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Mukai—Sakai bound for
equivariant principal bundles

Usha N. Bhosle and Indranil Biswas

Abstract. Mukai and Sakai proved that given a vector bundle £ of rank n on a connected
smooth projective curve of genus g and any r&€[1,n|, there is subbundle S of rank r such that
deg Hom(S, E/S)<r(n—r)g. We prove a generalization of this bound for equivariant principal
bundles. Our proof even simplifies the one given by Holla and Narasimhan for usual principal
bundles.

1. Introduction

Let Y be a connected smooth projective curve of genus gy over an algebraically
closed field & and E a vector bundle over Y of rank n. Fixing an integer r€[1,n],
consider the space of all subbundles of F of rank r. It is easy to see that their
degrees are bounded above. In [MS], Mukai and Sakai produced a lower bound for
the maximum of these degrees. The main result of [MS] says that E has a subbundle
S of rank r such that deg Hom(S, E/S)<r(n—r)gy.

In [HN], Holla and Narasimhan extended this result to principal bundles. Let
G Dbe a connected reductive linear algebraic group over k and F¢ a principal G-
bundle over Y. Fix a reduced parabolic subgroup PCG and consider the space of
all reductions of Eg to P. There is a constant c€Z such that for any reduction
EpCEg, we have degad(Ep)<c. In [HN], a lower bound for such a constant ¢ is
obtained. The main result of [HN] says that there is a reduction

0:Y — Eqg/P

such that dego*T,e1<gy dim G/P, where T, is the relative tangent bundle for
the projection of Eg/P to X. Since o*T,=ad(Fg)/ad(Fp), this implies that
c¢>—gy dimG/P.

We prove a generalization of the above bound on dego™Ty, for equivariant
bundles (see Theorem 3.2). We use a certain Quot-scheme of ad(FEg), as opposed
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to the use of Hilbert schemes done in [HN]. This also yields a simpler proof of the
bound obtained in [HN].

2. Equivariant reduction of a principal bundle

Let k be an algebraically closed field. Let ¥ be a connected smooth projective
curve over k, and
I'c Aut(Y)

a finite reduced subgroup of the automorphism group of Y. So T' acts on the left
of Y.

Let G be a connected reductive linear algebraic group over k and F¢ a principal
G-bundle over Y. A T'-linearization of Eq is a lift of the action of T on Y to the
total space of Eg that commutes with the action of G. So a I'-linearization of Eg
is a left action of I' on K such that for any y€T, the automorphism of the variety
E¢q defined by it is an isomorphism of the G-bundle over the automorphism ~ of Y.

The Lie algebra of G will be denoted by g. Fix a reduced parabolic subgroup
P of G. Let pCg be the Lie algebra of P.

Let Eg be a I'-linearized G-bundle. Its adjoint bundle Eg x© g will be denoted
by ad(Egs). Since the adjoint action of G preserves the Lie algebra structure of g,
each fiber of ad(FE¢) has the structure of a Lie algebra isomorphic to g.

Since G/P is complete and dimY =1, the G-bundle E¢ admits a reduction
of structure group to P. If EpCE¢ is a reduction of structure group of Eg to
Ep, then ad(Ep)Cad(Eg), and the quotient ad(F¢)/ ad(Ep) is identified with the
pullback of the relative tangent bundle on Eg/P by the section

oY — FE¢/P

(of the fiber bundle E¢; /P over Y') corresponding to the reduction. Therefore, there
is a constant N(Eq) such that

deg o™ Tre1 > N(E¢q),

where Tt is the relative tangent bundle over Eg/P for the projection to Y.
A reduction Ep C Eg is called I'-invariant if the subvariety Ep is left invariant
by the action of I" on E¢g. Let

(2.1) o(Eg)eZ

be the minimum of deg ¢*T. taken over all possible [-invariant reductions of E¢
to P.
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Let Q(ad(Eq)) be the Quot-scheme parametrizing all quotients of ad(E¢) of
rank dim G/ P and degree ¢(E¢). (See [G] for properties of Q(ad(Eg)).)
Take a quotient Q€ Q(ad(Eg)). Let

(2.2) 0— S —ad(Eg) —Q—0

be the exact sequence defined by it. The subsheaf S is a subbundle of ad(E¢) over
a nonempty open subset of Y.

The action of I' on Eg defining the I'-linearization induces an action of I' on
the vector bundle ad(Eg). Let

Q" (ad(Eg)) C Q(ad(Eg))

be the closed subscheme consisting of all quotients @ such that the corresponding
subsheaf S (as in (2.2)) is left invariant by the action of T'. Note that if S is
invariant under the action I', then there is an induced action of I' on @ defined by
the condition that the projection in (2.2) is T'-equivariant.

The action of I' on ad(E¢) induces an action of I' on the scheme Q(ad(E¢)).
The action of any v€I' sends a quotient Q@=ad(Fg)/S to ad(Eg)/v(S). Clearly,
OF (ad(Eg)) coincides with Q(ad(Eq))’.

The vector bundle ad(F¢) is associated with Fg for the adjoint action of G
on g. So any closed point of the fiber (Eg),, y€Y, gives a Lie algebra isomorphism
of the fiber ad(E¢), with g. More precisely, the isomorphism defined by y sends any
weEg to the equivalence class defined by (y,w) (recall that ad(Eg), is a quotient
of (E¢)yxg). All such isomorphisms of ad(Eg),, y€Y, with g (defined by (Eg)y)
will be called distinguished isomorphisms.

Therefore, any two distinguished isomorphisms of ad(E¢), with g differ by an
inner automorphism of g (defined by some element in G).

Take any quotient Q€ Q" (ad(Eg)). Let SCad(Eg) be the subsheaf defined as
n (2.2). Let UCY be the nonempty open subset over which S is a subbundle of
ad(Eg)

Lemma 2.1. If there is a nonempty open subset U' CU such that for any point
yelU’, there exists o distinguished isomorphism of ad(Eg), with g that takes S,
isomorphically to p, then S is a subbundle of ad(E¢), that is, U=Y.

Proof. Let S’Cad(Eg) be the (unique) subbundle of rank dim P that con-
tains S. So S’ is the inverse image of Torsion(Q) for the projection in (2.2). For
any y€Y, the fiber S} is a subalgebra of ad(F¢) identified with p by (the restric-
tion of ) some distinguished isomorphism. Indeed, this follows from the fact that the
subvariety of the Grassmannian Gr(dim P, g) (parametrizing all dim P-dimensional
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subspaces of g), defined by all the conjugations of pCg, is the image of G/P in
Gr(dim P, g). In particular, it is a complete subvariety. Therefore, if the fiber of
a subbundle of ad(F¢) over the general point is identified with p by some distin-
guished isomorphism, then the fiber over the subbundle over each point of ¥ has
this property.

Since S is left invariant by the action of I' on ad(E¢), it follows immediately
that S’ is invariant under the action of T'.

Consequently, S’ gives a (reduced) I'-invariant sub-group-scheme

S' CAd(Eg)=FEgx%G

of the gauge bundle defined by the condition that for any point y€Y’, the Lie algebra
of S, coincides with S’. Now, S’ defines a reduction of structure group

Ep CEg

to the parabolic subgroup P. For any point yeY, the subvariety (Ep),C(Eq),

consists of all € (Fg), such that the natural projection of Eg x G to Ad(E¢) sends

zx P into g; That this defines a reduction of structure group of Eg to P is an

immediate consequence of the fact that the normalizer of P in G coincides with P.

This reduction Ep is I-invariant, since S’ is left invariant under the action T
From the definition of ¢(Eg) in (2.1) it follows that

deg(ad(Fg)/S") =deg o*Ties > c(Eg),
where o is the section Y — E¢/P defining the reduction Ep. Therefore, as
deg(ad(Eq)/S") =deg(ad(Eg)/S) —dim Torsion(Q) = ¢( Eg ) —dim Torsion(Q),

we have Torsion(Q)}=0. This implies that $’=9, and the proof of the lemma is
complete. [

Using the above lemma we will construct a closed subscheme of Q' (ad(Eg)).

3. The subscheme QL (ad(Eg))

Let Gry(dim P,ad(F¢)) be the Grassmann bundle over Y parametrizing all
dim P-dimensional subspaces in the fibers of ad(Eq). The space of all conjugates
of the Lie subalgebra p in ad(F¢) define a subbundle

(3.1) Gr¥, C Gry(dim P,ad(Eg))
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of the fiber bundle. In other words, for any y<Y, a subspace V Cad(Eg), is in Gr¥
if and only if there is a distinguished isomorphism of ad(E¢), with g that takes
p isomorphically to V. Therefore, any fiber of the fiber bundle Gr}, is isomorphic
to G/P. In fact, there is a canonical isomorphism

Indeed, for any yeY and any 2€(Eg), (recall that (Eg), parametrizes the dis-
tinguished isomorphisms of ad(E¢), with g), the image of p in ad(EFg) by the
distinguished isomorphism corresponding to z is a point in the fiber of Gr%’, over y.
Since this image subalgebra does not change as y moves over a P-orbit (for the
action of P on (Eg),), we get a natural isomorphism of the fiber bundle Gr§, over

X with Eg/P.
Note that the action of I" on Eq induces an action of I' on Gr’;,.
Let

(3.3) Qp(ad(Ec)) C Q" (ad(Eg))

be the subscheme defined by the I-invariant sections of Grf, (defined in (3.1)). So
a point of Q' (ad(E¢)), representing a quotient Q of ad(Eg), lies in Q% (ad(Eg)) if
and only if the corresponding subsheal S (as in (2.2)) has the property that S is a
subbundle of ad(F¢) and for each point y€Y, there is a distinguished isomorphism
of ad(Eq), with g that takes the fiber S, isomorphically to p.

Using Lemma 2.1 it can be shown that Q% (ad(Eq)) is in fact a closed sub-
scheme of Q' (ad(E¢)). Indeed, if we consider a morphism

F:C\{p} — Qp(ad(Eq)),

where p is a point on a smooth curve C, then using the completeness of QU (ad(Eg))
it extends to a morphism f:C'—Q'(ad(Eg)). Let UCY be the nonempty open
subset over which the quotient f(c) of ad(Eg) is locally free. Let

F:UxC — Gry(dim P, ad(Eg))

be the map defined by f. So, f (u,c) represents the subspace of ad(E¢q),, defined
by f(c). Therefore, the map f has the property that f(U x (C\{p}))CGrb. Since
GrY is a complete variety, we conclude that f(U xC)CGrl,. In particular, we
have U x {p}CGr},. Now Lemma 2.1 implies that f(p)c Q% (ad(Fg)). Therefore,
QL (ad(Eg)) is closed in QY (ad(Eg)).

Take any quotient @ in Q% (ad(Eg)). The action of I' on @ induces an action
on HY(Y,Q) for any i>0. Let

HY(Y,Q)" CH(Y,Q)

be the invariant subspace on which I" acts trivially.
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Proposition 3.1. For any Q€ QL (ad(Eg)),
dim G/P >dim H(Y, Q)F —dim H'(Y, Q)"

where HY(Y,Q)'' is the invariant part.

Proof. Let v:Y —Gr¥. be a section fiber bundle defined in (3.1) (we saw in (3.2)
that Gr';, is naturally identified with Eg/P). As we saw in the proof of Lemma 2.1,
such a section v defines a reduction of structure group Ep CEg to P. Note that
ad(E¢g)/ad(Ep) is identified with v*T,e;, where T,e is the pullback of the relative
tangent bundle for the projection of Gr}. to Y. Therefore, from [K, p. 37, The-
orem 2.17.1] it follows immediately that the dimension of the local moduli space,
around v, of sections of Gr}, is at least

dim H°(Y,ad(Eg)/ad(Ep))—dim H (Y, ad(Eg)/ ad(Ep)).

(Set X and S in [K, p. 37, Theorem 2.17] to be the curve Y, with the identity map
of Y as the projection of X to S; note that a morphism Y/Y —GrY. /Y is a section
of the fiber bundle Gr’;,.) Similarly, if v is I'-invariant, then the local moduli space,
around v, of I'-invariant sections of Gr’{, is of dimension not less than

dim H(Y,ad(Eg)/ ad(Ep))F —dim H(Y,ad(E¢)/ ad(Ep))"

(see [K, p. 37, Theorem 2.17.1] and [K, p. 35, Theorem 2.15]). To derive this from
the previous assertion, note that a I'-invariant section of Gr¥, is a section of Gr¥, /"
over Y/T". The pullback of the relative tangent bundle by the section over Y/T
defined by the above I-invariant section v coincides with ¢, (ad(Eg)/ad(Ep))",
where ¢ is the projection of Y to Y/T'. Since ¢ is a finite map, we have

H'(Y/T, ¢.(ad(Eg)/ ad(Ep))") = H'(Y,ad(Eg)/ ad(Ep))".

This establishes the above lower bound for the dimension of the local moduli space,
around v, of I-invariant sections of Gr}.. Therefore, for any Q€ Q% (ad(Eg)) we
have

dim T Q% (ad(Eg)) > dim H(Y, Q)F —dim H (Y, Q).

So, to prove the proposition it suffices to show that dim G/P>dim Q% (ad(Eg)).
Fix a point y€Y and consider the map

fy oL (ad(Eg)) — Gr:= Gr(dim P,ad(Eg),)
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to the Grassmannian that sends a quotient @ to the quotient @, of ad(Eg),. If
veGr(dim P,ad(Eg),) and C is an irreducible complete curve in f,*(v), consider
the map

Y xC — Gry(dim P, ad(Eg))

to the Grassmann bundle (parametrizing dim P-dimensional subspaces in ad(F¢))
that sends any (z, ¢) to the fiber at z of the subbundle corresponding to the quotient
represented by ¢. This map is constant on y x C, and hence using the rigidity lemma
we conclude that this map factors through the projection of Y xC to Y (see [MS,
pp. 254-255}). Therefore, all the fibers of f, are of dimension zero.

The image of f, is contained in the orbit of p under the adjoint action of G
on g (recall the condition that any fiber of S in (2.2) is identified with p by some
distinguished isomorphism). This implies that dimImage(f,)<dim G/P. Conse-
quently, we have dim G/P>dim Q% (ad(Eg)), and the proof of the proposition is
complete. [

Set X:=Y/T, and denote by ¢ the projection of ¥'. Let RCY be the collection
of all points where the map ¢ is ramified, that is, all points with nontrivial isotropy.
For any y€ R, the isotropy subgroup I', CI" is a cyclic subgroup, which acts faithfully
onT,Y. Let 7, €'y be the generator that acts as multiplication by eXp(2W\/?1 / ny),
where n, =#I",. Consider the action of 7, on the fiber ad(E¢q),. The eigenvalues
are of the form exp(2mv/—1m/ny), me[0,n,—1]. If ny>mi>mi>..2mh, >0
are such that exp (27\/3 my/ ny), i€[1,dim g], are the eigenvalues, then set

dim G/P

Ny = Z my.
=1
Theorem 3.2. The bound c(Eg) defined in (2.1) satisfies the inequality

o(Eg) <gx#1-dimG/P+Y N,
yeER

where gx =genus(X) and #I is the order of T.

Proof. This follows from Proposition 3.1 and the Riemann—Roch formula for
the Euler characteristic dim H(Y, Q)F —dim H*(Y, Q)T.

For any Q€ Q% (ad(Eg)) we have H' (Y, Q)' = H' (X, (¢.Q)"), where (¢,Q)F C
@@ is the subsheaf on which I' acts trivially.

For any point y€ R, consider the induced action of I'y on the fiber (,. Let
exp(2my/=11¢/ny), i€[1,dim G/P], be the eigenvalues, where n, is defined above
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and 7 €[0,ny —1]. We have

dim G/ P
deg Q@ =#I"-deg(d.Q +Z Z
yeR i=1

(see [B, p. 318, (3.10)]). Therefore,

deg Q=Y cp i /1Y R
#T = #T ’

deg(¢. Q)F

as {5y}d1mG/P is a subcollection of {m?Y}¢™¢ for each yeR. Now, using the
Riemann—Roch formula for {¢.Q)" we have

d
dim H°(X, ($.Q)") —dim (X, (¢.Q)") > (1-gx) dim G/ P+ fpr é#p

Combining this with Proposition 3.1 gives

dimG/P > (1—gx)di

N,
I

In other words, deg@Q<gx#I-dim G/P—{—ZyeR . Since ¢(Fq)=deg(Q), the
proof of the theorem is complete. [
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