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1. Introduction

Let C be a measurable set in R™*! and set

Ue(§) = / w(@)e' <> dy, EE€R, u€COFRY).
C

The order of magnitude of 4y (&) when &-— oo is frequently of importance in
harmonic analysis, for example in application to analytic number theory. However,
even if one assumes that C is the closure of an open set with boundary oC € C*
the known results are far from complete. It is known then that

(8 = O(JE|"CIP) | &> 0; u €0Y; (1.1)

if and only if the Gaussian curvature of 0C never vanishes (Herz [1], Hlawka [2],
Littman [3]). Randol [4], [5] has also studied the case where C is convex and aC
is analytic. His result is that the »maximal function»

() = sup " lacrE)|, £€S (1.2)

r>0

is then in LP(S") for some p > 2 if 9C is analytic. In fact, Randol proved that
this is true for precisely those p > 2 such that

K(z)® P2 g8(x) < (1.3)
ac

where K(x) is the Gaussian curvature at x € 3C. The necessity of (1.3) follows
easily from the fact that

P2 |G () | — o () [ K () 712 4 ) | K () ™)
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when r-— oo provided that the Gaussian curvature of 8C is == 0 at the points
2, where the normal is + & and that « vanishes at one of these points.

In this paper we shall prove that (1.3) implies that « € LP(S") for all u € CF
provided that C is convex, 8C € C* and 9C has no tangent of infinite order.
This of course includes the result of Randol [5]. In fact, our methods allow us to
treat also the case when 0C has only a finite number of derivatives. Moreover,
when n =1, we shall give a very precise estimate for |[[u]j.rs, valid for very
general convex compact sets C. In that case the proof is a consequence of the
Hardy — Littlewood maximal theorem.

The subject of this paper was suggested by Lars Hormander. I thank him for
valuable advice and very great help during my work.

2. Variants of van der Corput’s lemma

Let f be a convex increasing function on the interval [0, 1] and let
u € C¢(— oo, 1). In this section we shall give some estimates for the integral

I(2) = / e y(r)rdr (2.1)

where k£ > — 1. They are closely related to the van der Corput lemma (see [6],
p. 197), and similar estimates also occur in Randol [5].

Let us split the integral in one from 0 to ¢ and one from ¢ to 1. The first part
can be estimated by sup |u|t**!/(k 4 1). In the second we integrate by parts,
assuming that f'(t) > 0

1 1

[ e utrtar =t et — [ 0wt e,

t

We assume now that & <0 so that »*/f'(r) is decreasing. Then the integral can
be estimated by MA[f'(t) where

M = sup |u| + varw,
{0.1} [0.1]

var 4 denoting the total variation of u. Hence
()] < Mk + 1) + 3Af() .

Now we assume that

Fry=ar, 0<r<1 (2.2)

where « > 0. Then we have
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()] < MEY (ke + 1) + 3¢ Yad) .

With ¢ =1/ aA we obtain the bound 4(k + 1)= M (ad)~**9? provided that
al > 1. The same bound is also valid in the opposite case since [I(1)| < max |u].
In the proof we only used that u € CY[0,1]) so we have proved

Lemma 2.1. If (2.2) is valid and — 1 < k <0, then

(2)] < 4(k + 1)7Hsup || + var u)(@d)~ ¢+, 4 € OY[0,1]). (2.3)
[0, 1] [0,1]

Remark. A change of variable shows that

d
l / MO u(r)dr
0

if w € CY([0,d]) and (2.2) is valid for 0 << r << d. This will be useful in section 5

We shall now give a similar estimate for larger values of k. To do so we have
to integrate by parts several times in (2.1) and shall have to require additional
bounds of the form

< 4(sup |u| + var w)(ad)~'? 2.3y
[0, d] [0.d]

P < Cif'(r), 0<r<l, i=1,2,...,5. (2.4)

This condition will be examined in section 3. We shall actually use a condition
equivalent to (2.4) namely that if g(r) = 1/f'(r), then

Irig®r)| < Ciglr), 0<r<1l, i=1,2,...,5. (2.5)

The equivalence follows inductively if one differentiates the equation g(r)f'(r) =1
using Leibniz’ rule. o

We shall now split the integral (2.1) as before in an integral from0to ¢ = 1 /\/ al
and one from ¢ to 1. For the first part we clearly have the bound (2.3.) In the
second part we shall integrate by parts j times if & + 1 — 25 << 0. In doing so
we note that

MO = (1) g(r)d(e™)dr .
This gives, if D is the differential operator d/dr g(r) = g(r)d/dr 4 ¢’(r):

1 1

/ O urytdr — (i[7) / 0 Ditu(r ) —

t 12

jzgl(i/ A+ eMO g(t) D (u(t)t) .

j
With lul; = > max |u®|
0

it follows from (2.5) that
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W/dry“D*(u(r)™)| < Clul;r*~"4g(r), v+ p <j. (2.6)

In fact, this is obvious for » = 0, and if we know (2.6) for a certain value of v << j
it follows for » replaced by » 4+ 1 since

(ddr)«=' D+ = (ddr)g(r)D” = 3, (g% Nr)(dJdr)D" .
Using (2.6) with 4 == 0 and (2.2) we now obtain since £ — 2j << — 1

1
‘ / MO y(ryrkdr
&

where we have introduced ¢ =1 /\/ ‘ai. Thus we have proved

j—1
< Clul; > A7 P e = O u(@h) =+
0

Lemma 2.2, Let f satisfy (2.2). Then we have if k>0
L(3)] < Chluli(ad)=E+D" (2.7)
if (2.4) s valid for an integer j > (k + 1)/2.

3. Remarks on the condition (2.4)

If we introduce the non-negative function u = f”, we can if f'(0) = 0 write
(2.4) in the form

)| < Cppqr™? fu(t)dt, 7=0,1,...,57—1. (3.1)
0

To study (3.1) we give a variant of the well known estimates between the maxima
of the derivatives of a function.
LeMma 3.1. If I is an interval C B with length |I|, then

max [uf||I' < O(I|L / [u(t)|dé + max |u®|I*]), « € O*I), (3.2)
I I
I

provided that 0 <i <<k
Proof. We may assume that I = [0,1]. First assume that ¢+ =10, k= 1.
If 0<e<<1l we have

lu(z)] < emax |o'| - min |u(y)] < emax |u'| + &2 / lu(y)ldy .
I I
I

Jx—y|<e

Let now ¢ =0 but %k be arbitrary. Then it is well known thay

max |u'| < C(max |u| 4+ max|u®|) (3.3)
I I I
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and if we combine the two inequalities taking e small enough we obtain (3.2).
Having found an estimate for max |u} we obtain the general statement (3.2) by
using the estimates of the form (3.3) which are valid for derivatives of order between
0 and £.

It follows from (3.2) that if (3.1) is valid for one value of ¢ with «®(r) replaced
by sup {|9()]; 0 <t <r} it is also fulfilled for any smaller value. Indeed, we
need only apply Lemma 3.1 with I =1[0,r]. So if «U~Y is bounded, then a
sufficient condition for (3.1) is of course that

T

/ u(t)dt > cr (3.4)

0

for some ¢ > 0.

If (3.4) is valid and % is in a bounded set in (“~! we also obtain from (3.2) that

r

u(0)] < Cr? /u(t)dt (3.5)

0

We have proved:
Lemma 3.2. Let M be a bounded set of convex functions in C7' such that f'(0) = 0
when f€M and for some constant ¢ > 0

/f”(t)dtzcrf, o0<r<1i, fe€EM. (3.6)
0

Then we have (2.2) with a = bf"(0), where b is independent of f € M; in addition
(2.4) 25 umiformly valid for f€ M.

To apply the preceding lemma we need the following one:

Lemma 3.3. Let u, € C*(I) where I is a compact interval in R and assume
that all derivatives of order <k of w, never vanish simultaneously in I. Then there
is a neighbourhood Q of wu, in C*I) and an integer N such that for every u € Q
and &> 0 there exist at most N subintervals of length < e containing {x;x €1,
lu(z)| < &}

Proof. There is nothing to prove when k=0, so we assume that k> 0
and that the statement is proved for smaller values of k. The hypothesis implies
that w, has only finitely many zeros. We can therefore find a finite decomposition

k
I = U, in closed intervals such thatin each I, either u, 0 orelse > [ul?| # 0.
1

In the first case there is a fixed lower bound for |#| in I, for all % in a neigh-
bourhood of #, and in the second case the hypotheses of Lemma 3.3 with k re-
placed by k — 1 are fulfilled in I, by «’ for all % in a neighbourhood of w,.
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By the induction hypothesis we then have |u’| > &' in I, outside N intervals

of length <&, which implies that |u| > & in I, outside these N intervals

and 2N -4 2 additional ones of length at most e. This completes the proof.
We note two important consequences: If M is a compact subset of C*I) and

if the hypotheses of Lemma 3.3 are fulfilled for all © € M we have for some positive

constants ¢, C

y

/]u(t)[dt{Zcfx——y]k“ if w,y€l, ueM (3.7
/]u(t)}-"dtg()(l—akrl f0<d<lk, ueM. (3.8)
1

In fact, by the Borel—Lebesgue lemma M = U M; where the union is finite
and the conclusion of Lemma 3.3 is valid for each M; and so for M. The estimate
(3.7) follows if we choose & in Lemma 3.3 so that Ne = |« — y|/2, for then the
integral is at least ¢*|x — y|/2. The proof of (3.8) is obvious.

4. Estimates for the maximal funection

We can now prove the extension of a result of Randol [5] referred to in the
introduction. A surface is said to be flat of order at most j if the distance to the
surface from a tangent has a zero of order j + 2.

THEOREM 4.1. Let C be a convex set in R"*' with boundary 0C flat of order
at most j where j > u with p the smallest integer > (n + 1)/2. Then u € LP(S™)
holds for all u € C*(R™*") if (1.3) holds and 8C € C7' . These assumptions are fulfilled
if 0C€C™? and 2 <p <2+ 2/h where h=n(j — 1).

CoroLLARY 4.2. If 0C € C” and 0C has no tangent of infinite order there is o
j such that the hypotheses of Theorem 4.1 are valid and so wu € LF(S") for
all u € C*(R"1Y).

Proof. By the divergence theorem we have

U(rE) = /u(x)ei’<"’5> dx =

C
i/’“/ u(x) <&, v(x)> %> dS(z) + i/ri /Sk ou(w)/dxk e <5 du
k=1
éc ¢

Here » is the interior normal and [£] = 1.

If we repeat this procedure u times, we get
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a(ré) =

M=

r? /w,(x , §)eir<x,5> dS(x) 4 r—* /-wﬂﬂ(x , §)eir<x,§> da:

ac C

where w,(., &) is in bounded set in C**'*(R™'), 1 <y <pu -+ 1. We want to
estimate 7("*??|4(rf)|. Since u > (n 4 1)/2 the estimates of the last term in
the sum and that with integral over C are obvious so it is sufficient to prove that
for 1<y <pu—1

nt+2

—— -
sup

r

/ v(x , £)e<>> dS(x) | € LP(S™)

ac

if »(., &) belongs to a bounded set in C“+!=*(R"*1),

Choose p € CP(R) such that () =1, |{] << d and () =0, |{| > 6. Here &
will be chosen below. Denote by X (&) the point on 9C with interior normal &, and
decompose v as a sum v = @, + @, + @; where @ (x , &) = v(x, E)P(KX(§) — x, &)
and @,(x, &) = vz, EyKX(— &) — x, &)). If (o, w) are polar coordinates in the
tangent plane at X(£), let f(o,w , &) describe the intersection of 8C and the plane
through & containing o:

flo,o, & =inf{t; X(&) + ow 1 t& €0}.

If 8, is small enough and I = {p;0 <p < 4,} then f(.,w, &) €C"*Y(I) for all
£ € 8" and all tangent directions o at X(&).

Now we split the integral in three parts. If 2§ is smaller than the width of C,
the integral involving ¢, is O(r~“*'=?) as r — co, uniformly in &, for there is
a lower bound independent of &, for the difference between & and a normal to
oC in supp ¢,, (cf [3]).

Now it is of course enough to examine

/ P , £)e" dS(x)

ac

In terms of the polar coordinate system in the tangent plane at X(&) this integral
scomes

w0

/ dw /(p(g , 0, §)efed gon=1 g, ‘ .

sn—1 0

Here ¢(.,w , &) is in a bounded set in C**!=*(I) and vanishes near the right hand
end. point.
Let us consider the map

(@, 8 —=>f(,0,§)
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from the unit sphere bundle of the tangent space of S* to Ci*!(I). Since the domain
is compact and the map is continuous the image set in C‘*%(I) is compact. By
hypothesis all derivatives of f,(.,w,& of order <j—1 do not vanish
simultaneously so we can apply the lemmas in section 3. By (3.7) follows then

/f:g(g s W, 5)d9 ZCTj
0

so by Lemma 3.2
o e, 8 >bf0, 0,80
and (2.4) is uniformly valid for f(- ,® , £). We can now apply Lemma 2.2 and get

2
n4 .

{/@"—l‘p(g Lo, E)eTed dQl < Cry1o0,Pluyi, (beg’)’e 0,0,8) = 7,
0

Do) = plo, o, )™V

Next we prove that for 1 <» <u —1

/ ful0, 0, &R do < CK(X(8)7

sn—1

where K(z), = € 9C, denotes the Gaussian curvature at x. Of course it is enough
to take » — 1 and then we shall prove equality with C equal to the volume of S"~'.
Now

f:@(o , W, E)—n/2 == (A(L) N (}))—nl2 _ F((J))

where A is the curvature matrix of f at ¢ = 0. The integral f Flw)dw is
equal to the integral of the differential form sht

Zn (— 1) Floywido, A ... A d/(:)i A...Ndo,
&1

over the unit sphere or any cycle in R™\ {0} homotopic to 8", for the exterior
derivative

[ > (0:0F (0)/0w; + nF(w)ldo, A . . A dw,
je=1
is zero by Euler’s theorem on homogeneous functions.
Thus we may integrate over an ellipsoid with axes o f)(0,w;, &) "
t=1,2,...,n, where o',...,o" are the directions of principal curvature at
X(&). The integral thus reduces to C(K(X(£)))™"* where C is the volume of S"'.
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Summing up, we have proved that
(&) < C(K(X(E)™ + K(X(— &))" 4 1)

The proof of the first part of the theorem is now complete since

’/K(X(éf))“f’/2 dw(§) = '/K(ac)(z"’)/2 dS(x) .

To prove the second statement we want to estimate f K(x)~°dS(z) over a neigh-

bourhood of a point z, on oC.
As before we describe 9C near z, = X(&,) by a set of functions f € M ¢ CV+(I),
where M is compact. We have f(0,w,&) =f'(0,w,&) =0 and

flo, o, &) > C"*' for some C" > 0. (4.1)

To prove (4.1) we note that Lemma 3.3 implies
mig;e €I, flo,w,&) <t} < Nt.

(4.1) follows if we take ¢ so that Nt =g, for f is an increasing function of p.
We may assume that the coordinates are chosen so that x,=0 and
S=01,0,...,0). Write 2" = (2,,...,2,,). If flo,0,&)>¢ we have
0 < (¢/C"MU*Y — 5 Dby (4.1) which implies that (f, pw) € I', where
I'={x;2 > ¢fyla"]}.

If £€8" and X(&) € I' we have (X(£),&) < 0 in view of the convexity of C
80 &¢I where

P ={y;<e,y>p 20Va€ly={y; Iy <elyy}
Thus &£ € I'™ N S" implies X(£) € I" so x,(§) < e and |2"(8)] < 7,

/ K(@)dS(@) = / dE = OO (efy) = O i (4.2)
&7 <y r*ns"
From (4.2) it follows if K € C*, h = n(j — 1), that =z, cannot be a zero of K
of order > h. In this conclusion %, may of course be any point on 9C.
Regarding K in a neighbourhood of x;, in 8C as a function of z” in a neigh-
bourhood of 0 in R* we may assume that K, 0K/dz,,..., 0"K/dxt do not
vanish simultaneously. For a suitable o > 0 it follows by (3.8) that

K@) Pde, < C if 6h<1, Ja"|<o.

[%<o

This implies that [ K(x)"°dS(») is finite over a neighbourhood of ,. The proof
of the theorem is complete.
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To prove the corollary we only have to. observe that if fg;(g ,w, &) or some
higher order derivative is different from zero at (¢, w , £) then the same is true in
a neighbourhood of (0, , £). By the Borel —ILebesgue lemma this shows that the
hypotheses of Theorem 4.1 are fulfilled for some j.

5. The ease n —= 1

Using Lemma 2.1 and the Hardy - Littlewood maximal theorem (see [6], p. 32)
we shall give a very precise result in this case.

THEOREM 5.1. Let C be any bounded strictly convex set such that the arc length
s on the boundary is an absolutely continuous function of 6, where 0 is the angle
between the supporting line and some fixed direction.

Then there is a constant M such that

lorsy < Miplp — 2 ( / (ds/do)P” d0>1,2 Nw (5.1)

where N(u) = > I sup [w®(x)| with | denoting the arc length of 2C.

lal<2 x€C

Proof. By the divergence theorem we have
/u(x)ei’<x’5> dx = ifr /(G(x , &), v(x)) €72 ds(x)
ac

if » is the interior normal and

{ G (x, &)/0x, + 0Gy(x , &)/oxy = 0
(x>§)+§2 o2, &) = u(®) .
We set <G(x,&),v®))> =v(x,£ and study

Vr [ vl , £)e"" ds(x) =

ac

L / . 86 + V7 [ ol forasi)

V2
where y, and y, are the two arcs of 9C separated by the points where a supporting
line is parallel to &.
We study one of the integrals (the other is quite similar) and assume that

&= (0, 1). If we take the arc length s defined as 0 for #; = 0 we have by Lemma
2.1
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’\/7' ='\/7‘

f z, )65 ds(a)

Y1

/ v(als) , e ds | <

8 sup |s/zs(s)"? |(var v -+ sup |v]|)
s ac ac

In fact if 6 is the angle between the supporting line at the point with arc length
s and the ay-axis we have dx,/ds = sin § which is an increasing function of s
$0 x, is a convex function. Since 6/sin § < x/2 when |6 < a/2 we obtain

sup [s/z(s)|Y* = sup |s(B)fsin 81 < (w/2)" sup |s(6)/0]" < (a/2)" 8(0)""

where § denotes the Hardy-—Littlewood maximal function of ds/d6.

We shall now estimate varv 4 sup |[v]. We have
ac oc

sup |o| < sup |G|
ac ac

and

varo - /1d<G,v>|s/|<dG,v>1+/;<G,dv>lg
oc

s/IdGHvI+/IGIIdvIS/IdGI+2nsup @ <
oC

< var Gy 4 var G, 4 2nsup |(] .
ac ac oc

Since &= (0,1) we can take

Gylx , &) = ulx), Gyz,& = — /Gu(t , Xo)[O2dE

0

and thus we have

var Gy <13 sup[u“[+Zsup[u“]), j=1,2

le|=2 =x=€C

Thus we have proved for 6 =0
(0) < (S(6)" + S(— 6)")N(u) M,

if we have taken the angle 6 as a parameter on S' so that 6 = 0 corresponds
to &= (0,1). Since the estimate is invariant under a congruence transformation
it is wvalid in general. By the Hardy— Littlewood maximal theorem we have if
g>1
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2r 2

/ S(0140 < 2(gf(g — 1)y / (ds(6)/d0ya0

L] []

so if p > 2 we obtain

lpiey < MN@)(plp — 2)*° ( / (ds(6)/d0)P" de)“z

and (5.1) is proved.
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