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HESSIAN MEASURES I

Neil S. Trudinger1 — Xu-Jia Wang

Dedicated to Olga Ladyzhenskaya

1. Introduction

Let Ω be a domain in Euclidean n-space Rn. For k = 1, . . . , n and u ∈ C2(Ω)
the k-Hessian operator Fk is defined by

(1.1) Fk[u] = Sk(λ(D2u)),

where λ = (λ1, . . . , λn) denotes the eigenvalues of the Hessian matrix of sec-
ond derivatives D2u, and Sk is the k-th elementary symmetric function on Rn,
given by

(1.2) Sk(λ) =
∑

i1<...<λk

λi1 . . . λik
.

Alternatively we may write

(1.3) Fk[u] = [D2u]k,

where [A]k denotes the sum of the k× k principal minors of an n× n matrix A.
Our purpose in this paper is to extend the definition of the Fk to corresponding
classes of continuous functions so that Fk[u] is a Borel measure and to consider
the Dirichlet problem in this setting. A function u ∈ C2(Ω) is called k-convex
(uniformly k-convex) in Ω if Fj [u] ≥ 0 (> 0) for j = 1, . . . , k. The operator Fk
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is degenerate elliptic (elliptic) with respect to k-convex (uniformly k-convex)
functions. When k = 1, we have F1[u] = ∆u and 1-convex functions are sub-
harmonic. When k = n, Fk[u] = detD2u, the Monge–Ampère operator, and
n-convex functions are convex. To extend these notions to continuous functions,
we call a function u ∈ C0(Ω), k-convex, if there exists a sequence {um} ⊂ C2(Ω)
such that in any subdomain Ω′ b Ω, um is k-convex for sufficiently large m and
converges uniformly to u. It is easily seen that u ∈ C0(Ω) is k-convex if and only
if Fk[u] ≥ 0 in the viscosity sense ([11], [16]), that is, whenever there exists a
point y ∈ Ω and function v ∈ C2(Ω) satisfying u(y) = v(y), u ≤ v in Ω, we must
have Fk[v](y) ≥ 0. As above a function u ∈ C0(Ω) is 1-convex if and only if it is
subharmonic and n-convex if and only if it is convex. In each of these cases, it
is well known that the operator Fk can be defined as a Borel measure µk. For
k = 1, µ1 is the positive distribution given by

(1.4) µ1(ϕ) =
∫

Ω

u∆ϕ

for ϕ ∈ C∞0 (Ω), while for k = n,

(1.5) µn(e) = |χu(e)|

for any Borel set e ⊂ Ω, where χu is the normal (subgradient) mapping of the
convex function u ([1], [4]). Let Φk(Ω) denote the class of k-convex functions in
C0(Ω). In this paper we shall prove that Fk[u] may be extended to Φk(Ω) as
a Borel measure µk, for all k = 1, . . . , n, and that the corresponding mapping
u → µk[u] is weakly continuous on C0(Ω). The resultant measure µk[u] will be
called the k-Hessian measure generated by u.

Theorem 1.1. For any u ∈ Φk(Ω), there exists a Borel measure µk[u] such
that

(i) µk[u](e) =
∫

e

Fk[u]

for any Borel set e ⊂ Ω, if u ∈ C2(Ω), and
(ii) if um → u locally uniformly in Ω, then the corresponding measures

µk[um] → µk[u] weakly, that is,

(1.6)
∫

Ω

g dµk[um] →
∫

Ω

g dµk[u],

for all g ∈ C0(Ω) with compact support.

Theorem 1.1 is proved in Section 2 of this paper as a consequence of various
integral inequalities for the operators Fk.
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In Section 3 we consider the corresponding Dirichlet problem,

(1.7)

{
µk[u] = µ in Ω,

u = ϕ on ∂Ω,

in the class of k-convex functions. Under the hypotheses that the domain Ω is
uniformly (k − 1)-convex, that is, ∂Ω ∈ C2 and Hj [∂Ω] > 0, j = 1, . . . , k − 1,
where Hj [∂Ω] denotes the j-mean curvature of the boundary ∂Ω (see [17], [18]),
and that the Borel measure µ can be decomposed as a sum

(1.8) µ = µ1 + µ2,

where µ1 ∈ L1(Ω) and µ2 has compact support in Ω, we prove the following
existence and uniqueness theorem.

Theorem 1.2. For any ϕ ∈ C0(Ω), there exists a unique u ∈ Φk(Ω)∩C0(Ω)
satisfying (1.7), provided k > n/2.

Theorem 1.2 extends the case, p = 1, in [20], where an equivalent formulation
of the Dirichlet problem (1.7) is treated for inhomogeneous terms in Lp spaces.

In Section 4, we consider the extension of the measures µk as signed measures
on more general classes of functions including semi-convex functions (as in [10])
and admissible functions, for which the operators Fk are degenerate elliptic.
Finally, in Section 5, we apply Theorem 1.1 to extend Hessian integrals, (as
defined in [7], [19], [24]), to continuous k-convex functions. In particular we
derive a convergence theorem, Theorem 5.1, monotonicity results, Lemma 5.2,
Corollary 5.3, and a variational formula, Theorem 5.4.

In an ensuing paper [23], we consider the extension of Theorem 1.1 to con-
vergence in measure, with applications to the cases k ≤ n/2 in Theorem 1.2.

2. Integral inequalities

In this section we develop some basic integral properties for the operators Fk

which lead to Theorem 1.1. First we establish a monotonicity property.

Lemma 2.1. Let u, v ∈ Φk(Ω) ∩ C2(Ω) satisfy u = v on ∂Ω, u ≥ v in Ω.
Then

(2.1)
∫

Ω

Fk[u] ≤
∫

Ω

Fk[v].

Proof. By approximation of the functions u and v and use of Sard’s theo-
rem, we may assume ∂Ω ∈ C2. Setting, for a symmetric matrix r with eigenvalues
λ = (λ1, · · · , λn),

(2.2) Sij
k (r) =

∂

∂rij
Sk(λ(r)),
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and, using the identity [15],

(2.3) DiS
ij
k (D2u) = 0,

we then obtain, by the divergence theorem,

(2.4)
∫

Ω

(
Fk[v]− Fk[u]

)
=

∫ 1

0

∫
Ω

Sij
k (sD2u+ (1− s)D2v)Dij(v − u)

=
∫ 1

0

∫
∂Ω

Sij
k (sD2u+ (1− s)D2v)γiDj(v − u)

where γ denotes the unit outer normal to ∂Ω. Letting ∂ denote the tangential
gradient in ∂Ω, given by

(2.5) ∂ = D − γ(γ ·D),

we can write the integrand in (2.4) as

(2.6) Sij
k (sD2u+ (1− s)D2v)γiDj(v − u)

= Sij
k (sD2u+ (1− s)D2v)γ ·D(v − u)γiγj ≥ 0

since ∂u = ∂v on ∂Ω, γ ·Dv ≥ γ ·Du on ∂Ω, and the function su+ (1− s)v will
be k-convex for all s ∈ [0, 1] (see Lemma 2.3 below). �

Next we note that a global control on Fk is provided, for example, by Reilly’s
formula, [15] (see also [17]),

(2.7)
∫

Ω

Fk[u] =
1
k

∫
Ω

(γ ·Du)kHk−1[∂Ω],

when u vanishes on ∂Ω. Our next estimate shows that we can control the integral
of Fk locally in terms of the oscillation of u.

Lemma 2.2. Let u ∈ Φk(Ω) ∩ C2(Ω). Then for any subdomain Ω′ b Ω, we
have

(2.8)
∫

Ω′
Fk[u] ≤ C(oscΩu)k,

where C is a constant depending on Ω and Ω′.

To prove Lemma 2.2, we need a further property of k-convex functions.

Lemma 2.3. Let u1, . . . , um ∈ Φk(Ω) and f be a convex, non-decreasing
function in Rm. Then the composite function w = f(u1, . . . , um) is also k-
convex.

Proof. As a special case of Lemma 2.3, we see that linear combinations of
k-convex functions with non-negative coefficients are also k-convex. This follows
immediately from the convexity of the cones

(2.9)
Γk = {r ∈ $n | Sj(λ(r)) > 0, j = 1, . . . , k},
Γk = {r ∈ $n | Sj(λ(r)) ≥ 0, j = 1, . . . , k}
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in $n, the space of real, n × n, symmetric matrices. For the general case, it
suffices to assume u1, . . . , um ∈ Φk(Ω)∩C2(Ω) with f ∈ C2(Rm). Then we have
by calculation,

Dijw =
∂f

∂up
Dijup +

∂2f

∂up∂uq
DiupDjuq,

so that D2w ∈ Γk, since

∂f

∂up
≥ 0, p = 1, . . . ,m,

[
∂2f

∂up∂uq

]
≥ 0

and Γk is convex. �

Proof of Lemma 2.2. Let B = BR(y) be a ball of radius R and centre y,
lying in Ω and for 0 < σ < 1, let BσR denote the concentric ball of radius σR.
Without loss of generality we may assume y = 0 and, by subtraction of a suitable
constant, u < −ε in B for some given positive constant ε. Setting

(2.10)
ψ(x) =

m0

1− σ2

(
1− |x|2

R2

)
, m0 = inf

B
u,

w(x) = max{u, ψ}

it follows from Lemma 2.3, that w is k-convex in B and w ≤ u in BσR, w = ψ on
∂B. Our desired result follows by applying Lemma 2.1 to the function w and ψ.
To overcome the lack of smoothness of w, we replace it by

wh = fh(u, ψ),

where fh, for h > 0, is the mollification,

(2.11) fh(x) =
∫

R2
ρ

(
x− y

h

)
max(y1, y2) dy

and ρ ≥ 0, in C∞0 (R2), with
∫
ρ = 1, is the usual mollifier. With h sufficiently

small, we obtain from Lemma 2.1,∫
BσR

Fk[u] ≤
∫

B

Fk[ψ] =
(
n

k

)
ωn

(
2m0

1− σ2

)k

Rn−2k(2.12)

=
(
n

k

)
ωn

(
2

1− σ2

)k

Rn−2k

(
oscBu

)k

as ε→ 0. By covering Ω′ with balls we conclude (2.8). �

We are now ready to prove Theorem 1.1. Let u ∈ Φk(Ω) and suppose {um} ⊂
Φk(Ω) ∩ C2(Ω) converges to u in C0(Ω). By Lemma 2.2, the integrals∫

Ω′
Fk[um]

are uniformly bounded, for any subdomain Ω′ b Ω and hence a subsequence{
Fk[ump

]
}

converges weakly [2] (in the sense of measures) to a Borel measure
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µk[u] on Ω. It remains to show that the measure µk[u] is determined uniquely
by the function u. Accordingly suppose that {um}, {vm} ⊂ Φk(Ω) ∩ C2(Ω) are
two sequences converging in C0(Ω) to u and that the corresponding sequence
of functions {Fk[um]}, {Fk[vm]} converge weakly to Borel measures ν1 and ν2
respectively. Let B = BR(y) b Ω and fix some σ ∈ (0, 1). Let η ∈ C2(B) be a
convex function satisfying η = 0 in BσR, η = 1 on ∂Ω. For fixed ε > 0, it then
follows from the uniform convergence of {um}, {vm}, that

(2.13) um ≤ vm + εη

on ∂B, for sufficiently large m. Let

(2.14) Gm = {x ∈ B | um > vm + εη}.

Without loss of generality we may assume that ∂Gm is sufficiently smooth so
that from Lemma 2.1 we have

(2.15)
∫

Gm

Fk[um] ≤
∫

Gm

Fk[vm + εη].

By adding ε/2 to um, we may also assume that Gm ⊃ BσR, so that from (2.15),
we have ∫

BσR

Fk[um] ≤
∫

B

Fk[vm + εη] ≤
∫

B

[D2vm + CεI]k(2.16)

≤
∫

B

Fk[vm] + C
k−1∑
j=0

εk−j

∫
B

Fj [vm],

where C is a constant depending on η. Using the estimate (2.11) and sending
m→∞, ε→ 0, σ → 1, we then obtain

(2.17) ν1(B) ≤ ν2(B).

By replacing B by a sequence of balls BσmR, with σm → 1, satisfying

ν2(BσmR) = ν2(BσmR),

we deduce ν1(B) ≤ ν2(B) and subsequently by interchanging {um} and {vm}, we
have ν1(B) = ν2(B), whence ν1 = ν2. This completes the proof of Theorem 1.1,
as the above argument shows that µk[u] is well defined as the weak limit of Fk[um]
for any sequence {um} converging to u in C0(Ω) and the mapping, µk : C0(Ω) →
M(Ω), the space of locally finite Borel measures in Ω is weakly continuous. �

Using Theorem 1.1, our previous inequalities may be extended to functions
in Φk(Ω). In particular we have the following extensions of Lemmas 2.1 and 2.2.
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Corollary 2.4. Let u, v ∈ Φk(Ω) ∩ C0(Ω) satisfying u = v on ∂Ω, u ≥ v

in Ω. Then the corresponding measures µk satisfy

(2.18) µk[u](Ω) ≤ µk[v](Ω).

Corollary 2.5. Let u ∈ Φk(Ω). Then for any solution Ω′ b Ω, we have

(2.19) µk[u](Ω′) ≤ C(oscΩ u)k,

where C is a constant depending on Ω and Ω′.

3. The Dirichlet problem

In the paper [20], existence and uniqueness results are obtained for the Dirich-
let problem for weak solutions of the equation

(3.1) Fk[u] = ψ

for inhomogeneous term ψ ∈ Lp(Ω) for p ≥ 1. The classical case had been pre-
viously treated in [5] (see also [18]). A function u was called a weak solution of
equation (3.1) in Ω if there existed a sequence {um} ⊂ Φk(Ω)∩C2(Ω) converging
in C0(Ω) to u with the corresponding sequence {Fk[um]} converging in L1

loc(Ω)
to ψ. From Theorem 1.1, we have immediately, µk[u] = ψ, so that the notion
in (1.7) is more general. (Note that when a Borel measure µ is absolutely con-
tinuous and representable by a locally integrable function ψ we identify µ with
ψ.) A comparison principle for weak solutions is proved in [20] using estimates
from [19]. From Corollary 2.4 we obtain a more general result as follows.

Theorem 3.1. Let u, v ∈ C0(Ω) ∩ Φk(Ω) satisfy

(3.2)

{
µk[u] ≥ µk[v] in Ω,

u ≤ v on ∂Ω.

Then u ≤ v in Ω.

Proof. Assume {o} ∈ Ω and set

u(x) = u(x) + ε(|x|2 − d2)

for some ε > 0, where d = diam Ω. Clearly, we have

µk[u] ≥ µk[u] +
(
n

k

)
(2ε)k,

and u ≤ u ≤ v on ∂Ω. Accordingly, setting

Ωε = {x ∈ Ω | u(x) > v(x)},

and assuming Ωε is non-empty, we have, by Corollary 2.4,

µk[u](Ωε) < µk[u](Ωε) ≤ µk[v](Ωε),
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which contradicts our hypothesis. Consequently, letting ε → 0, we infer u ≤ v

in Ω. �

Note that Corollary 2.4 and Theorem 3.1, were proved by completely differ-
ent methods, (using the normal mapping), in the case k = n ([1], [4], [6]). The
uniqueness assertion in Theorem 1.2 follows immediately from Theorem 3.1. We
may obtain the existence part by approximation from the case ν2 = 0, ([20,
Theorem 1.1]), using the Hölder estimate there to guarantee the local equicon-
tinuity of the approximating solutions. However, this estimate may be bypassed
as k-convex functions are automatically Hölder continuous if k > n/2. To see
this we fix a ball B = BR(y) ⊂ Ω and observe that the function w given by

(3.3) w(x) = C|x− y|2−n/k,

where C is a positive constant, satisfies

(3.4) Fk[w] = 0, for x 6= y.

Consequently, if u ∈ Φk(Ω) ∩ C2(Ω), we obtain, from the classical comparison
principle in the punctured ball, BR(y)− {y},

(3.5) u(x)− u(y) ≤ oscBR(y)u

(
|x− y|
R

)2−n/k

,

provided k > n/2. It follows then that Φk(Ω) ⊂ C0,α(Ω) for α = 2 − n/k > 0
and moreover, for any x, y ∈ Ω, x 6= y.

(3.6)
|u(x)− u(y)|
|x− y|α

≤ oscu
dα

x,y

,

where dx,y = min{dist(x, ∂Ω),dist(y, ∂Ω)}. For k > n/2, the function w will be
k-convex in any domain and from [19], (see, in particular, (3.15), (3.16) in [19]),
we have

(3.7) Fk[w] =
[
C

(
2− n

k

)]k(
n

k

)
ωnδy,

where δy denotes the Dirac delta measure at y.
To complete the proof of Theorem 1.2, we let {ψm} be a sequence of non-nega-

tive functions in C∞0 (Ω), converging weakly as measures to ν2, with support lying
in some subdomain Ω′ b Ω. By virtue of the case p = 1, ([20, Theorem 1.1]),
there exists a sequence {um} ⊂ C0(Ω)∩Φk(Ω) of weak solutions of the Dirichlet
problems

(3.8)

{
µk[um] = ν1 + ψm in Ω,

u = ϕ on ∂Ω.

From the L∞ estimates in [19], [20], the sequence {um} is uniformly bounded in
L∞(Ω) and hence, from (3.6), (see also [20, Theorem 4.1]), equicontinuous in Ω′,
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so that a subsequence converges uniformly in Ω′. Relabelling the subsequence
as {um}, we fix ε > 0, so that for sufficiently large m, l, we have,

(3.9) |um − ul| ≤ ε on Ω′.

Using the comparison principle, Theorem 3.1 (or [20, Theorem 2.2]), in the
domain Ω − Ω′, we then obtain (3.9) on the whole domain Ω and Theorem 1.2
follows from Theorem 1.1. �

We remark that the necessary L∞ estimates for the above proof (and also
that of Theorem 1.1 in [20]), also follow readily from the Sobolev inequality
in [19], [24], and moreover, (in the case k > n/2), can be derived simply from
comparison with the functions (3.3), [21].

As an example of Theorem 1.2, we see that for any uniformly (k− 1)-convex
domain Ω, and point y ∈ Ω, there exists a bounded Greens function Gy, given
by the solution of the Dirichlet problem,

(3.10)

{
µk[Gy] = δy in Ω,

Gy = 0 on ∂Ω.

Furthermore, it is readily shown that Gy ∈ C0,α(Ω) ∩ C0,1(Ω − {y}), where
α = 2 − n/k, and, in accordance with (3.7) (see also [19]), for Ω = BR(y), we
have

(3.11) Gy(x) =
[

1(
n
k

)
ωn

]1/k 1
2− n/k

(|x− y|2−n/k −R2−n/k).

The Greens function is used to sharpen maximum principles in [21].
When k ≤ n/2, we cannot expect to obtain a continuous k-convex solution

of the Dirichlet problem (1.7) without further restrictions on ν, for example,
ν ∈ Lp(Ω) for p > n/2k, as in [20]. In order to embrace this case, we extend
our notion of k-convexity to upper semi-continuous functions analogously to the
general notion of subharmonic functions in the case k = 1. Accordingly, an upper
semi-continuous function u : Ω → [−∞,∞) is called k-convex if Fk[u] ≥ 0 in the
viscosity sense, that is, whenever there exists a point y ∈ Ω and function v ∈
C2(Ω) satisfying u(y) = v(y), u ≤ v in Ω, we must have Fk[v](y) ≥ 0. Because
our comparison argument above automatically extends to upper semi-continuous
k-convex functions, we infer again the estimate (3.5) and (3.6) when k > n/2 so
that there is no gain in generality in this case. However, the functions (3.3) will
be k-convex for all k = 1, . . . , n and corresponding Greens functions arise by
solving (3.10) in an appropriate sense. The general case is treated in our ensuing
paper [23], together with further local properties of k-convex functions.

Finally, we note that Theorem 1.2 extends to embrace more general boundary
data in the presence of barriers and that the Perron process [12] is also applicable.
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In particular the condition ν1 ∈ L1(Ω) may be replaced by

(3.12) ν1 ≤ ν[dist(x, ∂Ω)]β−k−1

for positive constants ν and β, as in the case k = n, (see [4], [20]).

4. Semi-convex and admissible functions

The theory in Section 2 extends to larger classes of functions. Analogously to
the notion of semi-convexity, we may call a function u ∈ C0(Ω), k-semi-convex
if the function v given by

(4.1) v(x) = u(x) +A|x|2/2,

is k-convex for some fixed positive constant A. From the expansion

(4.2) Fk[u] =
k∑

j=0

c(j, k, n)(−A)jFk−j [v],

where c(j, k, n) =
(
n
k

)(
k
j

)/(
n

k−j

)
, we can then define µk as a signed Borel measure

in Ω, by

(4.3) µk[u] =
k∑

j=0

c(j, k, n)(−A)jµk−j [v].

If {um} is a sequence of k-semi-convex functions, with the same constant A,
converging in C0(Ω) to a k-semi-convex function u, the corresponding sequence of
measures µk[um] will converge weakly to µk[u]. It follows that the definition (4.3)
is independent of the expansion (4.2).

Following usual terminology ([16], [18]), we call a function u ∈ C2(Ω), ad-
missible with respect to the operator Fk (or simply k-admissible) if

(4.4) Sk(D2u+ η) ≥ Sk(D2u)

for all non-negative matrices η ∈ Rn. Condition (4.4) implies that the operator
Fk is degenerate elliptic with respect to u, that is,

(4.5) [Sij
k (D2u)] ≥ 0,

and is weaker that k-convexity, although the two conditions coincide in the con-
vex case k = n. A function u ∈ C0(Ω) is called k-admissible if there exists a
sequence {um} ⊂ C2 of k-admissible functions converging to u in C0(Ω). If
additionally the sequence {um} satisfies

(4.6) Fk[um] ≥ −
(
n

k

)
Ak



Hessian Measures I 235

for a positive constant A, then the function u will be k-semi-convex, (with the
same constant A). To see this, we set

vm = um +A|x|2/2

and expand

Fk[vm] =
k∑

j=0

c(j, k, n)AjFk−j [um] ≥ Fk[um] +
(
n

k

)
Ak,

since Fj [um] ≥ 0, j = 1, . . . , k − 1. Equivalently, if u ∈ C0(Ω) satisfies the
inequality

(4.7) Fk[u] ≥ −
(
n

k

)
Ak

in the viscosity sense ([11], [16]), then u is k-semi-convex with constant A. Con-
sequently, we can define signed Borel measures µk for such functions, which
extend the smooth case and are weakly continuous with respect to convergence
in C0(Ω).

Alternatively, the existence of the signed measure µk can be approached
directly since Lemma 2.1 holds, more generally, for k-admissible functions u, v ∈
C2(Ω). In Lemma 2.2, we obtain, in place of (2.11), for k-admissible u ∈ C2(Ω),

(4.8)
∫

Ω′
Fk[u] ≤ C

{ ∫
Ω

(Fk[u])− + (oscΩu)k

}
.

Consequently, by following the proof of Theorem 1.1, we see that Theorem 1.1
can be extended to the class Φk(Ω; g) of k-admissible functions u which are limits
in C0(Ω) of sequences {um} ⊂ C2(Ω) of k-admissible functions um satisfying

(4.9) Fk[um] ≥ −g,

where g is a fixed, non-negative, locally integrable function in Ω. Corollaries 2.4
and 2.5 then extend also to Φk(Ω; g) with (2.19) replaced by

(4.10) µk[u](Ω′) ≤ C

{ ∫
Ω

g + (oscΩu)k

}
.

5. Hessian integrals

For u ∈ C2(Ω), we define the Hessian integral Ik[u] by

(5.1) Ik[u] = Ik[u; Ω] = −
∫

Ω

uFk[u].

If u = 0 on ∂Ω, we have by integration by parts,

(5.2) Ik[u] = k

∫
Ω

Sij
k DiuDju,
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so that Ik[u] ≥ 0 if, also, u is k-admissible. Imbedding properties of Hessian
integrals are treated in the papers [7], [19], [20], [24]. Using Theorem 1, we
define an extension of Ik to Φk(Ω) ∩ C0(Ω) by

(5.3) Ik[u] = −
∫

Ω

u dµk[u].

Clearly, Ik[u] is finite if µk[u](Ω) < ∞. Letting Φk
0(Ω) denote the subset of

Φk(Ω) ∩ C0(Ω) of functions vanishing on ∂Ω, we then obtain from the weak
continuity of µk, the approximation result.

Theorem 5.1. Let {um} ⊂ Φk
0(Ω) converge uniformly to u and suppose

{µk[um](Ω)} is bounded. Then Ik[um] → Ik[u].

Proof. For Ω′ b Ω, we have

µk[u](Ω′) ≤ lim inf
m→∞

µk[um](Ω′)

so that µk[u](Ω) <∞. From (5.3) we have, for any η ∈ C0
0 (Ω), 0 ≤ η ≤ 1,

Ik[um]− Ik[u] =
∫

Ω

(u− um) dµk[um] +
∫

Ω

u (dµk[u]− dµk[um])

≤ sup
Ω
|u− um|µk[um](Ω) + sup(1− η)|u|(µk[um](Ω) + µk[u](Ω))

+
∫

Ω

ηu (dµk[u]− dµk[um]) → 0,

as η → 1, m → ∞. Interchanging u and um we obtain Ik[um] → Ik[u] as
required. �

Remark. If we only assume {um} ⊂ Φk(Ω) converges to u in C0(Ω), we
obtain Ik[um; Ω′] → Ik[u; Ω′] for any subdomain Ω′ b Ω satisfying µk[um](∂Ω′) =
0, m ∈ N. If additionally, µk[um] → µk[u] strongly in Ω − Ω′ for some Ω′ b Ω,
then we obtain Ik[um; Ω] → Ik[u; Ω] as above.

Monotonicity. Hessian integrals enjoy corresponding monotonicity prop-
erties to the Hessian measures. Assuming u, v ∈ C2(Ω), u = v on ∂Ω, ∂Ω ∈ C2,
and writing

(5.4) wt = (1− t)u+ tv, 0 ≤ t ≤ 1, f(t) = Ik[wt],

we calculate

(5.5) Ik[u]− Ik[v] = f(0)− f(1)

=
∫ 1

0

∫
Ω

(v − u)Fk[wt] dt+
∫ 1

0

∫
Ω

wtS
ij
k Dij(v − u) dt

=(k + 1)
∫ 1

0

∫
Ω

(v − u)Fk[wt] dt

+
∫ 1

0

∫
∂Ω

uSij
k γiγjDγ(v − u) dt,
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where, as in Section 2, γ denotes the unit outer normal to ∂Ω. Accordingly,
if u ≥ v in Ω, u = v ≤ 0 on ∂Ω, with u and v both k-convex in Ω, we infer
Ik[u] ≤ Ik[v]. More generally, if M = max∂Ω u > 0, we replace u, v by u −M ,
v −M respectively, to obtain

Ik[u] = Ik[u−M ] +Mµk[u](Ω) ≤ Ik[v −M ] +Mµk[v](Ω) = Ik[v].

We therefore have the following analogue of Lemma 2.1.

Lemma 5.2. Let u, v ∈ Φk(Ω) ∩ C2(Ω) satisfy u = v on ∂Ω, u ≥ v in Ω.
Then

(5.6) Ik[u] ≤ Ik[v].

By approximation, using Theorem 5.1, we then infer the analogue of Corol-
lary 2.4.

Corollary 5.3. Let u, v ∈ Φk
0(Ω) satisfy u ≥ v in Ω. Then

(5.7) Ik[u] ≤ Ik[v].

Remark. More generally, if u, v ∈ Φk(Ω) ∩ C0(Ω), u ≥ v in Ω, we obtain,
using our previous remark after Theorem 5.1,

(5.8) lim inf
δ→0

Ik[u; Ωδ] ≤ lim sup
δ→0

Ik[v; Ωδ],

where Ωδ = {x ∈ Ω | dist(x, ∂Ω) > δ}. Also if only u, v ∈ Φk(Ω), then Ik[u; Ω′] ≤
Ik[v; Ω′] for any subdomain Ω′ b Ω, where u ≥ v and u = v on ∂Ω′.

Variational derivatives. From (5.5) we have

(5.9) f ′(0) = (k + 1)
∫

Ω

(u− v)Fk[u]−
∫

∂Ω

uSij
k (D2u)γiγjDγ(v − u).

Furthermore, if Dγu = Dγv (or u = 0) on ∂Ω, we have

(5.10)
f ′(0) = (k + 1)

∫
Ω

(u− v)Fk[u],

f ′′(t) = (k + 1)
∫

Ω

Sij
k (D2wt)Di(u− v)Dj(u− v) ≥ 0,

if u, v are k-admissible in Ω. Moreover, if ϕ = u− v has compact support in Ωδ

for some δ > 0, we have an upper bound,

f ′′(t) ≤ (k + 1)(n− k + 1)
∫

Ωδ

Fk−1[wt] max |Dϕ|2(5.11)

≤ C
(
oscΩu+ oscΩϕ

)k−1 max |Dϕ|2

by Lemma 2.2. By approximation we then obtain the following variational for-
mula.
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Theorem 5.4. Let u, v ∈ Φk(Ω) ∩ C0(Ω) with ϕ = u − v ∈ C2
0 (Ω) and let

f(t) = Ik[wt], 0 ≤ t ≤ 1. Then

(5.12) f ′(0) = (k + 1)
∫

Ω

(u− v) dµk[u].

Further Remarks. Taking account of the preceding section, certain of
the above results extend to semi-convex or admissible functions. In particu-
lar Theorem 5.1 extends to sequences {um} of k-semi-convex functions (with
same constant A) or sequences {um} ⊂ Φk(Ω, g) for some g ∈ L1(Ω), van-
ishing continuously on ∂Ω. The variational formula (5.12) remains valid for
u, v being k-semi-convex or k-admissible with u ∈ Φk(Ω, g). Furthermore, if
u, v ∈ C0(Ω) ∩ Φk(Ω, g) with u = v = 0 on ∂Ω, u ≥ v in Ω, we obtain from
(5.10), the inequality

(5.13) Ik[u]− Ik[v] ≤ (k + 1)
∫

Ω

(v − u) dµk[u],

which complements Lemma 5.2. In the case k = n, inequalities (5.7) and (5.13)
were proved by Krylov [14]. Accordingly, if we define the functional Jk;µ on
Φk

0(Ω) by

(5.14) Jk;µ[u] =
1

k + 1
Ik[u] +

∫
Ω

u dµ

for u ∈ Φk
0(Ω), where µ is a finite Borel measure on Ω, we obtain

(5.15) Jk,µ[u] = min
u≥v

Jk;µ[v],

provided µk[u] = µ. Consequently, the solution of the Dirichlet problem (1.7)
for ϕ ≡ 0 solves the variational problem (5.15). Related variational problems
are treated in [3], [8], [9] and [13].
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