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Introduction

The semilinear elliptic equation

−∆u = g(x, u)

has been the object of several studies in the last twenty years. For instance, let
us mention the well-known result proved by Ambrosetti and Rabinowitz (cf. [1]):
if g is superlinear and odd with respect to the second variable, then the above
equation has a sequence of solutions uh ∈ H1

0 (Ω) with ‖uh‖H1
0
→∞.

In order to get such a result, a variational technique has been employed. In
fact, the above equation is the Euler equation associated with the functional

f(u) =
1
2

∫
Ω

|Du|2 dx−
∫

Ω

G(x, u) dx,

where G(x, s) =
∫ s

0
g(x, t) dt.

Now, let us deal with the quasilinear elliptic equation

(1) −
n∑

i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

∂aij

∂s
(x, u)DiuDju = g(x, u),

1991 Mathematics Subject Classification. Primary 35J65.

c©1995 Juliusz Schauder Center for Nonlinear Studies

357



358 A. Canino

where aij(x, s) = aji(x, s). Classical critical point theory fails in this case. In
fact, consider the associated functional f : H1

0 (Ω) → R defined by

f(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx−
∫

Ω

G(x, u) dx.

Under reasonable assumptions on aij and g, it is possible to prove that f is
continuous and that for every u ∈ H1

0 (Ω) and v ∈ C∞0 (Ω),

f ′(u)(v) := lim
t→0

f(u + tv)− f(u)
t

=
∫

Ω

n∑
i,j=1

aij(x, u)DiuDjv dx

+
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuv dx−

∫
Ω

g(x, u)v dx.

Under natural hypotheses, it is also possible to have aij(x, u) ∈ L∞(Ω),
(∂aij/∂s)(x, u) ∈ L∞(Ω), and g(x, u) ∈ L1

loc(Ω) ∩H−1(Ω) for every u ∈ H1
0 (Ω).

Now, if f is locally lipschitzian, we must have, for every u ∈ H1
0 (Ω),

n∑
i,j=1

∂aij

∂s
(x, u)DiuDju ∈ L1

loc(Ω) ∩H−1(Ω).

This seems to be possible only if aij is independent of s or n = 1.
From now on, let us concentrate our attention on the case n ≥ 2.
Quasilinear elliptic equations like (1) have been studied, by means of differ-

ent techniques, in [4], [5], [7]–[9], [13], [17]. However, a hypothesis is assumed,
which implies an a priori bound on the solutions with respect to the H1

0 -norm.
Therefore, the superlinear case seems not to be treatable by that approach. On
the contrary, there are few applications of techniques of critical point theory to
(1). We are only aware of [18], where a nonlinear eigenvalue problem is treated1.

The aim of our paper is to prove the existence of infinitely many solutions
for (1) under suitable symmetry assumptions. The main tool for the proof is
the nonsmooth critical point theory as developed in [11] and [12]. In fact, we
reduce the problem to finding “critical” (in a suitable sense) points of the func-
tional f and then we apply a symmetric mountain-pass theorem for continuous
functionals.

Acknowledgements. The author wishes to thank Marco Degiovanni for
raising the problem and helpful discussions.

1After the completion of this paper, we learned about [2] where the existence of one

nontrivial solution for certain quasilinear equations is proved.
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1. Nonsmooth critical point theory

Let us begin by recalling from [11] and [12] some notions and results of
nonsmooth critical point theory.

In the following, X will denote a metric space endowed with the metric d.

Definition 1.1. Let f : X → R be a continuous function and let u ∈ X.
We denote by |df |(u) the supremum of the σ’s in [0,∞[ such that there exist
δ > 0 and a continuous map

H : B(u, δ)× [0, δ] → X

such that

∀ν ∈ B(u, δ), ∀t ∈ [0, δ]: d(H(ν, t), ν) ≤ t,

∀ν ∈ B(u, δ), ∀t ∈ [0, δ]: f(H(ν, t)) ≤ f(ν)− σt.

The extended real number |df |(u) is called the weak slope of f at u.

Let us point out that the above notion has been independently introduced
also in [15], while a similar notion can be found in [14].

The following two definitions are related to the previous notion.

Definition 1.2. Let f : X → R be a continuous function. A point u ∈ X

is said to be (lower) critical for f if |df |(u) = 0. A real number c is said to be
a (lower) critical value for f if there exists u ∈ X such that |df |(u) = 0 and
f(u) = c.

Definition 1.3. Let f : X → R be a continuous function and let c ∈ R.
We say that f satisfies (P-S)c, i.e. the Palais–Smale condition at level c, if from
every sequence (uh) in X with |df |(uh) → 0 and f(uh) → c it is possible to
extract a subsequence (uhk

) converging in X.

Now, let us mention a fundamental theorem in critical point theory. By now,
it is a classical result for C1-functionals. Owing to the results in [11], we can
state a generalized version for the case of continuous functionals.

Theorem 1.4. Let E be an infinite-dimensional Banach space and let f :
E → R be continuous, even and satisfying (P-S)c for every c ∈ R. Assume that

(a) there exist % > 0, α > f(0) and a subspace V ⊂ E of finite codimension
such that

(1.4.1) ∀u ∈ V : ‖u‖ = % ⇒ f(u) ≥ α,

(b) for every finite-dimensional subspace W ⊂ E, there exists R > 0 such
that

(1.4.2) ∀u ∈ W : ‖u‖ > R ⇒ f(u) ≤ f(0).

Then there exists a sequence (ch) of critical values of f with ch →∞.
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Proof. If f ∈ C1(E), the result can be found in [16, Th. 9.12]. On the other
hand, the symmetric deformation lemma has been extended to the continuous
case in [11, Th. 2.16, 2.17]. Then the argument of [16, Th. 9.12] can be easily
adapted to our situation. �

In view of the application we shall consider in the next section, let us focus
our attention on the functional

f(u) =
∫

Ω

L(x, u, Du) dx.

Let Ω be an open bounded subset of Rn. For simplicity, assume n ≥ 3. Consider
an integrand

L : Ω× R× Rn → R
such that:

• for all (s, z) ∈ R× R, L(x, s, z) is measurable with respect to x,
• for a.e. x ∈ Ω, L(x, s, z) is of class C1 with respect to (s, z).

Let us impose the following growth conditions: there exist a0 ∈ L1(Ω), b0 ∈ R,
a1 ∈ L1

loc(Ω) and b1 ∈ L∞loc(Ω) such that

|L(x, s, z)| ≤ a0(x) + b0(|s|2n/(n−2) + |z|2),(1.1) ∣∣∣∣∂L

∂s
(x, s, z)

∣∣∣∣ ≤ a1(x) + b1(x)(|s|2n/(n−2) + |z|2),(1.2) ∣∣∣∣∂L

∂z
(x, s, z)

∣∣∣∣ ≤ a1(x) + b1(x)(|s|2n/(n−2) + |z|2).(1.3)

We want to provide us with some tools which allow handling the abstract notions
we have recalled.

Theorem 1.5. Let f : H1
0 (Ω) → R be defined by

f(u) =
∫

Ω

L(x, u, Du) dx.

Then f is continuous and for every u ∈ H1
0 (Ω) we have

|df |(u) ≥ sup
{ ∫

Ω

[
∂L

∂z
(x, u, Du)Dv +

∂L

∂s
(x, u, Du)v

]
dx :

v ∈ C∞0 (Ω), ‖v‖H1
0
≤ 1

}
.

Proof. It is easy to verify that f is continuous and that for every u ∈ H1
0 (Ω)

and for every v ∈ C∞0 (Ω),

f ′(u)(v) := lim
t→0

f(u + tv)− f(u)
t

=
∫

Ω

[
∂L

∂z
(x, u, Du)Dv +

∂L

∂s
(x, u, Du)v

]
dx.
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Moreover, for every v ∈ C∞0 (Ω) the function {u → f ′(u)(v)} is continuous. Let
u be fixed. If

sup
{ ∫

Ω

[
∂L

∂z
(x, u, Du)Dv +

∂L

∂s
(x, u, Du)v

]
dx : v ∈ C∞0 (Ω), ‖v‖H1

0
≤ 1

}
= 0,

the assertion is true.
Otherwise, consider σ > 0 such that

σ < sup
{ ∫

Ω

[
∂L

∂z
(x, u, Du)Dv +

∂L

∂s
(x, u, Du)v

]
dx : v ∈ C∞0 (Ω), ‖v‖H1

0
≤ 1

}
;

then there exists v ∈ C∞0 (Ω) with ‖v‖H1
0
≤ 1 and

σ <

∫
Ω

[
∂L

∂z
(x, u, Du)Dv +

∂L

∂s
(x, u, Du)v

]
dx.

Let δ̃ > 0 be such that for every w ∈ B(u, δ̃),

(1.5.1) σ <

∫
Ω

[
∂L

∂z
(x,w,Dw)Dv +

∂L

∂s
(x,w,Dw)v

]
dx.

Define a continuous map

H : B(u, δ)× [0, δ] → H1
0 (Ω) (δ = δ̃/2)

by H(w, t) = w − tv. It is trivial that ‖H(w, t)− w‖H1
0
≤ t. On the other hand,

by (1.5.1), it is easy to see that

f(H(w, t)) ≤ f(w)− σt.

It follows that |df |(u) ≥ σ, whence the assertion follows by the arbitrariness
of σ. �

We immediately draw the obvious conclusion:

Corollary 1.6. If u ∈ H1
0 (Ω) is a critical point of f , we have∫

Ω

[
∂L

∂z
(x, u, Du)Dv +

∂L

∂s
(x, u, Du)v

]
dx = 0 ∀v ∈ C∞0 (Ω).

In order to treat the Palais–Smale condition, let us introduce an auxiliary
notion.

Definition 1.7. Let c be a real number. We say that f satisfies the concrete
Palais–Smale condition at level c (denoted by (C-P-S)c) if from every sequence
(uh) ⊂ H1

0 (Ω) satisfying limh f(uh) = c and

(1.7.1)
∫

Ω

[
∂L

∂z
(x, uh, Duh)Dv +

∂L

∂s
(x, uh, Duh)v

]
dx

= 〈αh, v〉 ∀v ∈ C∞0 (Ω)
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with limh αh = 0 in H−1(Ω), it is possible to extract a subsequence strongly
convergent in H1

0 (Ω).

Corollary 1.8. Let c be a real number. If f satisfies (C-P-S)c, then f

satisfies (P-S)c.

Proof. Let (uh) ⊂ H1
0 (Ω) be such that limh |df |(uh) = 0 and limh f(uh)

= c. Of course we can assume |df |(uh) < ∞. By Theorem 1.5, there exists
αh ∈ H−1(Ω) such that ‖αh‖H−1 ≤ |df |(uh) and∫

Ω

[
∂L

∂z
(x, uh, Duh)Dv +

∂L

∂s
(x, uh, Duh)v

]
dx = 〈αh, v〉 ∀v ∈ C∞0 (Ω).

Then the conclusion follows. �

2. The main result

Let Ω be an open bounded subset of Rn. For simplicity, suppose n ≥ 3.
Let aij : Ω× R → R (1 ≤ i, j ≤ n) be such that

• for each s ∈ R, aij(x, s) is measurable with respect to x,
• for a.e. x ∈ Ω, aij(x, s) is of class C1 with respect to s.

Let us make the following assumptions:

• there exists ν > 0 such that for a.e. x ∈ Ω, and all s ∈ R and ξ ∈ Rn,

(2.1)
n∑

i,j=1

aij(x, s)ξiξj ≥ ν|ξ|2;

• there exists c > 0 such that for a.e. x ∈ Ω, and all s ∈ R and 1 ≤ i, j ≤ n,

|aij(x, s)| ≤ c,(2.2) ∣∣∣∣∂aij

∂s
(x, s)

∣∣∣∣ ≤ c;(2.3)

• for a.e. x ∈ Ω, and all s ∈ R and 1 ≤ i, j ≤ n,

(2.4) aij(x, s) = aji(x, s).

Now, consider a Carathéodory function g : Ω× R → R such that

• for a.e. x ∈ Ω, and all s ∈ R,

(2.5) |g(x, s)| ≤ a(x) + b|s|p

with a ∈ L2n/(n+2)(Ω), b ∈ R, and 1 < p < (n + 2)/(n− 2).

Set

G(x, s) =
∫ s

0

g(x, t) dt

and suppose that:
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• there exist q > 2, R > 0 such that for a.e. x ∈ Ω and all s ∈ R with
|s| ≥ R,

(2.6) 0 < qG(x, s) ≤ sg(x, s);

• there exists α < q−2 such that for a.e. x ∈ Ω, and all s ∈ R and ξ ∈ Rn,

(2.7) 0 ≤ s
n∑

i,j=1

∂aij

∂s
(x, s)ξiξj ≤ α

n∑
i,j=1

aij(x, s)ξiξj .

Assumptions (2.1–2.6) seem to be very natural. On the contrary, hypothesis
(2.7) looks rather technical. However, conditions of this kind have already been
considered in the literature.

For instance, the sign condition

s
n∑

i,j=1

∂aij

∂s
(x, s)ξiξj ≥ 0

has been assumed in [4], [7], while a condition like

s
n∑

i,j=1

∂aij

∂s
(x, s)ξiξj ≤ α

n∑
i,j=1

aij(x, s)ξiξj

is typical in superlinear problems (see e.g. [3], where a problem in one dimension
is treated).

We are interested in weak solutions u ∈ H1
0 (Ω) of the quasilinear elliptic

equation

(P ) −
n∑

i,j=1

Dj(aij(x, u)Diu) +
1
2

n∑
i,j=1

∂aij

∂s
(x, u)DiuDju

= g(x, u) in D′(Ω),

namely functions u ∈ H1
0 (Ω) such that

(P ′)
∫

Ω

n∑
i,j=1

aij(x, u)DiuDjv dx +
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuv dx

=
∫

Ω

g(x, u)v dx ∀v ∈ C∞0 (Ω).

To this end, define the functional f : H1
0 (Ω) → R by setting

f(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx−
∫

Ω

G(x, u) dx.
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Theorem 2.1. Let u ∈ H1
0 (Ω) and α ∈ H−1(Ω) be such that∫

Ω

n∑
i,j=1

aij(x, u)DiuDjv dx +
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuv dx

−
∫

Ω

g(x, u)v dx = 〈α, v〉 ∀v ∈ C∞0 (Ω).

Then

u
n∑

i,j=1

∂aij

∂s
(x, u)DiuDju ∈ L1(Ω)

and∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx +
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuu dx

−
∫

Ω

g(x, u)u dx = 〈α, u〉.

Proof. We have
n∑

i,j=1

∂aij

∂s
(x, u)DiuDju− g(x, u) ∈ L1

loc(Ω) ∩H−1(Ω)

and
n∑

i,j=1

∂aij

∂s
(x, u)DiuDjuu− g(x, u)u ≥ −g(x, u)u

with g(x, u)u ∈ L1(Ω). Then the conclusion follows by the result of [10]. �

Theorem 2.2. For every real number c the functional f satisfies (C-P-S)c.

To prove this theorem, we need some lemmas.

Lemma 2.3. Let (uh) be a bounded sequence in H1
0 (Ω) satisfying

(2.3.1)
∫

Ω

n∑
i,j=1

aij(x, uh)DiuhDjv dx +
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, uh)DiuhDjuhv dx

= 〈βh, v〉 ∀v ∈ C∞0 (Ω)

with (βh) strongly convergent to β in H−1(Ω). Then Duh → Du a.e. and there
exists a subsequence (uhk

) weakly convergent to some u in H1
0 with

(2.3.2)
∫

Ω

n∑
i,j=1

aij(x, u)DiuDjv dx +
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuv dx

= 〈β, v〉 ∀v ∈ C∞0 (Ω).

The proof follows the argument of [7] and it will be given in the Appendix
for the reader’s convenience.



Multiplicity of Solutions 365

Lemma 2.4. Let (uh) be a bounded sequence in H1
0 (Ω) satisfying

(2.3.1)
∫

Ω

n∑
i,j=1

aij(x, uh)DiuhDjv dx +
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, uh)DiuhDjuhv dx

= 〈βh, v〉 ∀v ∈ C∞0 (Ω)

with (βh) strongly convergent in H−1(Ω). Then it is possible to extract a subse-
quence (uhk

) strongly convergent in H1
0 (Ω).

Proof. Denote still by (uh) a subsequence as in Lemma 2.3; without loss
of generality, we can assume that uh → u a.e. By Theorem 2.1, we have, in
particular,

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx +
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuu dx = 〈β, u〉,

where β ∈ H−1(Ω) is the limit of (βh).

Now, let us prove that

(2.4.1) lim sup
h

∫
Ω

n∑
i,j=1

aij(x, uh)DiuhDjuh ≤
∫

Ω

n∑
i,j=1

aij(x, u)DiuDju.

By Fatou’s lemma, we have

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuu dx ≤ lim inf

h

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, uh)DiuhDjuhuh dx.

Therefore

lim sup
h

∫
Ω

n∑
i,j=1

aij(x, uh)DiuhDjuh dx

= lim sup
h

[
− 1

2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, uh)DiuhDjuhuh dx + 〈βh, uh〉

]

≤ −1
2

∫
Ω

n∑
i,j

∂aij

∂s
(x, u)DiuDjuu dx + 〈β, u〉

=
∫

Ω

n∑
i,j=1

aij(x, u)DiuDju dx.
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Finally, let us show that uh converges to u in the strong topology of H1
0 (Ω).

Observe that

(2.4.2)
∫

Ω

n∑
i,j=1

aij(x, uh)Di(uh − u)Dj(uh − u) dx

=
∫

Ω

n∑
i,j=1

aij(x, uh)DiuhDjuh dx− 2
∫

Ω

n∑
i,j=1

aij(x, uh)DiuDjuh dx

+
∫

Ω

n∑
i,j=1

aij(x, uh)DiuDju dx.

For every j = 1, . . . , n, we have

lim
h

n∑
i=1

aij(x, uh)Diu =
n∑

i=1

aij(x, u)Diu

in the strong topology of L2(Ω). Then, passing to the lim sup in (2.4.2), we have,
by (2.4.1),

(2.4.3) lim sup
h

∫
Ω

n∑
i,j=1

aij(x, uh)Di(uh − u)Dj(uh − u) dx

= lim sup
h

∫
Ω

n∑
i,j=1

aij(x, uh)DiuhDjuh dx

−
∫

Ω

n∑
i,j=1

aij(x, u)DiuDju dx ≤ 0.

Using (2.4.3) and hypothesis (2.1), we conclude that

ν lim sup
h

‖Duh −Du‖2L2

≤ lim sup
h

∫
Ω

n∑
i,j=1

aij(x, uh)Di(uh − u)Dj(uh − u) dx ≤ 0.

Thus the assertion is proved. �

Lemma 2.5. Let c be a real number. Let (uh) ⊂ H1
0 (Ω) be such that

(2.5.1) lim
h

f(uh) = c

and

(2.5.2)
∫

Ω

n∑
i,j=1

aij(x, uh)DiuhDjv dx +
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, uh)DiuhDjuhv dx

−
∫

Ω

g(x, uh)v dx = 〈αh, v〉 ∀v ∈ C∞0 (Ω)

with αh → 0 in H−1(Ω). Then (uh) is bounded in H1
0 (Ω).
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Proof. Since f(uh) is bounded, we deduce from hypothesis (2.6) that there
exists k ∈ R such that

(2.5.3) k ≥ 1
2

∫
Ω

n∑
i,j=1

aij(x, uh)DiuhDjuh dx− 1
q

∫
Ω

g(x, uh)uh dx.

Moreover, from (2.5.2) and Theorem 2.1, we have

(2.5.4)
∣∣∣∣ ∫

Ω

n∑
i,j=1

aij(x, uh)DiuhDjuh dx

+
1
2

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, uh)DiuhDjuhuh dx−

∫
Ω

g(x, uh)uh dx

∣∣∣∣
≤ εh‖uh‖H1

0
(lim

h
εh = 0).

Now, from (2.5.3) and (2.5.4), we deduce that(
1
2
− 1

q

) ∫
Ω

n∑
i,j=1

aij(x, uh)DiuhDjuh dx

− 1
2q

∫
Ω

n∑
i,j=1

∂aij

∂s
(x, uh)DiuhDjuhuh dx

≤ εh

q
‖uh‖H1

0
+ k.

By hypotheses (2.1) and (2.7), the assertion follows. �

We now easily prove the previous theorem.

Proof of Theorem 2.2. Let (uh) ⊂ H1
0 (Ω) satisfy (2.5.1)–(2.5.2). By

Lemma 2.5, (uh) is bounded in H1
0 (Ω). By hypotheses on g, it follows that, up

to a subsequence, (g(x, uh)) is strongly convergent in H−1(Ω). Therefore we can
apply Lemma 2.4 with βh = g(x, uh) + αh. �

Finally, we can state the main result of the paper.

Theorem 2.6. Let aij and g satisfy hypotheses (2.1)–(2.7). Moreover, let

aij(x,−s) = aij(x, s), g(x,−s) = −g(x, s).

Then there exists a sequence (uh) ⊂ H1
0 (Ω) of solutions of (P ′) with f(uh) →∞.

Proof. The functional f : H1
0 (Ω) → R is evidently continuous and even.

Moreover, by Theorem 2.2 and Corollary 1.8, the functional f satisfies (P-S)c

for every c ∈ R.
For some constant k > 0, we also have

ν

2

∫
Ω

|Du|2 dx−
∫

Ω

G(x, u) dx ≤ f(u) ≤ k

∫
Ω

|Du|2 dx−
∫

Ω

G(x, u) dx.
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Then the arguments of [16], [19] show that f satisfies conditions (a) and (b) of
Theorem 1.4. By Theorem 1.4 and Corollary 1.6, the conclusion follows. �

Appendix

Proof of Lemma 2.3. Up to a subsequence, uh is convergent to u weakly
in H1

0 (Ω), strongly in L2(Ω) and a.e. in Ω. Moreover, since (uh) satisfies (2.3.1),
by Theorem 2.1 of [6] we have, up to a further subsequence, Duh → Du a.e.
in Ω.

We will use the device of [7]. We consider the test functions

(2.3.3) vh = ϕ exp {−Mu+
h },

where ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0, u+

h is the positive part of uh, and M > 0,
according to (2.1) and (2.3), is such that

1
2

∣∣∣∣ n∑
i,j=1

∂aij

∂s
(x, s)ξiξj

∣∣∣∣ ≤ M
n∑

i,j=1

aij(x, s)ξiξj .

Since (2.3.1) holds by density for every v ∈ H1
0 (Ω) ∩ L∞(Ω), we can put v = vh

in (2.3.1), obtaining

(2.3.4)
∫

Ω

n∑
i,j=1

aij(x, uh)DiuhDjϕ exp {−Mu+
h } dx

+
∫

Ω

[
1
2

n∑
i,j=1

∂aij

∂s
(x, uh)DiuhDjuh

−M

n∑
i,j=1

aij(x, uh)DiuhDju
+
h

]
ϕ exp {−Mu+

h } dx

− 〈βh, ϕ exp {−Mu+
h }〉 = 0.

Since[
1
2

n∑
i,j=1

∂aij

∂s
(x, uh)DiuhDjuh

−M

n∑
i,j=1

aij(x, uh)DiuhDju
+
h

]
ϕ exp {−Mu+

h } ≤ 0,

by Fatou’s lemma, we have
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(2.3.5)
∫

Ω

n∑
i,j=1

aij(x, u)DiuDjϕ exp {−Mu+} dx

+
∫

Ω

[
1
2

n∑
i,j=1

∂aij

∂s
(x, u)DiuDju

−M
n∑

i,j=1

aij(x, u)DiuDju
+

]
ϕ exp {−Mu+} dx

≥ 〈β, ϕ exp {−Mu+}〉 ∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0.

Now, we consider the test functions

(2.3.6) ϕh = ϕH(u/h) exp {Mu+}

with ϕ ∈ C∞0 (Ω), ϕ ≥ 0 and

H : R → R, H ∈ C1(R), 0 ≤ H ≤ 1,

H = 1 on [−1/2, 1/2], H = 0 on ]−∞,−1] ∪ [1,∞[.

Putting them in (2.3.5), we obtain

(2.3.7)
∫

Ω

n∑
i,j=1

aij(x, u)DiuDj(ϕH(u/h)) dx

+
∫

Ω

1
2

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuϕH(u/h) dx

≥ 〈β, ϕH(u/h)〉 ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

Passing to the limit as h →∞ in (2.3.7), we obtain

(2.3.8)
∫

Ω

n∑
i,j=1

aij(x, u)DiuDjϕ dx +
∫

Ω

1
2

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuϕ dx

≥ 〈β, ϕ〉 ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

In a similar way, by considering the test functions vh = ϕ exp {−Mu−h }, it is
possible to prove the opposite inequality. It follows that

(2.3.9)
∫

Ω

n∑
i,j=1

aij(x, u)DiuDjϕ dx +
∫

Ω

1
2

n∑
i,j=1

∂aij

∂s
(x, u)DiuDjuϕ dx

= 〈β, ϕ〉 ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

By (2.3.9), we deduce (2.3.2). �
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