HP], [P] and 

(1) This work was supported by the Grant-In-AM for the Sciences of the Sumitomo Founda- 
tion. 



400 Mitsuru Sugimoto and Motoo Uchida 

the references cited there for the works which generalize the result of Bochner [B] 
in connection with potential  theory. 

In this paper, we restrict ourselves to the case when Z is a smooth submanifold 
and consider equation (1.1). If  the right-hand side f is locally integrable on M, 

we can easily prove the same result as above for P u = f  by the same proof. We 
t reat  the case when f is not necessarily locally integrable. At the same time, as we 
state in Theorem 2.2, we weaken the boundary condition (1.3) on u (which controls 
the growth of u near the boundary) from a microlocal point of view. The  proof 
presented in this paper  is accordingly based on microlocal analysis, and it gives also 
a new proof of Theorem 1.1. 

In Section 6, as an application of Theorem 2.2, we extend Theorem 1.1 to 
semilinear differential equations. 

Notation. By :D r we denote the sheaf of distributions on M. For p > l ,  Lp,loc 
denotes the sheaf of locally p-integrable functions on M. 

2. M a i n  r e s u l t  

Let T * M  denote the cotangent bundle of M and 7r: T*M--+M the projection. 

Definition 2.1. Let f be a distribution on M. For p > l  and zCT*M,  f is 
microlocally p-integrable (or microlocally integrable, if p-~ 1) at  z if there exists an 
Lp,loc germ g at 7r(z) such that  f - g  is microlocally smooth at z (in the usual sense). 
We set 

Ep(z) = { f  E D~(z) [ f is microlocally p-integrable at  z}. 

Let Z be a closed submanifold of M of class C ~176 and let T ~ M  denote the 
conormal bundle of Z. 

Let f be a distribution on M. 

T h e o r e m  2.2. Let u be a distribution on M which satisfies 

(2.1) Pu :- f 

outside Z. Let x E Z .  Let zE(T~M)~ and assume that f is microlocaUy integrable 
at z. Let p> 1 and assume that 

(2.2) m <_ d(1 - l /p)  

with d=cod im  Z. I f  

(2.3) u e  Az), 
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then u satisfies the equation P u = f  on a neighborhood of x. 

This theorem implies that ,  if f is microlocally integrable and u satisfies the 
microlocal p-integrability condition (2.3) instead of (1.3), the solution u of (2.1) 
outside Z is locally extendable to Z. In particular, we have the following corollary. 

C o r o l l a r y  2.3. Let x E Z .  Let f be a locally integrable function on M.  Let 
u be a distribution on M \ Z  which satisfies P u = f .  Let p > l  and assume that 
m < d ( 1 - 1 / p ) ,  with d=codimZ.  If 

(2.4) Jfv\z lulP dx < ~ 

on a coordinate neighborhood U of x, then u is extendable to a neighborhood of x 
as a distribution solution of P u =  f . 

3. P r o o f  o f  Theorem 2.2 (Reduct ion to the delta function) 

The proof of Theorem 2.2 will be given in this and the next sections. In this 
section, we reduce Theorem 2.2 to a microloeal est imate of the delta function. 

Let n = d i m  M. 

Notation. Let p > l  and s E R .  For an open subset U of M,  s denotes 
the space of distributions on U locally in L~. (Here L~ denotes the L• Sobolev 
space of order s on Rn.)  

Definition 3.1. Let f be a distribution on M. For p > l ,  s E R  and z ET* M,  if 
there exists a distribution germ g at 7r(z) such tha t  f - g  is microlocally smooth at 

z and g is locally in L~, we say tha t  f is microlocally in L~ at  z. We set 

s =- { f  �9 ~P~(~) I f  is microlocally in L~ at z}. 

Let us take a local coordinate (x l , . . . ,  xn) of M so that  

z = { ( x l , . . . ,  xn )  I ~ n - ~ + l  . . . . .  xn = 0 )  

and x=O. We denote x ' = ( x l , . . . ,  Xn-d), X"=(X,~--d+I, ..., Xn) and use the notation 

D '  = (D1 .... , Dn-d) ,  D "  = (Dn-d+l, . . . ,  Dn), 

where Dk =O/Oxk, k= 1, ..., n. 
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By the structure theorem of distributions with support  in Z, we have 

(3.1) Pu-  f = Q(x', D")5(x") 

for a differential operator Q(x', D") with distribution coefficients in x '  and inde- 
pendent of D',  where (f(x") denotes the delta function in x".  

Let z�9 (T~M)o such that  f is microlocally integrable at z and u microlocally 
p-integrable at z. Then Pu is microlocally in L~ -m at z ( m = o r d  P) ,  and locally 

f=g+h, z•WF(h) 

with gELl,loc(M). (Here WF(h)  denotes the C ~ wavefront set of h as usual.) 
Hence, from (3.1), we have 

(3.2) Q(x', D")5(x")--I-g(x) �9 s 

with some gELl,loc(M) compactly supported in a coordinate neighborhood. 

We shall prove that  (3.2) implies Q=O if m<d(1-1/p). From (3.1), this com- 
pletes the proof of Theorem 2.2. 

We may assume that  z=(O, dxn) (by a linear coordinate transform). 
Let us take a coordinate neighborhood U as U~• U" with U ~ being a bounded 

open neighborhood of x~=O in R n-d and U" of x"=O in R d. Let us take a test 
function ~(x~)E:D(U~). It is sufficient to prove that  the distribution 

(3.3) f ~o(x')Q(x', D")5(x") dx' 

is zero in a neighborhood of x " = 0  (for any ~). 

We now fix ~oET)(U ~) and consider the integration 

~ :7:)'(U' x U") > T)'(U"), g, > / ~o(x')g(x',x") dx'. 

For p > l  and sER ,  let us set 

/:p,loc(U x {dx , ) )  ={u  �9 :D'(U) I u = uo+ul, with u0 �9 ~p,loc(U) and 

Ul �9  such that  WF(ul)M(Vx{dxn})=0} 

~n.d  8 I I  /:p,loc(U • {dx,})  in the same manner. Then we have the following lemma. 
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L e m m a  3.2. We have 

8 8 I !  ~p,loc(Ux{dxn}) C~p,loc( U x(d, xn})- 

Proof of Lemma 3.2. This follows from the microlocal theory of integration 
and the fact that  

8 8 I /  s162 C s162 ), if p > 1. 

The proof of this fact will be given in Section 5. 

Since the distribution (3.3) is of the form Q(D")6(x"), by Lemma 3.2 above, 
we are reduced to proving that  Q = 0  if 

Q(n)6(x) E s dxn)+il,lo~(U), with ra < n ( 1 - i / p ) ,  

on R n. 

4. E n d  o f  t h e  p r o o f  o f  T h e o r e m  2.2  

In this section, we prove the following proposition, which completes the proof 
of Theorem 2.2. Let 6(x) denote the delta function on R n with support at 0. 

P r o p o s i t i o n  4.1. Let Q( D ) be a differential operator with constant coefficients 
in n variables. If 

Q(n)J(x) E f~-m(0, dxn)+Ll,loc(U), 

U being a neighborhood of O, then o r d Q < m - n ( 1 - 1 / p ) .  In particular, if m<_ 
n ( 1 - l / p ) ,  we have Q=O. 

For the definition of s dxn), see Definition 3.1. 
In what follows, we denote by Lp the Banach space Lp(R n, dx), dx being the 

standard volume element on R n, and by I[" IIip the  n o r m  of Lp. For sER,  L~ 
denotes the Lp Sobolev space of order s with respect to dx. In this section, the 
symbol D denotes -iO/Ox. 

Let us first recall the notion of Besov spaces. Let (I)---r be a function for 
the Littlewood-Paley decomposition, that  is, (I) a smooth function satisfying the 
conditions of [BL, Lemma 6.1.7], and set ~ ( ~ ) = l - - ~ e N  (I)(~/2~) �9 Let p>  1, q_> 1. 
The Besov space B~ on R n is defined as 

where 8~(R n) denotes the space of tempered distributions. We then have the fol- 
lowing lemma. 
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L e m m a  4.2. ([BL, Theorem 6.4.4]) Let p > l .  For q=max{p,  2}, we have 
Lp C B~ and this embedding is bounded. 

The following lemma is a microlocalization of the fact that  one point of an n- 
dimensional manifold has q-capacity zero for 1 <q<n if n > 2  (see [EP, Section 2]). 

Let X(~) be a smooth function, homogeneous of degree 0 on [~[ > 1. 

L e m m a  4.3. Let p> 1. If X is not identically zero on a neighborhood of oo, 
then x(D)~(x) is in Lp if and only if s+n(1-1/p)<O. 

Proof. Assume x(D)~(x)EL~. We may assume from the beginning that X=0 
identically on a neighborhood of ~=0. We then have, by definition, x(D)[D[8~(x)C 
Lp. By Lemma 4.2, letting q=max{p,  2}, we have 

(4.1) IIr < ~ .  
~>0 

By putting ~=2vr/ in  the Fourier integral, we have 

(4.2) II,~(D/2V)x(D)IDI'6(x)IIL~ = 2[s+n(1-11p)]uC, if u>> 1, 

with C > 0 ,  independent of u. Hence (4.1) yields s + n ( 1 - l / p ) < 0 .  
The if part also follows from (4.2) (since B~ [] 

In the following proof, s denotes the Banach space of bounded operators 
on Lp with the operator norm. 

Proof of Proposition 4.1. From the hypothesis, by multiplying by a cut-off 
function, we may assume that 

--rn X Q(D)5(x)+g(x) E/:p,loc(U {dx~}) 

with some gELl,loc(U). Moreover we may assume that  suppg is compact and 
][gilL1 <I/A for some sufficiently large A. 

Let qo(~) denote the Fourier transform of g; then Iq0(~)[< 1/A. For f ES', let 

qo(D)f = F -l[qa(~)Ff(~)], 

where F denotes the Fourier transform. The operator qo(D) is a bounded linear 
operator on L~, for any sER, and 

It~(D)IIZ:(L~) ~< 1/A. 
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We then have 
- r n  V [Q(D)+qo(D)]5(x) e ~p,loc( x {dxn}). 

Hence, the left-hand side being compactly supported, there is an open convex cone 
A o f R  '~ and a smooth function/3(~) such that  dxnEA,/3--1 on A(B), where B > 0  
and A(B)={ScAII~I_>B}, and 

(4.3) /3(0) [Q(D) + ~(D)]5(x) �9 L ;m.  

Let q=ordQ;  we can then find an open convex cone F of R n, R>B and 5>0 
so that  F C A  and 

IQ(5)1-> 5151 q on r ( n ) ,  

where r(R)={~erllr Hence ]~(~)]<_�89 on r ( n ) ,  if R > I  and A>2/5; 
in particular, Q + ~ # 0  on F(R). 

Now let R">R'>R. Let X(~) be a smooth function, homogeneous of degree 0 
on ]~I>R" and supported in F(R'). Then x/(Q+T) defines, as Fourier multiplier, 
a continuous linear mapping (x/(Q+~o))(D): n~--~np +q for any s, 

(4.4) r  

To see this, let XI(~) be a smooth function having the same properties as X (for some 
R' and R") and assume that  IXI(()I<I and X I = I  identically on a neighborhood 
of supp X- Then we have 

X _ X  - - Q -  
Q+~ Q 

Since I~p//Qt_< �89 on F(R), the right-hand side converges uniformly. Moreover, since 
ID'~(qo/Q)l is bounded on F(R) for any a, any derivative converges uniformly in the 
right-hand side. Hence 

It follows from the Lp-boundedness theorem of Fourier multipliers (el. [T, Chap- 
ter XI, Section 1]) that  the first factor x/Q defines a continuous linear mapping 

s s + q  Lp--+L v . On the other hand, since II~v(D)IIr~(L~) < 1/A, we have 

-~-(D) s <_ I ~-~(D) s <_ ~, 
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if A>>I. Hence the infinite sum 

converges in s (for any s), and the second factor of the right-hand side of (4.5) 
defines a bounded operator on L~. Thus (4.4) defines a continuous linear mapping 
(x/ ( Q + ~) ) ( D ): Lp ~ -+ LpS+q . 

Hence, from (4.3), we have 

x(n)5(x) e L;  m+q. 

By Lemma 4.3, we have q <m-n (1 - l / p ) .  This completes the proof. [] 

5. I n t e g r a t i o n  o f  d i s t r i b u t i o n s  o f  S o b o l e v  class 

In this section, we give a proof to the following proposition, by which the proof 
of Lemma 3.2 is completed. Let p > l  and sER .  Recall that  we denote by s the 
sheaf of distributions locally in Lg on a manifold. 

P r o p o s i t i o n  5.1. Let U' and U" be real manifolds. Let dx' be a volume 
element on U'. Let gEs U") with compact support. Then the distribution 

v, g(x', x") dx' 

8 II  belongs to •p,loc(U ). 
Proof. We may assume from the beginning that  U ~ and U" are open subsets 

of R n and R k, respectively, and that  dx t is the standard volume element of R n. 
Let x ~ and x" denote the coordinate of R ~ and R k, respectively. The symbol D' 
(resp. D") denotes -iO/Ox' (resp. -iO/Ox"). 

For u E R ,  we set (D~)U=(I+(D~)2) ~/2, (D")U=(l+(n")2) u/2. 
Let us take ~(x')E:D(U ~) such that  ~_----1 on a neighborhood of suppg. Then 

we have, by integration by parts, 

(n")8 Ju' [ g(x' ,x")dx'= In-  ((D')-~)(x')(D')~(D")Sg(x"x")dx' 

for any uER .  Since (D')min{~'~ -s is a bounded linear operator from 
Lp(R ~+k) to itself (see [T, Chapter  XI, Theorem 1.5]), if we put  u=min{s, 0}, the 
right-hand side is in Lp(R k) by HSlder's inequality. This completes the proof. [] 
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6. Application 

In this section, we extend Theorem 1.1 to semilinear differential equations. 
As in Section 1, let P be a differential operator  (or a matr ix  of differential 

operators) of order m with smooth coefficients on a manifold M.  Let X1, . . . ,  X~ 
be smooth complex vector fields on M. For presentation simplicity, we assume 
tha t  they are commutat ive  to one another. Lett ing u be the unknown function, we 
consider the semilinear differential equation 

(6.1) P(x, D)u = F(x,  X'~u; Io~] < h), 

where h<m,  and the index (~ ranges through {(~ENr]]c~]<h} in the nonlinear 
te rm F.  (For the index ~, X'~u denotes X~ 1 ... X~ru.) The nonlinear te rm 

F = F ( x , u " )  

is a continuous function in the local coordinate x of M and in u s,  ](~]<h, and we 
assume tha t  there exist q > l ,  AEL~jo~(M) and BEL1joc(M) such tha t  

IF(x, u~)l < A(x) E luaIq+B(x) 
]va<_h 

on M. If a locally integrable function u satisfies 

(6.2) / IX~ul q dz < 
I~l<h 

locally on an open subset U, with dx being a volume element on M, then F(x,  X'~u) 
defines a locally integrable function on U. 

For xEM,  let ~-(x) denote the C-vector  subspace of C |  generated by 
x l  ..., x r  (x). 

We then have the following extension theorem of weak solutions of the semi- 
linear differential equation (6.1). 

T h e o r e m  6.1. Let Z be a closed submanifold of M of class C ~ of codimension 
d~_2. Let u be a locally integrable function on M. (i) Let U be an open subset of M. 
Let p>_d/(d-1). Assume that 

(6.3) i~l<h /V\z lX'~uJP dx < ~" 

Then X~u  is in Lpjor for ]al<h. 
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(ii) Assume that, for all x E Z ,  . ~ ( x ) ~ C |  Suppose that u satisfies (6.2) 

locally on M \  Z and equation (6.1) in the distribution sense. Let p> 1 and assume 
that p~_q and 

(6.4) m - h  < d ( 1 -  l /p) .  

I f  u satisfies (6.3) for a neighborhood U of every x c Z ,  then u satisfies equation 
(6.1) in I ) ' (M).  

Proof. (i) Let u s = X ~ u  and let f~  be the locally p-integrable function on U 

defined by X/3u on U \ Z  and by 0 on Z. Let ~=a+e i ,  with e~ being the i- th unit 
vector of N r, i=1, ..., r, and apply Corollary 2.3 to 

X i u  ~ = f . 

Then we have X i f ~ = f  ~ for any ~, Ic~l<h. This implies tha t  f ~ = X ~ u .  
(ii) Let x E Z .  We may assume that  X1 is not tangent to Z at x; we can then 

find z e ( T ~ M ) ~  such tha t  Xl  is elliptic at z: a(X1)(z)~O. By (i), we have 

(6.5) u �9 L (z) 

and F(x,  X~u)  is a locally integrable function on M. Then the theorem is a conse- 
quence of Theorem 2.2 with (2.2) and (2.3) replaced by (6.4) and (6.5), respectively. 
This modification of Theorem 2.2 is verified if we remark tha t  P is allowed to be 
a pseudo-differential operator  and apply Theorem 2.2 with P(1TID[) -h as P and 

( l+tDt)hu as u. [] 

This theorem recovers the result of Eells and Polking [EP] on the weak exten- 
sion of harmonic maps in the case where the singular locus is a submanifold. 
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