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PERIODIC SOLUTIONS OF A SECOND
ORDER DIFFERENTIAL EQUATION WITH

DISCONTINUITIES IN THE SPATIAL VARIABLE

Martin Šenkyř́ık

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

Introduction. In this paper we prove an existence result for the second
order periodic boundary value problem (PBVP)

x′′ = f(t, x, x′), x ∈ R,(1)

x(0) = x(1), x′(0) = x′(1).(2)

We assume f to be measurable, but make no continuity requirements on f . We
use Filippov’s definition of a solution (see [4]).

Many results for boundary value problems (BVP’s) with discontinuities only
in the time variable were proved by using Carathéodory’s definition of a solution.
Filippov’s definition of a solution is more general than that of Carathéodory and
it includes it as a special case. A standard approach to boundary value problems
with discontinuities in the spatial variable is to solve the problem on each side
of the discontinuity separately and then try to match the resulting solutions. A
totally different approach is used in [9]. Using Filippov’s theory, the BVP’s are
reformulated as differential inclusions and then the existence principles proved
in [7] are applied to obtain existence results for the periodic problem and for
the Dirichlet problem. The results are further used to establish the existence of
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periodic solutions to the dry friction equation

(3) u′′ + bu′ + cu + k sgn u′ = e(t),

where b, c, k ∈ R, b, c, k > 0, and e is a measurable 1-periodic function.
In this paper we first prove an existence theorem for periodic solutions of a

second order differential inclusion and then we use the same approach as in [9].
The results here are applicable to the dry friction equation with the following
nonlinearities:

(4) u′′ + b(u′) + c(u) + k sgn u′ = e(t),

or

(5) u′′ + u′d(u) + c(u) + k sgn u′ = e(t),

where k ∈ R, k > 0, b, c and g are nonlinear functions, and e is a measurable
1-periodic function.

First we recall Filippov’s definition. Consider the Lebesgue measure µ and
an initial value or a boundary value problem for the vector differential equation
x′ = f(t, x), where f(t, ·) may be discontinuous. Based on the idea that N ⊂ Rn

with µ(N) = 0 should play no role Filippov defined solutions of

x′ = f(t, x), x ∈ Rn,(6)

x(0) = x(1),(7)

where f = (f1, . . . , fn) and x = (x1, . . . , xn), as solutions of the differential
inclusion constructed as a convexification of f with respect to x ∈ Rn in the
following way:

x′(t) ∈
⋂
δ>0

⋂
µ(N)=0

conv f(t, U(x(t), δ)−N)

for almost every t, where U(x, δ) = {y : |x − y| < δ} and conv Y is the closed
convex hull of Y . We make no continuity requirements on f , but we assume f

to be measurable.

Definition 1. Let x be absolutely continuous on [0, 1]. If x satisfies (7) and

x′(t) ∈
⋂
δ>0

⋂
µ(N)=0

conv f(t, U(x(t), δ)−N) = K{f(t, x)} = kt(x)

for almost every t ∈ (0, 1), we say x is a solution of (6), (7).

In the next definition, which is equivalent to Definition 1, we use the following
notation:

ess max
x∈E

f(t, x) = inf
µ(N)=0

sup
x∈E−N

f(t, x),
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where f is scalar-valued. The essential upper bound of the function f(t, x) at
the point x is defined by

Mx{f(t, x)} = lim
δ→0

ess max
y∈U(x,δ)

f(t, y).

Analogously the essential lower bound of f(t, x) at x is denoted by mx{f(t, x)}.
The proof of the equivalence of Definition 1 and the following definition can be
found in [4], p. 203.

Definition 2. Let x be absolutely continuous on [0, 1] and let x satisfy (2).
If

mi(t, x) = mx{fi(t, x1, . . . , xn)} ≤ x′i ≤ Mx{fi(t, x1, . . . , xn)} = Mi(t, x)

for i = 1, . . . , n and for almost every t ∈ (0, 1), then x is a solution of (6), (7).

Remark 1. Let kt(x) = (k1
t (x), . . . , kn

t (x)). Then

ki
t(x) ⊂ [mi(t, x),Mi(t, x)]

for almost every t ∈ (0, 1), or if we define Mi(x, t) = max{|mi(t, x)|, |Mi(t, x)|},
then

ki
t(x) ⊂ [−Mi(t, x),Mi(t, x)]

for almost every t ∈ (0, 1). Using vector notation and the symbol cl(Y ) for the
closure of Y we get

(8) kt(x) ⊂ cl(U(0, |M(x, t)|)),

which we write as

|kt(x)| ≤ |M(x, t)|

for almost every t ∈ (0, 1), where M(x, t) = (M1(x, t), . . . ,Mn(x, t)).

Definition 3. We say x1 is a solution of (1), (2) if (x1, x2) is a Filippov
solution of

x′1 = x2, x′2 = f(t, x1, x2),

x1(0) = x1(1), x2(0) = x2(1).

The following existence principle will be used to prove an existence theorem
for periodic solutions of a second order differential inclusion. First we need to
define an Lp-Carathéodory function.
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Definition 4. Let p ≥ 1. A set-valued function F : [0, 1]×Rkn → Kv(Rn),
where Kv(Rn) is the family of all compact, convex, nonempty subsets of Rkn, is
an Lp-Carathéodory function provided:

(a) the map x → F (t, x) is upper semicontinuous for all t ∈ [0, 1];
(b) the map t → F (t, x) is measurable for all x ∈ Rkn;
(c) for each r > 0 there exists hr ∈ Lp[0, 1] such that |x| ≤ r implies

|F (t, x)| ≤ hr(t) for almost all t ∈ [0, 1].

Theorem 1 (Existence principle). Consider an Lp-Carathéodory function
F and the family of problems

(9) x′′ − αx ∈ λ[F (t, x, x′)− αx], x(0) = x(1), x′(0) = x′(1),

for λ ∈ [0, 1], where α 6= 0 is fixed and is not an eigenvalue of

(10) L(x) = x′′,

where the domain of L is {x ∈ C2(0, 1) : x(0) = x(1), x′(0) = x′(1)}. Let U be
a bounded, open set in {x ∈ C1(0, 1) : x(0) = x(1), x′(0) = x′(1)} with 0 ∈ U .
Then either

(11) x′′ ∈ F (t, x, x′), x(0) = x(1), x′(0) = x′(1),

has a solution in cl(U), or (7) has a solution on ∂U for some λ ∈ (0, 1).

Proof. The theorem follows from the general existence principles proved in
[7]. It is a particular case of Theorem 2(A) of [7].

We use this existence principle to prove an existence theorem for (11).

Theorem 2 (Periodic problem for inclusions). Let F be an Lp-Carathéodory
function such that

(12) |F (t, y, z)− αy − zg(y)| < C

for all y, z ∈ R, where α, C ∈ R, C > 0, |α| < π2 and g ∈ C0(R). Then (11)
has at least one solution.

Proof. We need to establish a priori bounds independent of λ for solutions
of (9) and their derivatives. Let x be a solution of (9), where 0 < λ < 1. Then

(13) x′′ = λ(w − αx) + αx, x(0) = x(1), x′(0) = x′(1),

where w(t) ∈ F (t, x, x′) for almost every t ∈ (0, 1) and w is an integrable selection
of F (t, x, x′) (see [5]). We integrate (13) from 0 to 1 to get

0 = α

∫ 1

0

x dt + λ

∫ 1

0

(w − αx) dt = α

∫ 1

0

x dt + λ

∫ 1

0

(w − αx− x′g(x)) dt.



Second Order Equation with Discontinuities 203

This implies that ∣∣∣∣ ∫ 1

0

x dt

∣∣∣∣ ≤ λC

|α|
≤ C

|α|
,

and for some t0 ∈ (0, 1) we have

|x(t0)| =
∣∣∣∣ ∫ 1

0

x dt

∣∣∣∣ ≤ C

|α|
.

Further, by the Hölder inequality we have

(14) |x(t)| ≤ |x(t0)|+
∫ t

t0

|x′(s)| ds ≤ C

|α|
+

( ∫ 1

0

|x′(s)|2 ds

)1/2

for t ∈ [0, 1]. Now we will find an estimate for the L2 norm of x′. We multiply
(13) by x and integrate from 0 to 1 to get

(15) −
∫ 1

0

(x′)2 dt = α

∫ 1

0

x2 dt + λ

∫ 1

0

(wx− αx2 − g(x)x′x) dt.

Here we integrated by parts on the left hand side of the equation, and on the
right hand side we used the identity∫ 1

0

g(x)x′x dt = x(1)G(x(1))− x(0)G(x(0))−
∫ 1

0

G(x)x′ dt = 0,

where G′ = g. From (14), (15) and the Wirtinger inequality for periodic func-
tions, we obtain∫ 1

0

|x′|2 dt ≤ |α|
∫ 1

0

x2 dt + λC

∫ 1

0

|x| dt(16)

≤ |α|
π2

∫ 1

0

|x′|2 dt + λ
C2

|α|
+ λC

( ∫ 1

0

|x′|2dt

)1/2

.

If ‖x′‖L2[0,1] < 1, then we have the desired estimate, so we assume ‖x′‖L2[0,1] ≥ 1.
After a simple manipulation with (16) we get

‖x′‖L2[0,1] ≤ K,

where

K =
C(C + |α|)π2

|α|(π2 − |α|)
> 0.

Here we used the assumption |α| < π2. From (14) it follows that

|x(t)| ≤ C

|α|
+ K for t ∈ [0, 1].
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Finally, we need an estimate on x′. We multiply (13) by x′′ and integrate
from 0 to 1 to get∫ 1

0

(x′′)2 dt = α

∫ 1

0

xx′′ dt + λ

∫ 1

0

(wx′′ − αxx′′) dt(17)

= −α

∫ 1

0

(x′)2 dt + λ

∫ 1

0

(wx′′ − αxx′′) dt.

From (12), (17) and the Hölder inequality, it follows that∫ 1

0

(x′′)2 dt ≤ |α|
∫ 1

0

|x′|2 dt + λC

∫ 1

0

|x′′| dt + λ

∫ 1

0

x′′x′g(x) dt

≤ αK2 + λC

∫ 1

0

|x′′| dt + λM

∫ 1

0

|x′′x′| dt

≤ αK2 + C

( ∫ 1

0

|x′′|2 dt

)1/2

+ KM

( ∫ 1

0

|x′′|2dt

)1/2

,

where M = max{g(x) : |x| ≤ C/|α| + K}. If ‖x′′‖L2[0,1] < 1, then we have the
desired estimate, so we assume ‖x′′‖L2[0,1] ≥ 1 to obtain

‖x′′‖2L2[0,1] ≤ (αK2 + C + KM)‖x′′‖L2[0,1]

and so

‖x′′‖L2[0,1] ≤ L,

where L = αK2 + C + KM. Since there exists t1 ∈ (0, 1) such that x′(t1) = 0,
the fundamental theorem of calculus and Hölder inequality yield

|x′(t)| ≤
∫ t

t1

|x′′| ds ≤ ‖x′′‖L2[0,1] ≤ L for t ∈ [0, 1],

and the required a priori bounds are established. This proves the theorem.

Now we use Theorem 2 to prove an existence result for the PBVP, where we
consider Filippov solutions.

Theorem 3 (Periodic problem for Filippov solutions). Suppose f(t, y, z) is
measurable in [0, 1] × R2 and for any bounded, closed domain D ⊂ [0, 1] × Rn,
there exists an integrable function B(t), which may depend on D, such that

(18) |f(t, y, z)| ≤ B(t)

almost everywhere in D. Moreover, assume that for all (t, y, z) ∈ [0, 1] × R2,
there exist δ1, δ2 > 0 and a function C : [t− δ1, t + δ1] → R such that

(19) |f(t, y, z)| ≤ C(t)
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for (t, y, z) ∈ [t−δ1, t+δ1]×cl(U((y, z), δ2)), where at the endpoints, we consider
appropriate one-sided neighborhoods. Finally, suppose that for each (y, z) ∈ R2

there exists an ε > 0 such that

(20) sup
(x,y)∈R2

|f(t, ỹ, z̃)− αy − zg(y)| < C

for (ỹ, z̃) ∈ U((y, z), ε)−N , where µ(N) = 0 and α, C and g are as in Theorem 2.
Then the PBVP has a solution.

Proof. We apply Theorem 2. Based on the results of [8], it is shown in [9],
Theorem 3, that

K{f(t, x1, x2)} =
⋂
δ>0

⋂
µ(N)=0

conv f(t, U((x1, x2), δ)−N),

where f satisfies (18), (19), is an Lp-Carathéodory function. Let h =
col(x2, f(t, x1, x2)), where col(x2, f(t, x1, x2)) is the column vector with com-
ponents x2 and f(t, x1, x2). Then

K{h(t, x1, x2)} =
⋂
δ>0

⋂
µ(N)=0

conv h(t, U((x1, x2), δ)−N)

= col(x2,K{f(t, x1, x2}).

So (1), (2) is equivalent to

x′′ ∈ K{f(t, x, x′)}, (2).

From (20) it follows that kf (t, x, y) satisfies (12), so Theorem 2 applies and this
completes the proof.

Example (Dry friction). Consider the equation

x′′ + b(x′) + c(x) + k sgn x′ = e(t),

where b, c are continuous functions and e(t) is a 1-periodic measurable function
with

sup
t∈R

|e(t)| = M.

Condition (20) becomes

|−b(z)− c(y)± k sgn z + e(t)− αy − zg(y)|
≤ |−b(z)− zg(y)|+ | − c(y)− αy|+ |e(t) + k| ≤ C.

If there exist β, γ, C1, C2 ∈ R, |γ| ≤ π2, γ 6= 0, such that

|b(z)− βz| ≤ C1, |c(y)− γy| ≤ C2,
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for all y, z ∈ R, then we can take C = C1 + C2 + M + k and condition (20) is
satisfied. Consider g(y) = −β and α = −γ. If we replace b(x′) by x′d(x) then
we need an estimate on

|−zd(y)− zg(y)|,
and this vanishes if we take g = d. Thus, we have established the existence of
periodic solutions to equations (4) and (5).
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