IMPULSIVE HYPERBOLIC DIFFERENTIAL INCLUSIONS WITH VARIABLE TIMES

M. Benchohra - L. Górniewicz - S. K. Ntouyas - A. Ouahab

\qquad

Abstract

In this paper the nonlinear alternative of Leray-Schauder type is used to investigate the existence of solutions for second order impulsive hyperbolic differential inclusions with variable times.

1. Introduction

In this paper, we shall be concerned with the existence of solutions for the following second order impulsive hyperbolic differential inclusions with variable times:
(1.1) $\quad \frac{\partial^{2} u(t, x)}{\partial t \partial x} \in F(t, x, u(t, x))$,
a.e. $(t, x) \in J_{a} \times J_{b}$,
$t \neq \tau_{k}(u(t, x)), \quad k=1, \ldots, m$,

$$
\begin{align*}
u\left(t^{+}, x\right) & =I_{k}(u(t, x)), & & t=\tau_{k}(u(t, x)), k=1, \ldots, m \tag{1.2}\\
u(t, 0) & =\psi(t), & & t \in J_{a}, u(0, x)=\phi(x), x \in J_{b} \tag{1.3}
\end{align*}
$$

where $F: J_{a} \times J_{b} \times \mathbb{R}^{n} \rightarrow P\left(\mathbb{R}^{n}\right)$ is a multivalued map with compact values, $J:=J_{a} \times J_{b}:=[0, a] \times[0, b], I_{k} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right), \phi \in C\left(J_{a}, \mathbb{R}^{n}\right), u\left(t^{+}, y\right)=$ $\lim _{(h, x) \rightarrow\left(0^{+}, y\right)} u(t+h, x)$ and $u\left(t^{-}, y\right)=\lim _{(h, x) \rightarrow\left(0^{-}, y\right)} u(t-h, x)$ represent the

Key words and phrases. Impulsive hyperbolic differential inclusions, variable times, fixed point, Leray-Schauder alternative.
right and left limits of $u(t, x)$ at (t, x), respectively and \mathbb{R}^{n} a Euclidean space with norm $|\cdot|$.

Impulsive differential and partial differential equations with fixed moments have become more important in recent years in some mathematical models of real phenomena, especially in control, biological or medical domains, see the mongraphs of Lakshmikantham et al ([12]), Samoilenko and Perestyuk ([16]), and the papers of Bainov et al ([2]), Kirane and Rogovchenko ([11]), Liu ([14]) and Liu and Zhang $([15])$. However the theory of impulsive partial differential equations with variable time is relatively less developed due to the difficulties created by the state-dependent impulses.

Very recently, by means of a Martelli's fixed point theorem for condensing multivalued maps, a particular case $\left(I_{k}=0, k=1, \ldots, m\right)$ of the problem (1.1)(1.3) was studied by Benchohra in [3]. Let us mention that that with the aid of the Leray-Schauder nonlinear alternative ([6]), the problem (1.1)-(1.3) was considered by the authors (see [4]) in the case where the instant of impulses are fixed. Hence the present result is an extension of the problem to variable moments. Our proof is based also on the nonlinear alternative. It can also be considered as a contribution to the title literature.

2. Preliminaries

We will briefly recall some basic definitions and facts from multivalued analysis that we will use in the sequel.
$C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)$ is the Banach space of all continuous functions from $J_{a} \times J_{b}$ into \mathbb{R}^{n} with the norm

$$
\|u\|_{\infty}=\sup \left\{|u(t, s)|:(t, s) \in J_{a} \times J_{b}\right\} .
$$

A measurable function $z: J_{a} \times J_{b} \rightarrow \mathbb{R}^{n}$ is integrable if and only if z is Lebesgue integrable.
$L^{1}\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)$ denotes the Banach space of functions $z: J_{a} \times J_{b} \rightarrow \mathbb{R}^{n}$ which are Lebesgue integrable normed by

$$
\|z\|_{L^{1}}=\int_{0}^{a} \int_{0}^{b}|z(t, s)| d t d s
$$

Let $(X,\|\cdot\|)$ be a normed space and

$$
\begin{aligned}
P_{\mathrm{cl}}(X) & =\{Y \in P(X): Y \text { closed }\} \\
P_{\mathrm{b}}(X) & =\{Y \in P(X): Y \text { bounded }\}, \\
P_{\mathrm{cp}}(X) & =\{Y \in P(X): Y \text { compact }\}, \\
P_{\mathrm{cp}, \mathrm{c}}(X) & =\{Y \in P(X): Y \text { compact, convex }\} .
\end{aligned}
$$

A multivalued map $G: X \rightarrow P(X)$ is convex (closed) valued if $G(x)$ is convex (closed) for all $x \in X$.
G is bounded on bounded sets if $G(\mathcal{B})=\bigcup_{x \in \mathcal{B}} G(x)$ is bounded in X for all $\mathcal{B} \in P_{b}(X)\left(\right.$ i.e. $\left.\sup _{x \in \mathcal{B}}\{\sup \{\|y\|: y \in G(x)\}\}<\infty\right)$.
G is called upper semi-continuous (u.s.c.) on X if for each $x_{0} \in X$ the set $G\left(x_{0}\right)$ is a nonempty, closed subset of X, and if for each open set \mathcal{U} of X containing $G\left(x_{0}\right)$, there exists an open neighbourhood \mathcal{V} of x_{0} such that $G(\mathcal{V}) \subseteq \mathcal{U}$.
G is said to be completely continuous if $G(\mathcal{B})$ is relatively compact for every $\mathcal{B} \in P_{b}(X)$. If the multivalued map G is completely continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed graph (i.e. $x_{n} \rightarrow x_{*}$, $y_{n} \rightarrow y_{*}, y_{n} \in G\left(x_{n}\right)$ imply $\left.y_{*} \in G\left(x_{*}\right)\right) . G$ has a fixed point if there is $x \in X$ such that $x \in G(x)$. The fixed point set of the multivalued operator G will be denoted by Fix G.

A multivalued map $N: J_{a} \times J_{b} \times \mathbb{R}^{n} \rightarrow P_{\mathrm{cl}}\left(\mathbb{R}^{n}\right)$ is said to be measurable, if for every $w \in \mathbb{R}^{n}$, the function $t \mapsto d(w, N(t, x, u))=\inf \{\|w-v\|: v \in N(t, x, u)\}$ is measurable where d is the distance induced from the normed space \mathbb{R}^{n}. For more details on multivalued maps see the books of Aubin and Cellina ([1]), Deimling ([5]), Górniewicz ([8]) and Hu and Papageorgiou ([10]).

Definition 2.1. The multivalued map $F: J_{a} \times J_{b} \times \mathbb{R}^{n} \rightarrow P\left(\mathbb{R}^{n}\right)$ is said to be an L^{1}-Carathéodory if
(a) $(t, x) \mapsto F(t, x, u)$ is measurable for each $u \in \mathbb{R}^{n}$,
(b) $u \mapsto F(t, x, u)$ is upper semicontinuous for almost all $(t, x) \in J_{a} \times J_{b}$,
(c) for each $r>0$, there exists $\varphi_{r} \in L^{1}\left(J_{a} \times J_{b}, \mathbb{R}_{+}\right)$such that

$$
\|F(t, x, u)\|=\sup \{|v|: v \in F(t, x, u)\} \leq \varphi_{r}(t, x)
$$

for all $|u| \leq r$ and for a.e. $(t, x) \in J_{a} \times J_{b}$.

For each $u \in C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)$, define the set of selections of F by

$$
S_{F, u}=\left\{v \in L^{1}\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right): v(t, s) \in F(t, x, u(t, x)) \text { a.e. } t \in J_{a}, x \in J_{b}\right\} .
$$

Lemma 2.2 ([13]). Let X be a Banach space. Let $F: J_{a} \times J_{b} \times X \rightarrow P_{\text {cp, }}(X)$ be an L^{1}-Carathéodory multivalued map with $S_{F} \neq \emptyset$ and let Ψ be a linear continuous mapping from $L^{1}\left(J_{a} \times J_{b}, X\right)$ to $C\left(J \times J_{b}, X\right)$, then the operator

$$
\begin{gathered}
\Psi \circ S_{F}: C\left(J_{a} \times J_{b}, X\right) \rightarrow P_{c p, c}\left(C\left(J_{a} \times J_{b}, X\right)\right), \\
u \mapsto\left(\Psi \circ S_{F}\right)(u):=\Psi\left(S_{F, u}\right)
\end{gathered}
$$

is a closed graph operator in $C\left(J_{a} \times J_{b}, X\right) \times C\left(J_{a} \times J_{b}, X\right)$.

Lemma 2.3 ([6]). Let X be a Banach space with $C \subset X$ a convex. Assume U is a relatively open subset of C with $0 \in U$ and $G: X \rightarrow P_{\mathrm{cp}, \mathrm{c}}(X)$ be an upper semi-continuous and compact map. Then either
(a) there is a point $u \in \partial U$ and $\lambda \in(0,1)$ with $u \in \lambda G(u)$ or
(b) G has a fixed point in \bar{U}.

Remark 2.4. By \bar{U} and ∂U we denote the closure of U and the boundary of U, respectively.

3. Main result

In this section we are concerned with the existence of solutions for problem (1.1)-(1.3). In order to define the solution of (1.1)-(1.3) we shall consider the following space

$$
\begin{aligned}
\Omega=\{ & u: J_{a} \times J_{b} \rightarrow \mathbb{R}^{n}: \text { there exist } 0=t_{0}<t_{1}<\ldots<t_{m}<t_{m+1}=a \\
& \text { such that } t_{k}=\tau_{k}\left(u\left(t_{k}, \cdot\right)\right) \text { and } u_{k} \in C\left(\Gamma_{k}, \mathbb{R}^{n}\right), k=0, \ldots, m \\
& \text { and there exist } u\left(t_{k}^{-}, \cdot\right), \text { and } u\left(t_{k}^{+}, \cdot\right), k=1, \ldots, m \\
& \text { with } \left.u\left(t_{k}^{-}, \cdot\right)=u\left(t_{k}, \cdot\right)\right\}
\end{aligned}
$$

which is a Banach space with the norm

$$
\|u\|_{\Omega}=\max \left\{\left\|u_{k}\right\|, k=0, \ldots, m\right\}
$$

where u_{k} is the restriction of u to $\Gamma_{k}=\left(t_{k}, t_{k+1}\right) \times J_{b}, k=0, \ldots, m$. So let us start by defining what we mean by a solution of problem (1.1)-(1.3).

Definition 3.1. A function $u \in \Omega \cap \bigcup_{k=1}^{m} A^{1}\left(\Gamma_{k}, \mathbb{R}^{n}\right)$ is said to be a solution of (1.1)-(1.3) if there exist $v \in L^{1}\left(J_{a} \times J_{b}\right)$ such that $v(t, x) \in F(t, x, u(t, x))$ satisfied a.e. on $J_{a} \times J_{b}, \partial^{2} u(t, x) / \partial t \partial x=v(t, x)$ a.e. on $J_{a} \times J_{b}$, and the conditions (1.2)-(1.3).

Let us introduce the following hypotheses:
(H1) There exist constants c_{k} such that $\left|I_{k}(u)\right| \leq c_{k}, k=1, \ldots, m$ for each $u \in \mathbb{R}^{n}$.
(H2) There exist functions $p, q \in L^{1}\left(J_{a} \times J_{b}, \mathbb{R}_{+}\right)$such that

$$
\|F(t, x, u)\| \leq p(t, x)+q(t, x)|u|
$$

for a.e. $(t, x) \in J_{a} \times J_{b}$ and each $u \in \mathbb{R}^{n}$.
(H3) The functions $\tau_{k} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ for $k=1, \ldots, m$. Moreover,

$$
0<\tau_{1}(x)<\ldots<\tau_{m}(x)<a \quad \text { for all } x \in \mathbb{R}^{n}
$$

(H4) For all $u \in C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)$ and all $v \in S_{F, u}$ we have

$$
\left\langle\tau_{k}^{\prime}(x), \int_{\bar{t}}^{t} v(s, x) d s\right\rangle \neq 1
$$

for all $(t, \bar{t}, x) \in J_{a} \times J_{a} \times \mathbb{R}^{n}$ and $k=0, \ldots, m$, where $\langle\cdot, \cdot\rangle$ denotes the scalar product in \mathbb{R}^{n}.
(H5) For all $x \in \mathbb{R}^{n}$

$$
\tau_{k}\left(I_{k}(x)\right) \leq \tau_{k}(x)<\tau_{k+1}\left(I_{k}(x)\right) \text { for } k=1, \ldots, m
$$

Theorem 3.2. Assume that the hypotheses (H1)-(H5) are satisfied. Then the IVP (1.1)-(1.3) has at least one solution.

Proof. The proof will be given in several steps.
Step 1. Consider the following problem

$$
\begin{align*}
& \frac{\partial^{2} u(t, x)}{\partial t \partial x} \in F(t, x, u(t, x)), \quad \text { a.e. }(t, x) \in J_{a} \times J_{b} \tag{3.1}\\
& u(t, 0)=\psi(t), \quad t \in J_{a}, \quad u(0, x)=\phi(x), \quad x \in J_{b} \tag{3.2}
\end{align*}
$$

A solution to problem (3.1)-(3.2) is a fixed point of the operator

$$
N: C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right) \rightarrow P\left(C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)\right)
$$

defined by:
$N(u)=\left\{h \in C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right): h(t, x)=z_{0}(t, x)+\int_{0}^{t} \int_{0}^{x} v(s, y) d s d y, v \in S_{F, u}\right\}$,
where $z_{0}(t, x):=\psi(t)+\phi(x)-\psi(0)$. The proof will be given in several claims.
Claim 1. $N(u)$ is convex for each $u \in \Omega$.
Indeed, if h_{1}, h_{2} belong to $N(u)$, then there exist $v_{1}, v_{2} \in S_{F, u}$ such that for each $(t, x) \in J_{a} \times J_{b}$ we have

$$
h_{i}(t, x)=z_{0}(t, x)+\int_{0}^{t} \int_{0}^{x} v_{i}(s, y) d s d y, \quad i=1,2
$$

Let $0 \leq d \leq 1$. Then for each $(t, x) \in J_{a} \times J_{b}$ we have

$$
\left(d h_{1}+(1-d) h_{2}\right)(t)=z_{0}(t, x)+\int_{0}^{t} \int_{0}^{x}\left[d v_{1}(s, y)+(1-d) v_{2}(s, y)\right] d s d y
$$

Since $S_{F, u}$ is convex (because F has convex values) then

$$
d h_{1}+(1-d) h_{2} \in N(u)
$$

Claim 2. N maps bounded sets into bounded sets in $C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)$.
Indeed, it is enough to show that there exists a positive constant ℓ such that for each $u \in \mathcal{B}_{q}=\left\{u \in C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right):\|u\|_{\infty} \leq q\right\}$ one has $\|N(u)\|_{\infty} \leq \ell$.

Let $h \in N(u)$ then there exist $v \in S_{F, u}$ such that

$$
h(t, x)=z_{0}(t, x)+\int_{0}^{t} \int_{0}^{x} v(s, y) d s d y .
$$

Since F is an L-Carathéodory we have for each $(t, x) \in J_{a} \times J_{b}$

$$
|h(t, x)| \leq\left|z_{0}(t, x)\right|+\int_{0}^{a} \int_{0}^{b}\left|\varphi_{q}(t, x)\right| d s \leq\left\|z_{0}\right\|_{\infty}+\left\|\varphi_{q}\right\|_{L^{1}}:=\ell
$$

Claim 3. N maps bounded sets into equicontinuous sets of $C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)$.
Let $\left(\bar{t}_{1}, x_{1}\right),\left(\bar{t}_{2}, x_{2}\right) \in J_{a} \times J_{b}, \bar{t}_{1}<\bar{t}_{2}, x_{1}<x_{2}$ and \mathcal{B}_{q} be a bounded set of $C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)$, as in Claim 2. Then

$$
\begin{aligned}
\left.\mid h\left(\bar{t}_{2}, x_{2}\right)\right)-h\left(\bar{t}_{1}, x_{1}\right) \mid \leq & \left.\mid z_{0}\left(\bar{t}_{2}, x_{2}\right)\right)-z_{0}\left(\bar{t}_{1}, x_{1}\right) \mid \\
& +\int_{0}^{\bar{t}_{2}} \int_{x_{1}}^{x_{2}} \varphi_{q}(t, s) d t d s+\int_{\bar{t}_{1}}^{\bar{t}_{2}} \int_{0}^{x_{1}} \varphi_{q}(t, s) d t d s
\end{aligned}
$$

The right-hand side tends to zero as $\bar{t}_{2}-\bar{t}_{1} \rightarrow 0, x_{2}-x_{1} \rightarrow 0$.
As a consequence of Claims 2 and 3 with the Arzela-Ascoli Theorem we can conclude that $N: C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right) \rightarrow C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)$ is completely continuous.

Claim 4. N has a closed graph.
Let $u_{n} \rightarrow u_{*}, h_{n} \in N\left(u_{n}\right)$ and $h_{n} \rightarrow h_{*}$. We shall prove that $h_{*} \in N\left(u_{*}\right)$. $h_{n} \in N\left(u_{n}\right)$ means that there exists $v_{n} \in S_{F, u_{n}}$ such that for each $t \in J$

$$
h_{n}(t, x)=z_{0}(t, x)+\int_{0}^{t} \int_{0}^{x} v_{n}(s, x) d s d x .
$$

We must prove that there exists $v_{*} \in S_{F, u_{*}}$ such that for each $(t, x) \in J_{a} \times J_{b}$

$$
h_{*}(t, x)=z_{0}(t, x)+\int_{0}^{t} \int_{0}^{x} v_{*}(s, x) d s d x .
$$

Clearly, since ϕ is continuous we have that

$$
\left\|\left(h_{n}-z_{0}(t, x)\right)-\left(h_{*}-z_{0}(t, x)\right)\right\|_{\infty} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Consider the linear continuous operator

$$
\begin{aligned}
& \Psi: L^{1}\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right) \rightarrow C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right), \\
& v \mapsto \Psi(v)(t, x)=\int_{0}^{t} \int_{0}^{x} v(s, \tau) d s d \tau .
\end{aligned}
$$

From Lemma 2.2, it follows that $\Psi \circ S_{F}$ is a closed graph operator. Moreover, we have that

$$
\left(h_{n}(t, x)-z_{0}(t, x)\right) \in \Psi\left(S_{F, u_{n}}\right) .
$$

Since $u_{n} \rightarrow u_{*}$, it follows from Lemma 2.2 that

$$
h_{*}(t, x)=z_{0}(t, x)+\int_{0}^{t} \int_{0}^{x} v_{*}(s, y) d s d y
$$

for some $v_{*} \in S_{F, u_{*}}$.
Claim 5. A priori bounds on solutions.
Let $u \in \Omega$ be a possible solution to (3.1)-(3.2). Then there exists $v \in S_{F, u}$ such that for each $(t, x) \in J$

$$
u(t, x)=z_{0}(t, x)+\int_{0}^{t} \int_{0}^{x} v(s, y) d s d y
$$

This implies by (H2)-(H4) that for each $(t, x) \in J_{a} \times J_{b}$ we have

$$
\begin{aligned}
|u(t, x)| & \leq\left\|z_{0}\right\|_{\infty}+\int_{0}^{t} \int_{0}^{x}[|p(s, \tau)|+|q(s, \tau)||u(s, \tau)|] d s d \tau \\
& \leq\left\|z_{0}\right\|_{\infty}+\int_{0}^{t} \int_{0}^{x}\left|q(s, \tau)\|u(s, \tau) \mid d s d \tau+\| p \|_{L^{1}}\right.
\end{aligned}
$$

Invoking Gronwall's inequality (see for instance [9]) we get that

$$
|u(t, x)| \leq\left[\left\|z_{0}\right\|_{\infty}+\|p\|_{L^{1}}\right] \exp \left(\|q\|_{L^{1}}\right):=M
$$

Then $\|u\|_{\Omega}<M$. Set

$$
U_{1}=\left\{u \in C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right):\|u\|_{\infty}<M+1\right\} .
$$

$N: \bar{U}_{1} \rightarrow P\left(C\left(J_{a} \times J_{b}, \mathbb{R}^{n}\right)\right)$ is completely continuous. From the choice of U_{1} there is no $u \in \partial U_{1}$ such that $u \in \lambda N(u)$ for some $\lambda \in(0,1)$. As a consequence of the nonlinear alternative of Leray Schauder type (see [6]) we deduce that N has a fixed point u in $\overline{U_{1}}$ which is a solution of (3.1)-(3.2). Denote this solution by u_{1}.

Define the function $r_{k, 1}(t, x)=\tau_{k}\left(u_{1}(t, x)\right)-t$ for $t \geq 0$. (H3) implies that $r_{k, 1}(0,0) \neq 0$ for $k=1, \ldots, m$. If $r_{k, 1}(t, x) \neq 0$ on $J_{a} \times J_{b}$ for $k=1, \ldots, m$, i.e. $t \neq \tau_{k}\left(u_{1}(t, x)\right)$ on $J_{a} \times J_{b}$ and for $k=1, \ldots, m$, then u_{1} is a solution of the problem (1.1)-(1.3).

It remains to consider the case when $r_{1,1}(t, x)=0$ for some $(t, x) \in J_{a} \times J_{b}$. Now since $r_{1,1}(0,0) \neq 0$ and $r_{1,1}$ is continuous, there exists $t_{1}>0, x_{1}>0$ such that

$$
r_{1,1}\left(t_{1}, x_{1}\right)=0 \quad \text { and } \quad r_{1,1}(t, x) \neq 0 \quad \text { for all }(t, x) \in\left[0, t_{1}\right) \times\left[0, x_{1}\right] .
$$

Thus by (H4) we have

$$
r_{1,1}\left(t_{1}, x_{1}\right)=0 \quad \text { and } \quad r_{1,1}(t, x) \neq 0 \quad \text { for all }(t, x) \in\left[0, t_{1}\right) \times\left[0, x_{1}\right] \cup\left(x_{1}, b\right] .
$$

Suppose that there exist $(\bar{t}, \bar{x}) \in\left[0, t_{1}\right) \times\left[0, x_{1}\right) \cup\left(x_{1}, b\right]$ such that $r_{1,1}(\bar{t}, \bar{x})=0$. The function $r_{1,1}$ attains a maximum at some point $(s, \bar{s}) \in\left[0, t_{1}\right] \times J_{b}$. Since

$$
\frac{\partial^{2} u(t, x)}{\partial t \partial x} \in F\left(t, x, u_{1}(t, x)\right), \quad \text { a.e. }(t, x) \in J_{a} \times J_{b}
$$

then there exist $v(\cdot, \cdot) \in L^{1}\left(J_{a} \times J_{b}\right)$ with $v(t, x) \in F\left(t, x, u_{1}(t, x)\right)$, a.e. $(t, x) \in$ $J_{a} \times J_{b}$ such that

$$
\frac{\partial^{2} u(t, x)}{\partial t \partial x}=v(t, x) \quad \text { a.e. } t \in J_{a} \times J_{b}
$$

$\partial u_{1}(t, x) / \partial t$ and $\partial u_{1}(t, x) / \partial x$ exist. Then

$$
\frac{\partial r_{1,1}(s, \bar{s})}{\partial t}=\tau_{1}^{\prime}\left(u_{1}(s, \bar{s})\right) \frac{\partial u_{1}(s, \bar{s})}{\partial t}-1=0
$$

Since

$$
\frac{\partial u_{1}(t, x)}{\partial t}=\int_{0}^{t} v\left(s, x, u_{1}(s, x)\right) d s
$$

then

$$
\tau_{1}^{\prime}\left(u_{1}(s, \bar{s})\right) \int_{0}^{s} v(\tau, \bar{s}) d \tau-1=0
$$

Therefore

$$
\left\langle\tau_{1}^{\prime}\left(u_{1}(s, \bar{s})\right), \int_{0}^{s} v(\tau, \bar{s}) d \tau\right\rangle=1
$$

which contradicts (H4). From (H3) we have

$$
r_{k, 1}(t, x) \neq 0 \quad \text { for all } t \in\left[0, t_{1}\right) \times J_{b} \text { and } k=1, \ldots, m
$$

Step 2. Consider now the following problem

$$
\begin{gather*}
\frac{\partial^{2} u(t, x)}{\partial t \partial x} \in F(t, x, u(t, x)), \quad \text { a.e. } t \in\left[t_{1}, a\right] \times J_{b} \tag{3.3}\\
u\left(t_{1}^{+}, x\right)=I_{1}\left(u_{1}\left(t_{1}, x\right)\right) \tag{3.4}
\end{gather*}
$$

Transform the problem (3.3)-(3.4) into a fixed point problem. Consider the operator $N_{1}: C\left(\left[t_{1}, a\right] \times J_{b}, \mathbb{R}^{n}\right) \rightarrow C\left(\left[t_{1}, a\right] \times J_{b}, \mathbb{R}^{n}\right)$ defined by

$$
\begin{aligned}
& N_{1}(u)=\left\{h \in C\left(\left[t_{1}, a\right] \times J_{b}, \mathbb{R}^{n}\right):\right. \\
& \left.\qquad h(t, x)=I_{1}\left(u_{1}\left(t_{1}, x\right)\right)+\int_{0}^{x} v(s, y) d s d y, v \in S_{F, u}\right\}
\end{aligned}
$$

As in Step 1 we can show that N_{1} is completely continuous, and each possible solution of (3.3)-(3.4) is a priori bounded by constant M_{2}. Set

$$
U_{2}:=\left\{u \in C\left(\left[t_{1}, a\right] \times J_{b}, \mathbb{R}^{n}\right):\|u\|_{\infty}<M_{2}+1\right\} .
$$

From the choice of U_{2} there is no $u \in \partial U_{2}$ such that $u=\lambda N_{1}(u)$ for some $\lambda \in(0,1)$. As a consequence of the nonlinear alternative of Leray-Schauder type
(see [6]) we deduce that N_{1} has a fixed point u in U_{2} which is a solution of (3.3)-(3.4). Denote this solution by u_{2}. Define

$$
r_{k, 2}(t, x)=\tau_{k}\left(u_{2}(t, x)\right)-t \quad \text { for }(t, x) \in\left[t_{1}, a\right] \times J_{b} .
$$

If $r_{k, 2}(t, x) \neq 0$ on $\left(t_{1}, a\right] \times J_{b}$ and for all $k=1, \ldots, m$ then

$$
u(t, x)= \begin{cases}u_{1}(t, x) & \text { if }(t, x) \in\left[0, t_{1}\right) \times J_{b}, \\ u_{2}(t, x) & \text { if }(t, x) \in\left[t_{1}, a\right] \times J_{b},\end{cases}
$$

is a solution of the problem (1.1)-(1.3). It remains to consider the case when $r_{2,2}(t, x)=0$, for some $(t, x) \in\left(t_{1}, a\right] \times J_{b}$. By (H5) we have

$$
\begin{aligned}
r_{2,2}\left(t_{1}^{+}, x_{1}\right) & =\tau_{2}\left(u_{2}\left(t_{1}^{+}, x_{1}\right)\right)-t_{1}=\tau_{2}\left(I_{1}\left(u_{1}\left(t_{1}, x_{1}\right)\right)-t_{1}\right. \\
& >\tau_{1}\left(u_{1}\left(t_{1}, x_{1}\right)\right)-t_{1}=r_{1,1}\left(t_{1}, x_{1}\right)=0 .
\end{aligned}
$$

Since $r_{2,2}$ is continuous and by (H3) there exists $t_{2}>t_{1}, x_{2}>x_{1}$ such that

$$
r_{2,2}\left(u_{2}\left(t_{2}, x_{2}\right)=0 \quad \text { and } \quad r_{2,2}(t, x) \neq 0 \quad \text { for all }(t, x) \in\left(t_{1}, t_{2}\right) \times J_{b}\right.
$$

It is clear by (H3) that

$$
r_{k, 2}(t, x) \neq 0 \quad \text { for all }(t, x) \in\left(t_{1}, t_{2}\right) \times J_{b}, k=2, \ldots, m
$$

Suppose now that there is $(s, \bar{s}) \in\left(t_{1}, t_{2}\right] \times\left[0, x_{2}\right) \cup\left(x_{2}, b\right]$ such that

$$
r_{1,2}(s, \bar{s})=0
$$

From (H5) it follows that

$$
\begin{aligned}
\left.r_{1,2}\left(t_{1}^{+}, x_{1}\right)\right) & =\tau_{1}\left(u_{2}\left(t_{1}^{+}, x_{1}\right)\right)-t_{1}=\tau_{1}\left(I_{1}\left(u_{1}\left(t_{1}, x_{1}\right)\right)-t_{1}\right. \\
& \leq \tau_{1}\left(u_{1}\left(t_{1}, x_{1}\right)-t_{1}=r_{1,1}\left(t_{1}, x_{1}\right)=0 .\right.
\end{aligned}
$$

Thus the function $r_{1,2}$ attains a nonnegative maximum at some point $\left(s_{1}, \bar{s}_{1}\right) \in$ $\left(t_{1}, a\right] \times\left[0, x_{2}\right) \cup\left(x_{2}, b\right]$. Since

$$
\frac{\partial^{2} u_{2}(t, x)}{\partial t \partial x} \in F\left(t, x, u_{2}(t, x)\right)
$$

then there exist $v(t, x) \in F\left(t, x, u_{2}(t, x)\right)$ a.e. $(t, x) \in\left[t_{1}, a\right] \times J_{b}$ such that

$$
\frac{\partial^{2} u_{2}(t, x)}{\partial t \partial x}=v(t, x), \quad(t, x) \in\left[t_{1}, a\right] \times J_{b}
$$

Then we have

$$
r_{1,2}^{\prime}(t, x)=\tau_{1}^{\prime}\left(u_{2}(t, x)\right) \frac{\partial u_{2}(t, x)}{\partial t}-1=0
$$

Therefore

$$
\left\langle\tau_{1}^{\prime}\left(u_{2}\left(s_{1}, \bar{s}_{1}\right)\right), \int_{t_{1}}^{s_{1}} v\left(s, \bar{s}_{1}\right) d s\right\rangle=1
$$

which contradicts (H4).

Step 3. We continue this process and taking into account that $u_{m}:=$ $\left.y\right|_{\left[t_{m}, a\right] \times J_{b}}$ is a solution to the problem

$$
\begin{align*}
& \frac{\partial^{2} u(t, x)}{\partial t \partial x} \in F(t, x, u(t, x)), \quad \text { a.e. } t \in\left(t_{m}, a\right] \times(0, b] \tag{3.5}\\
& u\left(t_{m}^{+}, x\right)=I_{m}\left(u_{m-1}\left(t_{m}^{-}, x\right)\right) \tag{3.6}
\end{align*}
$$

The solution u of the problem (1.1)-(1.3) is then defined by

$$
u(t, x)= \begin{cases}u_{1}(t, x) & \text { if } t \in\left[0, t_{1}\right) \times J_{b} \\ u_{2}(t, x) & \text { if } t \in\left[t_{1}, t_{2}\right) \times J_{b} \\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\ u_{m}(t, x) & \text { if } t \in\left[t_{m}, a\right] \times J_{b}\end{cases}
$$

References

[1] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
[2] D. D. Bainov, Z. Kamont and E. Minchev, Comparison principles for impulsive hyperbolic equations of first order, J. Comput. Appl. Math. 60 (1995), 379-388.
[3] M. Benchohra, A note on an hyperbolic differential inclusions in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 101-107.
[4] M. Benchohra, L. Górniewicz, S. K. Ntouyas and A. Ouahab, Existence results for impulsive hyperbolic differential inclusions, Appl. Anal. (to appear).
[5] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.
[6] J. Dugundji and A. Granas, Fixed Point Theory, Mongrafie Mat., PWN, Warsaw, 1982.
[7] L. Erbe, H. I. Freedman, X. Z. Liu and J. H. Wu, Comparison principles for impulsive parabolic equations with applications to models of singles species growth, J. Austral. Math. Soc. Ser. B 32 (1991), 382-400.
[8] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., vol. 495, Kluwer Academic Publishers, Dortrecht, 1999.
[9] J. Hale, Ordinary Differential Equations, Pure Appl. Math., John Wiley and Sons, New York-London-Sydney, 1969.
[10] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht-Boston-London, 1997.
[11] M. Kirane and Y. V. Rogovchenko, Comparison results for systems of impulsive parabolic equations with applications to population dynamics, Nonlinear Anal. 28 (1997), 263-276.
[12] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[13] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Polish Acad. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
[14] J. H. Liu, Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Systems 6 (1999), 77-85.
[15] X. Liu and S. Zhang, A cell population model described by impulsive PDEs-existence and numerical approximation, Comput. Math. Appl. 36(8) (1998), 1-11.
[16] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

Manuscript received May 20, 2003
Mouffak Benchohra and Abdelghani Ouahab
Laboratoire de Mathématiques
Université de Sidi Bel Abbès
BP 89, 22000 Sidi Bel Abbès, ALGÉRIE
E-mail address: benchohra@univ-sba.dz

Lech Górniewicz
Faculty of Mathematic and Informatics Science
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, POLAND
E-mail address: gorn@mat.uni.torun.pl
Sotiris K. Ntouyas
Department of Mathematics
University of Ioannina
45110 Ioannina, GREECE
E-mail address: sntouyas@cc.uoi.gr

