
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 22, 2003, 387–398

COMBINATORIAL LEMMAS
FOR NONORIENTED PSEUDOMANIFOLDS

Adam Idzik — Konstanty Junosza-Szaniawski

Abstract. Sperner lemma type theorems are proved for nonoriented pri-

moids and pseudomanifolds. A rank function of a primoid is defined. Appli-
cations of these theorems to the geometric simplex are given. Also Knaster–

Kuratowski–Mazurkiewicz type theorems on covering of the geometric sim-

plex are presented.

1. Introduction

One of the fundamental theorems in nonlinear analysis is the Sperner lemma
([19], [5]). It has been applied to prove the Knaster–Kuratowski–Mazurkiewicz
theorem on covering of the geometric simplex ([13], [20]) and the Brouwer fixed
point theorem ([4]). Extensions of the Sperner lemma were presented by Fan
([6]–[8]) for n-pseudomanifolds, by Shapley ([18]) for multivalued labellings and
by Bapat ([2], [3]) for oriented primoids and n coverings. Dual theorems to the
Sperner lemma are the Alexandroff and Pasynkoff theorem ([1], see also [20]) and
the Ichiishi theorem ([10]). In this paper we generalize many of these theorems
and derive new results on coverings of the geometric simplex.
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2. Preliminaries

By N, R we denote the set of natural numbers and reals, respectively. Let
n ∈ N and V be a finite set of the cardinality at least n + 1. P(V ) is the
family of all subsets of V and Pn(V ) is the family of all subsets of V of the
cardinality n+ 1. An element of Pn(V ) is called n-simplex over the set V . Let
C be a nonempty family of n-simplexes over V . We call C an n-complex over
the set V .
Let A = {a0, . . . , am} ⊂ Rn be a set of points (m ∈ N). Then coA =

{α0a0 + . . . + αmam :
∑m
i=0 αi = 1, αi ≥ 0 for i ∈ {0, . . . ,m}} is a convex hull

of A, afA = {α0a0 + . . . + αmam :
∑m
i=0 αi = 1, αi ∈ R for i ∈ {0, . . . ,m}}

is an affine hull of A, riZ is the relative interior of a set Z ⊂ Rn and bdZ is
the boundary of a set Z ⊂ Rn. A finite set A = {a0, . . . , am} ⊂ Rn is affinely
independent if the dimension of afA is m (m ≤ n). We denote N = {0, . . . , n}.

3. Primoids

Let U be a finite set of the cardinality at least n+1. An n-primoid LUn over
U is a nonempty family of n-simplexes over U fulfilling the following condition:
for every n-simplex T ∈ LUn and for any u ∈ U there exists exactly one u′ ∈ T
such that an n-simplex T \ {u′} ∪ {u} ∈ LUn . n-simplexes belonging to LUn are
called complete. For brevity we write Ln instead of LUn .
The n-primoid Ln can be also defined by the family of n-simplexes over U

such that every (n+ 1)-simplex over U contains either none or two n-simplexes
belonging to the n-primoid Ln.

Example 3.1. Let U = N . LNn = {{0, . . . , n}} is an n-primoid over N .

Theorem 3.2. Let U and U ′ be finite sets, let Ln be an n-primoid over U
and let g:U ′ → U be an onto function. Then a family L(Ln, g) = {{u0, . . . , un}
⊂ U ′ : g({u0, . . . , un}) ∈ Ln} is nonempty and it is an n-primoid over U ′.

Proof. Take T ′ = {u0, . . . , un} ∈ L(Ln, g) and u ∈ U ′. Notice, that
|g(T ′)| = |T ′| and the function g is one-to-one on T ′. By the definition of
the n-primoid, for g(T ′) ∈ Ln and the element g(u) ∈ U there is exactly one
j ∈ N such that {g(u0), . . . , g(uj−1), g(u), g(uj+1), . . . , g(un)} ∈ Ln. Hence
for {u0, . . . , un} ∈ L(Ln, g) and u ∈ U ′ there is exactly one j ∈ N such that
{u0, . . . , uj−1, u, uj+1, . . . , un} ∈ L(Ln, g). �

Corollary 3.3. LetMd be a matroid with a fixed base {v0, . . . , vn} and let r
be the rank function of the matroidMd. Denote spanA = {x ∈Md : r(A∪{x}) =
r(A)}. Let F0 = span {v0} and Fi = span {v0, . . . , vi} \ span {v0, . . . , vi−1} for
i ∈ {1, . . . , n}. Observe, that Md =

⋃n
i=0 Fi and Fi ∩ Fj = ∅ for i 6= j. Let

g:Md → N be a function defined by g(a) = i for a ∈ Fi. The function g is
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well defined and the family LMdn = {{u0, . . . , un} : g({u0, . . . , un}) = N} is an
n-primoid over Md.

Proof. From Theorem 3.2 and Example 3.1 we have LMdn = L(L
N
n , g). �

Example 3.4 (Bapat, [2, Lemma 4.1]). Let U = {−k, . . . ,−1, 1, . . . , k} for
some k ≥ n ≥ 1. We define an n-primoid Lkn over U as follows: {u0, . . . , un} ∈
Lkn if and only if there exists a permutation π such that |uπ(0)| ≤ |uπ(1)| ≤ . . . ≤
|uπ(n)|, uπ(i) · uπ(i+1) < 0 and if |uπ(i)| = |uπ(i+1)|, then uπ(i) < 0 (i ∈ N \ {n}).

Proof. Take any {u0, . . . , un} ∈ Lkn and any u ∈ U . Without loss of
generality we assume that π is the identity permutation. If there exists such
k ∈ N that u = uk, then {u0, . . . , uk−1, u, uk+1, . . . , un} ∈ Lkn. Otherwise we
have three cases:
(a) |u| ≤ |u0|. If u and u0 have the same signs, then {u, u1, . . . , un−1, un} ∈

Lkn. If they have opposite signs, then {u, u0, . . . , un−1} ∈ Lkn.
(b) There exists i ∈ {0, . . . , n − 1} such that |ui| < |u| ≤ |ui+1|. If u and

ui have the same signs, then {u0, . . . , ui−1, u, ui+1, . . . , un−1, un} ∈ Lkn. If they
have the opposite signs, then {u0, . . . , ui, u, ui+2, . . . , un} ∈ Lkn.
The case (c) |un| < |u| is analogous to the case (a). �

From Example 3.4 and Theorem 3.2 we have the following

Theorem 3.5. Let U be a finite set and let for some k ≥ n ≥ 1 g:U →
{−k, . . . ,−1, 1, . . . , k} be an onto function. We define a family Lg,kn as fol-
lows: {u0, . . . , un} ∈ Lg,kn if and only if there exists a permutation π such that:
|g(uπ(0))| ≤ |g(uπ(1))| ≤ . . . ≤ |g(uπ(n))| and g(uπ(i)) · g(uπ(i+1)) < 0 and if
|g(uπ(i))| = |g(uπ(i+1))|, then g(uπ(i)) < 0. Then Lg,kn is an n-primoid over the
set U .

Proof. Observe that Lg,kn = L(L
k
n, g). �

Example 3.6 (Bapat, [2, Lemma 4.2]). Let U ⊂ Rn be a finite set with
|U | ≥ n+1 and let b ∈ Rn be a point, which is not a convex combination of fewer
than n+1 elements of U . If the family Lbn = {{u0, . . . , un} : b ∈ co {u0, . . . , un}}
is not empty, then it is an n-primoid over U .

Example 3.7. Let A = {a0, . . . , an} ⊂ Rn be a set of affinely independent
points. Let mA =

∑
a∈A a/|A|. We say that a function π: 2A → Rn is in a

general position if:

(a) π(B) ∈ ri co {ai : i ∈ B} for each B ⊂ A,
(b) mA /∈ af {π(D)} for each D ⊂ 2A such that |D| < |A|.

A family D is said to be π-balanced if |D| = |A|, mA ∈ co {π(D)} and π is in the
general position. The set of all π-balanced families is an n-primoid over P (A),
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we denote it by Lπn. This follows from Theorem 3.2 and Example 3.6, because
Lπn = L(L

b
n, π) for b = mA.

4. Rank function

Let Ln be an n-primoid over a set U (|U | ≥ n + 1). A function ρ:P(U) →
{0, . . . , n+ 1} defined by ρ(A) = max{|A ∩ T | : T ∈ Ln} for A ∈ P(U) is called
a rank function of Ln. Notice that the number k = n+ 1− ρ(A) is the minimal
number such that there exists a set {u1, . . . , uk} ⊂ U and the set A∪{u1, . . . , uk}
contains a complete n-simplex.
The rank function of Ln has the following

Properties 4.1. For A,B ∈ P(U):
(a) ρ(B) = |B| for B ⊂ A ∈ Ln,
(b) ρ(A) ≤ |A| for A ⊂ U ,
(c) ρ(A) ≤ ρ(B) for A ⊂ B,
(d) ρ(A ∪B) ≤ ρ(A) + ρ(B).

Proof. Properties (a)–(c) follow directly from the definition of the n-pri-
moid. For the property (d) consider T ∈ Ln such that |T ∩ (A∪B)| = ρ(A∪B).
Then |T ∩ (A ∪ B)| ≤ |T ∩ A| + |T ∩ B| and |T ∩ A| ≤ ρ(A), |T ∩ B| ≤ ρ(B).
Hence ρ(A ∪B) ≤ ρ(A) + ρ(B). �

Observe that a function defined by:

(a) ρ(A) = |A| for A ⊂ U is the rank function of LNn (see Example 3.1),
(b) ρ(A) = |{g(u) : u ∈ A}| for A ⊂ U is the rank function of the n-primoid
L(LNn , g) over U (see Theorem 3.2),

(c) ρL(Ln,g)(A) = ρLn({g(u) : u ∈ A}) (A ⊂ U) is the rank function of the
n-primoid L(Ln, g) for the rank function ρLn of the n-primoid Ln (see
Theorem 3.2).

Let ρ be the rank function of Ln. A set R ⊂ U is a maximal set of the rank
k (k ∈ N) if ρ(R) = k and for each u ∈ U \ R, ρ(R ∪ {u}) = k + 1. Now we
define a subset spA ⊂ U spanned by elements of A ⊂ U in the sense of the
n-primoid Ln. For A ⊂ U a spanned set by a set A is spA =

⋂
{R : A ⊂ R ⊂

U and R is a maximal set of the rank ρ(A)}.
Observe that the spanned set by a set A is defined:

(a) spA = A for the n-primoid LNn (see Example 3.1),
(b) spA = {u : g(u) ∈ g(A)} for the n-primoid L(LNn , g),
(c) sp L(Ln,g)A = {u : g(u) ∈ sp Lng(A)} for the n-primoid L(Ln, g), where
sp Ln is in the sense of the n-primoid Ln.

Properties 4.2. For the n-primoid Ln and A ⊂ U :
(a) A ⊂ spA,
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(b) ρ(A) = ρ(spA),
(c) if a set A contains a complete set, then spA = U .

Proof. The property (a) is obvious.
(b) Observe that ρ(A) ≤ ρ(spA) because of (a) and ρ(A) ≤ ρ(B) for A ⊂ B.

On the other hand ρ(A) ≥ ρ(spA), because spA is the intersection of the sets
of the rank ρ(A).
(c) The only maximal set with the rank ρ(A) = n+ 1 is U . �

Theorem 4.3. Let T = {u0, . . . , un} ∈ Ln, u ∈ sp {ui : i ∈ M}, (M ⊂ N)
and T ′ = {u0, . . . , uj−1, u, uj+1, . . . , un} ∈ Ln, then j ∈M .

Proof. From Properties 4.1(a) and 4.2(b) ρ(sp {ui : i ∈ M}) = |M |. If
j /∈M , then sp {ui : i ∈M} ∩ T ′ = {ui : i ∈M} ∪ {u} and we get ρ(sp {ui : i ∈
M}) ≥ |M |+ 1. �

Corollary 4.4. If {u0, . . . , un} ∈ Ln and u ∈ sp {ui} for some i ∈ N ,
then {u0, . . . , ui−1, u, ui+1, . . . , un} ∈ Ln.

Corollary 4.5. If {u0, . . . , un} ∈ Ln and u′i ∈ sp {ui} for all i ∈ N , then
{u′0, . . . , u′n} ∈ Ln.

5. Main theorem

Let n ∈ N and C be a nonempty finite family of n-simplexes of a set V .
Let Ln be an n-primoid over the set U and let x ∈ U be a fixed element. Let
l:V → U be a fixed labelling function.
A simplex S ∈ C is called completely labelled simplex (for short c.l.) if

l(S) ∈ Ln. For v ∈ S a pair (S, v) is called x-labelled pair (for short x-l.) if
l(S \ {v}) ∪ {x} ∈ Ln.
A completely labelled simplex S ∈ C is adjacent by a primal pivot to x-

labelled pair (S′, v′) if and only if S = S′ (S′ ∈ C, v′ ∈ S′).
Two different x-labelled pairs (S, v) and (S′, v′) (S, S′ ∈ C, v ∈ S, v′ ∈ S′)

are adjacent by a primal pivot if and only if S = S′.

Lemma 5.1.

(a) Every completely labelled simplex is adjacent by a primal pivot to a single
x-labelled pair.

(b) Every x-labelled pair is adjacent by a primal pivot either to a single
x-labelled pair or to a single completely labelled simplex.

Proof. (a) Let S be a completely labelled simplex. For l(S) ∈ Ln and
x ∈ U there is exactly one u ∈ l(S) such that l(S) \ {u} ∪ {x} ∈ Ln. Since
|l(S)| = |S| there exists exactly one v ∈ S such that l(v) = u. Therefore
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l(S) \ {u} = l(S \ {v}). Hence (S, v) is the x-labelled pair and the only one that
is adjacent by a primal pivot to the completely labelled simplex S.
(b) Take the x-labelled pair (S, v). For l(S \ {v}) ∪ {x} ∈ Ln and l(v) ∈ U

there exists exactly one element u ∈ l(S \ {v}) ∪ {x} such that (l(S \ {v}) ∪
{x}) \ {u} ∪ {l(v)} ∈ Ln. If u = x, then the simplex S is completely labelled
and it is the only completely labelled simplex adjacent to the pair (S, v) by a
primal pivot. If u 6= x, then u ∈ l(S \ {v}) so there exists v′ ∈ S \ {v} such that
u = l(v′). (l(S \ {v}) ∪ {x}) \ {l(v′)} ∪ {l(v)} = l(S \ {v′}) ∪ {x} and the pair
(S, v′) is x-l. and the only x-l. pair adjacent to (S, v). �

Theorem 5.2. Let C be a nonempty finite family of n-simplexes over V . Let
Ln be an n-primoid over the set U . Let l:V → U be a fixed labelling function
and let x ∈ U be a fixed element. Then the number of c.l. simplexes is equal to
the number of x-l. pairs modulo 2.

Proof. It follows directly from Lemma 5.1.

6. Case of the pseudomanifold

An n-dimensional pseudomanifold (or n-pseudomanifold) is a finite family
C of n-simplexes over the set V having the following property: every (n − 1)-
simplex over V is a subset of at most two n-simplexes of C. An (n−1)-simplex S
over the set V , which is a subset of exactly one element of an n-pseudomanifold
C is called a boundary (n−1)-simplex of C. Let Ln be an n-primoid over the set
U . For x ∈ U , S ∈ C and v ∈ S an x-labelled pair (S, v) is a boundary x-labelled
pair if S \ {v} is a boundary simplex of C.

Theorem 6.1. Let C be an n-pseudomanifold over V , Ln be an n-primoid
over the set U and x ∈ U be a fixed element. Let l:V → U be a fixed labelling
function. Then the number of c.l. simplexes is equal to the number of boundary
x-l. pairs modulo 2.

Proof. Take an x-l. pair (S, v) (S ∈ C, v ∈ S) which is not a boundary
x-labelled pair. S \ {v} is not a boundary simplex of C. Because C is the
pseudomanifold, then there is exactly one S′ ∈ C and exactly one v′ ∈ S′ such
that S \ {v} = S′ \ {v′}. Notice that the pair (S′, v′) is also the x-l. pair which
is not a boundary x-labelled pair. Hence x-l. pairs which are not boundary
x-labelled pairs have no influence on the number of x-l. pairs modulo 2. Thus
Theorem 6.1 follows from Theorem 5.2. �

From Theorem 6.1 we have:

Corollary 6.2.

(a) For V = U and l is the identity function we get a special case of Todd’s
Theorem 5.3 ([21]).
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(b) For Ln = L(LNn , g) we get Gould and Tolle’s Theorem 5.2.5 ([9]).
(c) For Ln = LMdn we get Lovász’s Theorem ([16], see also Kryński [14]).
(d) For Ln = Lkn we get Fan’s Combinatorial Lemma ([6]).

7. Case of the geometric simplex

Let {d0, . . . , dn} be a fixed set of affinely independent vectors in Rn. For
M ⊂ N we denote ∆M = co {di : i ∈M}. Let Tr be a triangulation of ∆N . For
every simplex δ in Tr let V (δ) denote the set of its vertices and V = V (Tr). The
family C = {V (δ) : δ ∈ Tr} is a pseudomanifold. Let Ln be an n-primoid over
the set U .
Let l:V → U be a labelling function. We say that l satisfies a ρ-boundary

condition if:

(1) {l(d0), . . . , l(dn)} ∈ Ln,
(2) ρ(l(V ∩∆M )) = |M | for any M ⊂ N .

Theorem 7.1. Let Tr be a triangulation of ∆N , C = {V (δ) : δ ∈ Tr},
V = V (Tr) and Ln be an n-primoid over a set U . Let l:V → U be a labelling
function satisfying the ρ-boundary condition. Then the number of c.l. simplexes
is odd. In particular there is at least one c.l. simplex.

Proof. We may assume that the triangulation Tr does not subdivide the
boundary simplexes ∆N\{i} for any i ∈ N . If the assumption is not satisfied
we may embed ∆N in a larger simplex using the Scarf method ([17, p. 192]):
for a larger simplex ∆̃N = co {d̃0, . . . , d̃n} containing ∆N we join every vertex
v ∈ V ∩ ∆N\{i} with the vertex d̃i+1 (d̃n+1 = d̃0). So defined triangulation of
∆̃N we denote by T̃r. We define a labelling l̃ as an extension of l on V (T̃r) by
l̃(d̃i) = l(di) for all i ∈ N .
We proof that in this new triangulation T̃r of ∆̃N and the labelling l̃ there is

no new c.l. simplexes. For a simplex δ ∈ T̃r\Tr, let V (δ) = S = {wi ∈ ∆MS ∩S :
i ∈ MS} ∪ {d̃i+1 : i /∈ MS} (MS ⊂ N). There exists k ∈ N such that k /∈ MS
and k + 1 ∈MS (k + 1 is taken mod (n+ 1)). Because the labelling l satisfies
the ρ-boundary condition we have ρ({l̃(wi) : i ∈ MS} ∪ l̃(d̃k+1)) ≤ |MS |. From
Property 4.1(d) we have

ρ(l̃(S)) = ρ({l(wi) : i ∈MS} ∪ {l(d̃k+1)} ∪ {l(d̃j+1 : j /∈MS , j 6= k)})
≤ |MS |+ (n+ 1− |MS | − 1) = n

and thus S is not a c.l. simplex. Obviously l̃ also satisfies the ρ-boundary
condition.
By Theorem 6.1, for a fixed x ∈ U the number of c.l. simplexes is equal to the

number of the boundary x-l. pairs modulo 2. Now observe that there is exactly
one boundary x-l. pair. For l({d0, . . . , dn}) ∈ Ln there is exactly one l(di)
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such that l({d0, . . . , di−1, di+1, . . . , dn})∪ {x} ∈ Ln (i ∈ N). Hence there exists
exactly one simplex δ ∈ Tr with V (δ) = S = {d0, . . . , di−1, di+1, . . . , dn, v} ∈ C,
where v ∈ ri∆N and (S, v) is boundary x-labelled pair. �

We say that l satisfies an sp -boundary condition for {u0, . . . , un} ∈ Ln if:
(sp) for every M ⊂ N and for every v ∈ (V ∩∆M ), l(v) ∈ sp {ui : i ∈M}.

Theorem 7.2. Let Tr be a triangulation of ∆N , C = {V (δ) : δ ∈ Tr},
V = V (Tr) and Ln be an n-primoid over a set U . Let l:V → U be a labelling
function, such that {l(d0), . . . , l(dn)} ∈ Ln and let l satisfy the sp-boundary
condition for {l(d0), . . . , l(dn)}. Then the number of c.l. simplexes is odd. In
particular there is at least one c.l. simplex.

Proof. By the sp -boundary condition l(V ∩∆M ) ⊂ sp {l(dj) : j ∈ M} for
any M ⊂ N . From Properties 4.1(c) we have ρ(l(V ∩∆M )) ≤ ρ(sp {l(dj) : j ∈
M}) for any M ⊂ N . On the other hand l(dj) ∈ l(V ∩ ∆M ) for j ∈ M so
{l(dj) : j ∈M} ⊂ l(V ∩∆M ) and ρ({l(dj) : j ∈M}) ≤ ρ({l(dj) ∈ l(V ∩∆M )}).
By Property 4.2(b) ρ(sp {l(dj) : j ∈ M}) = ρ({l(dj) : j ∈ M}) = |M |. Hence
ρ(l(V ∩ ∆M ) = ρ({l(dj) : j ∈ M}) = |M | for M ⊂ N and the conditions of
Theorem 7.1 are satisfied. �

From Theorem 7.2 we have:

Corollary 7.3.

(a) For Ln = LNn we get Sperner’s Lemma ([19]).
(b) For Ln = LMdn we get Lovász’s Corollary ([16], see also Kryński [14]).
(c) For Ln = Lπn we get Shapley’s Lemma 7.2 ([18]).

Let Tr be a triangulation of ∆N . Let l:V (Tr) → Rn be a labelling and let
b ∈ ri∆N be a point which is not a convex combination of fewer than n + 1
elements of l(V ). A simplex δ ∈ Tr is called b-balanced if b ∈ co l(V (δ)).

Theorem 7.4. Let Tr be a triangulation of ∆N = co {d0, . . . , dn} and C =
{V (δ) : δ ∈ Tr}, V = V (Tr). Let l:V → Rn be a labelling such that: for any
M ⊂ N , if v ∈ V ∩∆M , then l(v) ∈ af {di : i ∈ M}. Let b ∈ ri∆N be a point
which is not a convex combination of fewer than n + 1 elements of l(V ). Then
the number of b-balanced simplexes is odd. In particular there is at least one
b-balanced simplex.

Proof. The family Lbn = {A ⊂ l(V ) : |A| = n+1, b ∈ coA} is an n-primoid
(see Example 3.7) and {d0, . . . , dn} ∈ Lbn. Any set T ∈ Lbn is affinely independent
thus |T ∩ l(V ∩∆M )| ≤ |M | for anyM ⊂ N and ρ(l(V ∩∆M ))| ≤ |M |. Therefore
our theorem follows from Theorem 7.1. �

For a fixed element {u0, . . . , un} of an n-primoid Ln over a set U a family
of closed sets {Cu : u ∈ U} is the KKM covering ([13]) if
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∆M ⊂
⋃

u∈sp {uj :j∈M}

Cu for any M ⊂ N.

Theorem 7.5. Let Ln be an n-primoid over a set U and F = {Cu : u ∈ U}
be a family of closed sets such that F is the KKM covering for some {u0, . . . , un}
∈ Ln. Then there exist an element {w0, . . . , wn} ∈ Ln and a point z ∈ ∆N such
that z ∈

⋂n
i=0 Cwi .

Proof. Let Trk (k ∈ N) be a sequence of a triangulations of ∆N with the
mesh tending to zero, when k tends to infinity. We define a labelling lk of
the vertices of Trk k ∈ N in the following way: l(di) = ui for i ∈ N and for
v ∈ V (Trk) = Vk (v /∈ {d0, . . . , dn}) let lk(v) = u for some u such, that v ∈ Cu
and if v ∈ ∆M , then u ∈ sp {lk(∆M ∩ Vk)}. Since {Cu : u ∈ U} is KKM
covering for {u0, . . . , un}, then the labelling lk is well defined and it satisfies the
sp -boundary condition for {l(d0), . . . , l(dn)} = {u0, . . . , un}. It follows from
Theorem 7.2 that there exist a c.l. simplex Sk = {vk0 , . . . , vkn}. Hence for i ∈ N
vki ∈ Clk(vki ). Because the mesh of Trk tends to zero, there exist z ∈ ∆

N and a
subsequence of vki which converges to z for each i ∈ N . Since Cu is a closed set
for u ∈ U , then z ∈ Clk0 (vki ) for i ∈ N and the proof is complete. �

From Theorem 7.5 we have:

Corollary 7.6.

(a) For Ln = LNn we get the classic KKM Theorem ([13]).
(b) For Ln = LMdn we get Idzik’s Theorem 5 ([12]).
(c) For Ln = Lπn we get Shapley’s Lemma 7.3 ([18]).

Theorem 7.7. Let F = {Cu : u ∈ U ⊂ Rn} be a family of closed sets such
that for any M ⊂ N , ∆M ⊂

⋃
u∈af {di:i∈M} Cu. Let b ∈ ri∆

N be a point which
is not a convex combination of fewer than n+1 elements of U . Then there exist
a set {w0, . . . , wn} ⊂ U such that b ∈ co{w0, . . . , wn} and a point z ∈ ∆N such
that z ∈

⋂n
i=0 Cwi

Proof. It is analogous to the proof of Theorem 7.5. Theorem 7.4 is used
instead of Theorem 7.2.

We say that l satisfies a dual sp -boundary condition for {u0, . . . , un} ∈ Ln
if:

(dsp) for every M ⊂ N , M 6= N and for every v ∈ V ∩ ri∆M , l(v) ∈ sp {ui :
i /∈M}.

Theorem 7.8. Let Tr be a triangulation of ∆N , C = {V (δ) : δ ∈ Tr},
V = V (Tr) and for any M ⊂ N , ri∆M ∩ V 6= ∅. Let Ln be an n-primoid over
a set U . For a labelling l:V → U satisfying the dual sp -boundary condition for
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some {u0, . . . , un} ∈ Ln the number of c.l. simplexes is odd. In particular there
is at least one c.l. simplex.

Proof. We imbed ∆N in a larger simplex ∆̃N = co {d̃0, . . . , d̃n} containing
∆N joining every vertex v ∈ V ∩∆N\{i} with the vertex d̃i, (similarly to Scarf
method in [17, p. 192]). So defined triangulation of ∆̃N we denote by T̃r. We
define a labelling l̃ as an extension of l on V (T̃r) by l̃(d̃i) = ui for all i ∈ N . We
proof that there is no c.l. simplex in T̃r\Tr. Consider a simplex δ ∈ T̃r\Tr. Let
V (δ) = S = {wi ∈ ∆MS ∩ S : i ∈MS} ∪ {d̃i : i /∈MS}, (MS ⊂ N). There exists
j ∈ MS such that wj ∈ ∆MS and wj /∈ ∆M for any proper subset M of the set
MS , because Tr divides ∆MS .
From the dual sp -boundary condition l(wj) ∈ sp {ui : i /∈MS}. Hence from

Properties 4.2(b) ρ(l({wj} ∪ {ui : i /∈ MS}) = |MS | and from Properties 4.1
l(S) ≤ n. This means S is not completely labelled. Notice, that l̃ fulfills the
ρ-boundary condition and by Theorem 7.1 we get our theorem. �

For a fixed element {u0, . . . , un} of an n-primoid Ln over a set U a family
of closed sets {Cu : u ∈ U} is the dual KKM covering ([10]) if:

(1) ∆N ⊂
⋃
u∈U Cu.

(2) ∆M ⊂
⋃
u∈sp {uj :j /∈M} Cu for any proper subset M of the set N .

Theorem 7.9. Let Ln be an n-primoid over a set U and F = {Cu : u ∈ U}
be a family of closed sets such that F is the dual KKM covering for {u0, . . . , un} ∈
Ln. Then there exists an element {w0, . . . , wn} ∈ Ln and a point z ∈ ∆N such
that z ∈

⋂n
i=0 Cwi .

Proof. It is analogous to the proof of Theorem 7.5. Theorem 7.8 is used
instead of Theorem 7.2. �

Theorem 7.10. Let Tr be a triangulation of ∆N = co {d0, . . . , dn}, C =
{V (δ) : δ ∈ Tr} and for any M ⊂ N , ri∆M ∩ V (δ) 6= ∅ for some δ ∈ Tr. Let
l:V (Tr) → Rn be a labelling such that: for any M ⊂ N , M 6= N , and for any
v ∈ V (Tr) ∩ ri∆M , l(v) ∈ af {di : i /∈M}. Let b ∈ ri∆N be a point which is not
a convex combination of fewer than n+1 elements of l(V ). Then the number of
b-balanced simplexes is odd. In particular there is at least one b-balanced simplex.

Proof. It is analogous to proof of Theorem 7.8 and follows from Theo-
rem 7.1. �

Theorem 7.11. Let F = {Cu : u ∈ U ⊂ Rn} be a family of closed sets such
that ∆N ⊂

⋃
u∈U Cu and for any M ⊂ N , N 6= M , ∆M ⊂

⋃
u∈af {di:i/∈M} Cu.

Let b ∈ ri∆N be a point which is not a convex combination of fewer than
n + 1 elements of U . Then there exist a set {w0, . . . , wn} ⊂ U such that
b ∈ co {w0, . . . , wn} and a point z ∈ ∆N such that z ∈

⋂n
i=0 Cwi
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Proof. It is analogous to the proof of Theorem 7.5. Theorem 7.10 is used
instead of Theorem 7.2. �

Remark 7.12. In Theorems 7.4, 7.10 and Theorems 7.2, 7.8 applied to
the n-primoid Lbn the condition: b ∈ ri∆N is a point which is not a convex
combination of fewer than n+1 elements of l(V ) is essential. However omitting
this condition we may still prove that there exists at least one b-balanced simplex
(not necessarily the odd number of such simplexes). To prove this we take a
sequence of points bk, which converges to the point b and bk is not a convex
combination of fewer that n + 1 elements of l(V ) for any k ∈ N. Therefore in
our Theorems 7.7, 7.11 and Theorems 7.5, 7.9 applied to the n-primoid Lbn the
condition: b ∈ ri∆N is a point which is not a convex combination of fewer than
n + 1 elements of l(V ) can be omitted. Hence we get the Ichiishi and Idzik
Theorem 1.2 in [11] and a special case of the van der Laan, Talman and Yang
Theorem 3.1 in [15] (formulated for the simplex).
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