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Abstract. The purpose of this paper is to study some algebraic structure

of submeans on certain spaces X of bounded real valued functions on a

semigroup and to find local conditions on X in terms of submean for the
existence of a left invariant mean.

1. Introduction

Let S be a semigroup and X be a subspace of `∞(S) containing constants,
where `∞(S) denotes the Banach space of bounded real-valued functions on S

with the supremum norm. A continuous linear functional µ onX is called a mean
if ‖µ‖ = µ(1) = 1. As well known, µ is a mean on X if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s) for each f ∈ X.

By a (nonlinear) submean on X, we shall mean a real-valued function µ on X
with the following properties:

(1) µ(f + g) ≤ µ(f) + µ(g) for every f, g ∈ X,
(2) µ(αf) = αµ(f) for every f ∈ X and α ≥ 0,
(3) for f, g ∈ X, f ≤ g implies µ(f) ≤ µ(g),
(4) µ(c) = c for every constant function c.
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Clearly every mean is a submean. The notion of submean was first introduced
by Mizoguchi and Takahashi in [8]. A semigroup S is called left reversible if
aS ∩ bS 6= φ for any a, b ∈ S. As well known, if `∞(S) has a left invariant
mean (i.e. S is left amenable), then S is left reversible but the converse is not
true (e.g. free group or semigroup on two generators). On the other hand, a
semigroup S is left reversible if and only if `∞(S) has a left invariant submean
(see [6]).

The purpose of this paper is to study some algebraic structures of submeans
on certain subspaces X of `∞(S), and find local conditions on X in terms of
submean for the existence of a left invariant mean on X.

The notion of submean turns out to be an effective notion in non-linear fixed
point and ergodic theorems (see [6], [7], [8] and [12]). It has a strong relation with
normal structure in Banach spaces (see Theorem 2.3 and Theorem 2.4 in [7]).
When G is a locally compact group, the invariant submean µ(f) = sup{f(s) :
s ∈ G}, f ∈ `∞(G), plays an important role (in place of an invariant mean when
G is amenable) in the proof that the group algebra of G is weakly amenable
(see [1] and [5]).

2. Preliminaries and some notations

All topologies in this paper are assumed to be Hausdorff. If E is a Banach
space and E∗ is its continuous dual, then the value of f ∈ E∗ at x ∈ E will be
denoted by f(x) or 〈f, x〉.

Let S be a semigroup. Then a subspace X of `∞(S) is called left (resp.
right) translation invariant if `a(X) ⊆ X (resp. ra(X) ⊆ X) for all a ∈ S, where
(`af)(s) = f(as) and (raf)(s) = f(sa) for all s ∈ S.

Let S be a semitopological semigroup (i.e. a semigroup with a topology such
that the multiplication is separately continuous) and let LUC(S) denote all
bounded continuous real-valued functions f ∈ `∞(S) such that the map a 7→ `af

from S into `∞(S) is continuous when `∞(S) has the norm topology. Then
as known, LUC(S) is a left and right translation invariant closed subspace of
`∞(S). It is precisely the space of bounded right uniformly continuous functions
on S when S is a topological group.

3. Algebraic properties of submeans

Let S be a semitopological semigroup and X be a closed left translation
invariant subspace of `∞(S) containing constants.

Remark 3.1. (a) Let SMX denote the set of submeans on X. Then SMX

is a compact convex subset of the product topological space
∏

f∈X Rf , where
each Rf = R.
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(b) If S is left reversible, then µ0(f) = infs supt f(st) is a left invariant sub-
mean on `∞(S) (see [6, Proposition 3.6]). Also, if µ is any other left invariant
submean of `∞(S), then for each f ∈ `∞(S),

µ1(f) ≤ µ(f) ≤ µ0(f)

where µ1(f) = sups inft f(st). In particular, µ0 is the maximal left invariant
submean on `∞(S).

(c) Let SM be the set of submeans on `∞(S). For µ ∈ SM and f ∈ `∞(S),
define

µ`(f)(s) = µ(`sf)

for each s ∈ S. Then

‖f‖ ≤ inf(`sf)(t) ≤ µ(`sf)(t) ≤ sup(`sf) ≤ ‖f‖.

for each s ∈ S. So µ`f ∈ `∞(S). Hence if ψ, µ ∈ SM , we may define

〈ψ
⊙
µ, f〉 = 〈ψ, µ`(f)〉.

Lemma 3.2. If ψ, µ ∈ SM , then ψ
⊙
µ ∈ SM .

Proof. (1) If f, g ∈ `∞(S), then

µ`(f + g)(s) = µ(`sf + `sg) ≤ µ(`sf) + µ(`sg)

= µ`(f)(s) + µ`(g)(s) = (µ`(f) + µ`(g))(s)

for each s ∈ S. Hence

(ψ
⊙
µ)(f + g) = 〈ψ, µ`(f + g)〉 ≤ 〈ψ, µ`(f) + µ`(g)〉

≤ 〈ψ, µ`(f)〉+ 〈ψ, µ`(g)〉 = ψ
⊙
µ(f) + ψ

⊙
µ(g).

(2) If f ∈ `∞(S) and α ≥ 0, then

µ`(αf)(s) = µ(`s(αf)) = µ(α(`sf)) = α(µ(`sf)) = αµ`(f)(s)

for each s ∈ S, i.e. µ`(αf) = αµ`(f). Hence

(ψ
⊙
µ)(αf) = 〈ψ, µ`(αf)〉 = 〈ψ, αµ`(f)〉 = α〈ψ, µ`(f)〉 = α(ψ

⊙
µ)(f).

(3) If f ≤ g, µ`(f)(s) = 〈µ, `sf〉 ≤ 〈µ, `sg〉 = µ`(g)(s) for all s ∈ S (since
`sf ≤ `sg). So µ`(f) ≤ µ`(g). Hence

(ψ
⊙
µ)(f) = 〈ψ, µ`(f)〉 ≤ 〈ψ, µ`(g)〉 = (ψ

⊙
µ)(g).

(4) If c is a constant, then µ`(c)=c. So (ψ
⊙
µ)(c)=c. Hence ψ

⊙
µ∈SM .�

A semigroup S is called a left zero semigroup if all of its elements are left
zeros which means that xy = x for all x, y ∈ S. Similarly S is called a right zero
semigroup if xy = y for all x, y ∈ S. The (possibly empty) set of idempotents of
a semigroup S is denoted by E(S).
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Let X, Y be nonempty sets and G be a group. Let K = X ×G× Y . Given
a map δ:X × Y → G, we define a sandwich product on K by

(x, g, y) ◦ (x′, g′, y′) = (x, gδ(y, x′)g′, y′).

Then (K, ◦) is a simple group (i.e. no proper two-sided ideals) and any semigroup
isomorphic to a simple group of this kind is called a paragroup.

Let S be a compact semigroup. It is called a right topological semigroup if
the translations x 7→ xs (s ∈ S) are continuous.

Theorem 3.3. Π = (SM,
⊙

) is a compact right topological semigroup. Fur-
ther, the following conditions hold:

(a) Π has a minimal ideal K and

K ' E(pΠ)× pΠp× E(Πp)

where p is any idempotent of K and pΠ = {p ◦ s : s ∈ Π} with similar
definition for pΠp and Πp. Also, E(pΠ) is a right zero semigroup,
E(Πp) is a left zero semigroup and pΠp = pΠ ∩Πp is a group.

(b) The minimal ideal K need not be a direct product, but is a paragroup
with respect to the natural map

δ:E(pΠ)× E(Πp) → pΠp: (x, y) 7→ x ◦ y.

(c) For any idempotent p ∈ K, pΠ is a minimal right ideal and Πp is
a minimal left ideal.

(d) The minimal left ideals in Π are closed and homeomorphic to each other.

Proof. We first show that the multiplication
⊙

on Π is associative. Indeed,
if ψ, µ, θ ∈ Π and f ∈ `∞(S), then

(3.1) 〈ψ
⊙

(µ
⊙
θ), f〉 = 〈ψ, (µ

⊙
θ)`(f)〉 = 〈ψ, µ`(θ`(f))〉

since

(µ
⊙
θ)`(f)(s) = 〈µ

⊙
θ, `sf〉 = 〈µ, θ`(`sf)〉 = 〈µ, `sθ`(f)〉 = µ`(θ`(f))(s).

Also,

(3.2) 〈(ψ
⊙
µ)

⊙
θ, f〉 = 〈ψ

⊙
µ, θ`(f)〉 = 〈ψ, µ`(θ`(f))〉.

So (ψ
⊙
µ)

⊙
θ = ψ

⊙
(µ

⊙
θ) by (3.1) and (3.2). Also, if µα → µ, then for

f ∈ `∞(S) and ψ ∈ Π,

〈µα

⊙
ψ, f〉 = 〈µα, ψ`(f)〉 → 〈µ, ψ`(f)〉 = 〈µ

⊙
ψ, f〉.

Hence µα

⊙
ψ → µ

⊙
ψ in Π, i.e. Π is a compact right semitopological semigroup

(see [4]) by Lemma 3.2. Hence Π must have an idempotent (see [2]). The
structure of Π stated in (a)–(d) now follows from [9]. �
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Remark 3.4. (a) Lemma 3.2 and Theorem 3.3 remain valid if SM is re-
placed by SMX when X is a left translation invariant and left introverted sub-
space of `∞(S) containing constants, i.e. for each µ ∈ SMX and f ∈ X, the
function µ`(f) ∈ X.

(b) IfX ⊆ `∞(S) is left translation invariant and left introverted and contains
constants, then

(i) X is right translation invariant,
(ii) for each f ∈ X, Kf = the w∗-closed convex hull of {raf : a ∈ S} ⊆ X.

Proof. (i) Let a ∈ S and µ = δa. Then µ`(f) = raf for each f ∈ X. Hence
raf ∈ X.

(ii) Since Kf is compact in the weak∗-topology on `∞(S), and the topology
p of pointwise convergence is Hausdorff and weaker than the weak∗-topology, it
follows that p agrees with the weak∗-topology on Kf . Let g ∈ Kf . There exists
a net hα =

∑nα

i=1 λ
α
i raα

i
f of convex combinations of raf , 0 ≤ λα

i ≤ 1,
∑
λα

i = 1,
such that hα → g in the p-topology. Let µα =

∑nα

i=1 λ
α
i δaα

i
, and µ be a weak∗-

cluster point of {µα}. By passing to a subnet, we may assume that µα → µ in
the weak∗-topology of `∞(S)∗. Now µα`

f =
∑nα

i=1 λ
α
i raα

i
f , and so µα`

(f) ∈ X

for each α. Now

(µα`
f)(s) =

( ∑
λα

i raα
i
f

)
(s) = 〈µα, `sf〉 → 〈µ, `sf〉 = (µ`f)(s)

for each s ∈ S i.e. µα`
(f) → µ`(f) in p-topology. Hence µ`(f) = g. Since X is

left introverted, we have g ∈ X. �

Proposition 3.5. Let X ⊆ `∞(S) be left invariant and left introverted con-
taining constants, and µ ∈ SMX , ϕ is a left invariant submean on X. Then

(a) µ
⊙
ϕ = ϕ,

(b) ϕ
⊙
µ is also a left invariant submean on X.

Proof. (a) 〈µ
⊙
ϕ, f〉 = 〈µ, ϕ`(f)〉 = 〈µ, ϕ(f)〉 = ϕ(f).

(b) 〈ϕ
⊙
µ, `af〉 = 〈ϕ, µ`(`af)〉 = 〈ϕ, `a(µ`(f))〉 = 〈ϕ, µ`(f)〉 = 〈ϕ

⊙
µ, f〉.�

Proposition 3.6. Let X be as above. If ϕ is a left invariant submean on X
and µ is a right invariant submean, then ϕ

⊙
µ is an invariant submean on X.

Proof. We know that ϕ
⊙
µ ∈ LISMX by above. Now if a ∈ S and f ∈ X,

then
〈ϕ

⊙
µ, raf〉 = 〈ϕ, µ`(raf)〉 = 〈ϕ, µ`(f)〉 = 〈ϕ

⊙
µ, f〉

since

µ`(raf)(s) = 〈µ, `s(raf)〉 = 〈µ, ra(`sf)〉 = 〈µ, `sf〉 = (µ`f)(s). �
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Corollary 3.7. If X has a left invariant submean and a right invariant
submean, then X has an invariant submean.

The following is an analogue of Lemma 1 in [4] and the Localization Theorem
(Theorem 5.2) in [13]:

Theorem 3.8. Let X be a left invariant and left introverted subspace of
`∞(S) containing constants. Then X has a left invariant submean if and only
if for each f ∈ X, there exists a submean µ (depending on f) such that µ(f) =
µ(`sf) for all s ∈ S.

Proof. Let f ∈ X, and Kf = {µ ∈ SMX : µ(`sf) = µ(f) for all s ∈ S}.
Then by assumption, Kf is a non-empty closed subset of SMX . It sufficies to
show that for n = 1, 2, . . . and f1, . . . , fn ∈ X,

⋂n
i=1Kfi

6= φ. We do this by
induction. Indeed, assume that

⋂n−1
i=1 Kfi

6= φ and let µ ∈
⋂n−1

i=1 Kfi
. Consider

the function µ`(fn) = g, and choose µ0 ∈ Kg. Then

µ0

⊙
µ ∈

n−1⋂
i=1

Kfi
.

(Note µ0

⊙
µ ∈ LSMX by Lemma 3.5). Indeed, if 1 ≤ i ≤ n− 1, we have

µ`(fi)(s) = µ(`sfi) = µ(fi)

for all s ∈ S and i = 1, . . . , n− 1. So

(µ0

⊙
µ)(fi) = 〈µ0, µ`(fi)〉 = 〈µ0, µ(fi)〉 = µ(fi),

(µ0

⊙
µ)(`sfi) = 〈µ0, µ`(`sfi)〉 = 〈µ0, µ`(fi)〉 = µ(fi)

for all i = 1, . . . , n− 1. Hence (µ0

⊙
µ)(fi) = µ(fi) for all i = 1, . . . , n− 1. Also

µ0

⊙
µ ∈ Kfn

(since µ0 ∈ Kg). Hence

µ0

⊙
µ ∈

n⋂
i=1

Kfi
. �

4. Submeans and invariant means

We now proceed to find necessary and sufficient conditions for the existence
of a left invariant mean on an invariant subspace X in terms on submeans.

Theorem 4.1. Let S be a semitopological semigroup. The following state-
ments are equivalent:

(a) For each f ∈ LUC(S), there exists a submean µ (depending on f) such
that

µ(f − `sf) = µ(`sf − f) = 0 for all s ∈ S.
(b) LUC(S) has a left invariant mean.
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Proof. (b)⇒(a) is trivial.
(a)⇒(b) If (a) holds, then for each α ∈ R and s ∈ S, µ(α(f − `sf)) = 0.

Hence sup(α(f − `sf)) ≥ 0 and inf(α(f − `sf)) ≤ 0 for each s ∈ S and α ∈ R.
Now if α, β ∈ R and s1, s2 ∈ S, then

µ(α(f − `s1f) + β(f − `s2f)) ≤ µ(α(f − `s1f)) + µ(β(f − `s2f)) = 0.

Hence we have
µ(h) ≤ 0 for each h ∈ Sf ,

where Sf = linear span{f − lsf : s ∈ S}. Consequently, inf h ≤ 0 for each
h ∈ Sf . So suph ≥ 0 for each h ∈ Sf . Now define p(h) = suph. Then p(h) ≥ 0
for h ∈ Sf . So by the Hahn–Banach theorem, there exists a linear functional m
on LUC(S) such that

m(h) = 0 for each h ∈ Sf and m(h) ≤ p(h) = suph for all h ∈ LUC(S).

Hence we have
m(−h) ≤ sup(−h) for all h ∈ LUC(S).

So inf h ≤ m(h) ≤ suph for all h ∈ LUC(S), i.e.m is a mean, andm(f−`sf) = 0
for all s ∈ S. Now by [4], LUC(S) has a left invariant mean. �

Example 4.2. If µ is a left invariant mean on `∞(S), then µ(h) = 0 for any
h = (f1 − `a1f1) + . . . + (fn − `an

fn), f1, . . . , fn ∈ `∞(S), a1, . . . , an ∈ S. But
this is no long true for left invariant submean.

Let S = free group on two generators a, b. Define µ(f) = sup f(s). Then
µ(`af) = µ(f) for all a ∈ S (this is the case when aS = S for all a ∈ S, i.e. µ
is a left invariant submean on `∞(S). But if A = all elements in S that begin
with a or a−1 (reduced word), and f = 1A, and

h = (`ba−1f − `ab−1a(`ba−1f) + ((−f)− `b−1a−1(−f)),

then µ(h) < 0 (see Theorem 4.4).

Remark 4.3. Theorem 4.1 remains valid if LUC(S) is replaced by a left
translation invariant subspace X containing constants and for each µ ∈ X∗ and
f ∈ X, µ`(f) ∈ X.

Theorem 4.4. Let X be a left translation subspace of `∞(S) containing
constans. The following are equivalent:

(a) X has a left invariant mean.
(b) For s1, . . . , sn ∈ S and f1, . . . , fn ∈ X+ = {f ∈ X : f ≥ 0}, there

exists a submean µ on X such that

µ

( n∑
i=1

fi

)
≤ µ

( n∑
i=1

`sifi

)
.
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Proof. (a)⇒(b) is trivial. (b)⇒(a) If (b) holds, then

µ(h) = µ

( n∑
i=1

`si
fi −

n∑
i=1

fi

)
≥ 0.

So sup(h) ≥ 0. For any ε > 0, choose tε ∈ S such that h(tε) ≥ −ε. Let m be a
weak∗-cluster point of {δtε

} in X∗. Then µ is a submean (in fact a mean ) on
X and m(h) ≥ 0. So, by linearity of m,

m

( n∑
i=1

`si
f −

n∑
i=1

fi

)
≥ 0, i.e. m

( n∑
i=1

`si
fi

)
≥ m

( n∑
i=1

fi

)
.

Now for f ∈ X∗, and s ∈ S, define the lower semicontinuous convex function
Ff,s on K = {m ∈ X∗ : ‖m‖ = m(1) = 1} (set of means on X) by

Ff,s(m) = m(f − `sf) for all m ∈ K.

Now K is a weak∗-compact convex subset of X∗. It follows from above that for
any f1, . . . , fn ∈ X+ and s1, . . . , sn ∈ S, there exists m ∈ K such that

m

( n∑
i=1

fi −
n∑

i=1

`sifi

)
=

n∑
i=1

Ffi,si(m) ≤ 0.

So Fan’s existence theorem for systems of convex inequalities (see [5]), there
existsm ∈ K such that Ff,s(m) ≤ 0 for all f ∈ X+ and s ∈ S, i.e.m(f) ≤ m(`sf)
for all f ∈ X+ and s ∈ S. For f ∈ X, let g = ‖f‖ · 1. Then g− f ∈ X+, and we
have

m(g − f) ≤ m(`s(g − f)) for all s ∈ S.
But `s(g − f)− (g − f) = f − `sf . So m(`sf − f) ≤ 0 for all f ∈ X and s ∈ S.
Consequently m(`sf) = m(f) for all s ∈ S and f ∈ X by linearity. �

Remark 4.5. Theorem 4.4 is an improvement of Theorem 6 of [10].
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