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PERIODIC SOLUTIONS
OF A CLASS OF INTEGRAL EQUATIONS

Shugui Kang — Guang Zhang — Sui Sun Cheng

Abstract. Based on the fixed point index theory for a Banach space,
nontrivial periodic solutions are found for a class of integral equation of the

form

φ(x) =

Z
[x,x+ω]∩Ω

K(x, y)f(y, φ(y − τ(y))) dy, x ∈ Ω,

where Ω is a closed subset of RN with perioidc structure.

Nonlinear Hammerstein integral equations of the form

φ(x) =
∫

Ω

K(x, y)f(y, φ(y)) dy

have been extensively studied under the assumptions that Ω is a bounded and
closed subset of RN with positive Lebesgue measure µ(Ω), see e.g. [4], [5].

There are situations, however, where Ω is not fixed but depends on x. For
instance, suppose we are concerned with the periodic solutions of the differential
equation

(1) φ′(x) = −a(x)φ(x) + f(φ(x)), x ∈ R.

2000 Mathematics Subject Classification. 45M15.
Key words and phrases. Perioidc solution, fixed point index.

Supported by Natural Science Foundation of Shanxi Province (20001001), Development

Foundation of Higher Education Department of Shanxi Province (200138) of China and Natural
Science Foundation of Yanbei Normal University (200304105).

c©2003 Juliusz Schauder Center for Nonlinear Studies

245



246 S. Kang — G. Zhang — S. S. Cheng

Under the conditions that a = a(x) is a positive continuous 2π-periodic function
defined on R, we may check that a 2π-periodic solution of

(2) φ(x) =
∫ x+2π

x

K(x, y)f(φ(y)) dy, x ∈ R,

where

K(x, y) =
exp

∫ y

x
a(t) dt

exp
∫ ω

0
a(t) dt− 1

, x, y ∈ R,

is also a 2π-periodic solution of (1), see e.g. [2], [3]. Therefore, it is desirable to
study the equation (2).

More generally, let RN be the N -dimensional Euclidean space endowed with
componentwise ordering ≤. For any u, v ∈ RN , the “interval” [u, v] is the set
{x ∈ RN : u ≤ x ≤ v}. Let ω = (ω1, . . . , ωN ) ∈ RN with positive components
and let e(1) = (1, 0, . . . , 0), . . . , e(N) = (0, . . . , 0, 1) be the standard orthonormal
vectors in RN . Let Ω be a closed subset of RN which has the following “periodic”
structure:

x+ ωie
(i) ∈ Ω for each x ∈ Ω

and, for each pair y, z ∈ Ω,

µ([y, y + ω] ∩ Ω) = µ([z, z + ω] ∩ Ω) > 0.

A trivial example is Ω = R with accompanying ω = 2π. As a nontrivial example,
Ω may be taken as

(3) {(x, y) ∈ R2 : 4nπ ≤ x, y ≤ 4nπ + 2π, n = 0,±1,±2, . . . }

with accompanying ω = (4π, 4π).
We will be concerned with integral equations of the form

(4) φ(x) =
∫

[x,x+ω]∩Ω

K(x, y)f(y, φ(y − τ(y))) dy, x ∈ Ω,

where the functions K, f and τ satisfy the following conditions:

• K ∈ C(Ω × Ω,R+) and K(x + ωie
(i), y + ωie

(i)) = K(x, y) for any
(x, y) ∈ Ω× Ω and i ∈ {1, . . . , N},

• f ∈ C(Ω × R,R) and f(x + ωie
(i), u) = f(x, u) for i ∈ {1, . . . , N} and

x ∈ Ω,
• τ : Ω → Ω is continuous and τ(x + ωie

(i)) = τ(x) for any x ∈ Ω and
i ∈ {1, . . . , N}.

As an example, let Ω be defined by (3) and let a1(t1) = | cos t1|, a2(t2) =
| cos t2|, τ(t) = 0, f(x) = sinx1 sinx2,

G1(t1, s1) =
exp

∫ s1

t1
| cosx1| dx1

exp
∫ 2π

0
| cosx1| dx1 − 1
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and

G2(t2, s2) =
exp

∫ s2

t2
| cosx2| dx2

exp
∫ 2π

0
| cosx2| dx2 − 1

.

Then the following equation

φ1(t1)φ2(t2)

=
∫∫

[(t1,t2),(t1+4π,t2+4π)]∩Ω

G1(t1, s1)G2(t2, s2) sin(φ1(s1)) sin(φ2(s2)) ds1 ds2

is a special case of (4).
Our main concern will be the existence of periodic solutions of our equa-

tion (4). More precisely, we will look for solutions in the set of all real continuous
functions of the form φ: Ω → R such that φ(x + ωie

(i)) = φ(x) for x ∈ Ω. This
set will be denoted by C(Ω) in the sequel. Note that when endowed with the
usual linear and ordering structure as well as the norm

‖φ‖ = max
z∈[x,x+ω]∩Ω,x∈Ω

|φ(z)|,

C(Ω) is a normed ordered linear space with normal cone P0 = {φ ∈ C(Ω) :
φ(x) ≥ 0, x ∈ Ω}. For the sake of convenience, we will use the norm ‖(φ, ψ)‖ =
max{‖φ‖, ‖ψ‖} for the naturally ordered product space C(Ω) × C(Ω). For the
same reason, we will also set

Ω(x) = [x, x+ ω] ∩ Ω.

Our proofs will involve the fixed point index, the basic properties of which
are listed in the following lemma. A proof of this lemma based on the Leray–
Schauder degree theory can be found in [1] and [4].

Lemma 1. Let Q be a retract of a Banach space E. For every open subset U
of Q and every completely continuous map A:U → Q which has no fixed points
on the boundary ∂U of U , there exists an integer i(A,U,Q) satisfying:

(a) if A:U → U is a constant map, then i(A,U,Q) = 1,
(b) if U1 and U2 are disjoint open subsets of U such that A has no fixed

points on U \ (U1 ∪ U2), then i(A,U,Q) = i(A,U1, Q) + i(A,U2, Q),
where i(A,Uk, Q) = i(A \ Uk, Uk, Q) for k = 1, 2,

(c) if I is a compact interval in R and h: I × U → Q is a continuous map
with relatively compact range such that h(λ, x) 6= x for (λ, x) ∈ I × ∂U ,
then i(h(λ, · ), U,Q) is well-defined and independent of λ,

(d) if i(A,U,Q) 6= 0, then A has at least one fixed point in U ,
(e) if Q1 is a retract of Q and A(U) ⊂ Q1, then i(A,U,Q) = i(A,U ∩

Q1, Q1), where i(A,U ∩Q1, Q1) = i(A \ U ∩Q1, U ∩Q1, Q1),
(f) if V is open in U and A has no fixed points in U \ V , then i(A,U,Q) =

i(A, V,Q).
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Theorem 2. Suppose

(H1) K(x, y) ≥ m > 0 for x, y ∈ Ω(t) and t ∈ Ω,
(H2) f(x, u) = f1(x, u) − f2(x, u), where fi(x, u) is nonnegative and contin-

uous on Ω× R and fi(x, 0) = 0 for i = 1, 2.

Suppose further that

lim
|u|→0

f1(x, u)
|u|

= ∞,(5)

lim sup
|u|→0

f2(x, u)
|u|

<∞,(6)

lim
u→∞

f1(x, u)
u

= 0,(7)

lim
|u|→∞

f2(x, u)
|u|

= 0,(8)

uniformly with respect to all x ∈ Ω. Then the integral equation (4) has at least
one nontrivial periodic solution in C(Ω).

Proof. Note that M = supx,y∈Ω(t),t∈ΩK(x, y) <∞. Thus, in view of (H1),
ĉ = m/M > 0. Furthermore, for any x, y, z ∈ Ω(t), we have

(9) K(x, y) ≥ ĉK(z, y).

Let P = {φ ∈ C(Ω) : φ(x) ≥ 0, φ(x) ≥ ĉφ(z), for all x, z ∈ Ω(t), t ∈ Ω}. Then
it is not difficult to check that P is a cone in C(Ω) and P × P is also a cone in
C(Ω)× C(Ω). Let

A1(φ, ψ)(x) =
∫

Ω(x)

K(x, y)f1(y, φ(y − τ(y))− ψ(y − τ(y))) dy,

A2(φ, ψ)(x) =
∫

Ω(x)

K(x, y)f2(y, φ(y − τ(y))− ψ(y − τ(y))) dy,

and A(φ, ψ)(x) = (A1(φ, ψ)(x), A2(φ, ψ)(x)). Then it is easily seen that A:P ×
P → C(Ω) × C(Ω) is completely continuous. Furthermore, for any x, z ∈ Ω(t)
where t ∈ Ω,

Ai(φ, ψ)(z) =
∫

Ω(z)

K(z, y)fi(y, φ(y − τ(y))− ψ(y − τ(y))) dy

≤M

∫
Ω(z)

fi(y, φ(y − τ(y))− ψ(y − τ(y))) dy,

Ai(φ, ψ)(x) =
∫

Ω(x)

K(x, y)fi(y, φ(y − τ(y))− ψ(y − τ(y))) dy

≥ m

∫
Ω(x)

fi(y, φ(y − τ(y))− ψ(y − τ(y))) dy
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= m

∫
Ω(z)

fi(y, φ(y − τ(y))− ψ(y − τ(y))) dy

≥ ĉAi(φ, ψ)(z)

for i = 1, 2. Thus A maps P × P into P × P . From (6), there exist β > 0 and
r1 > 0 such that when |u| ≤ r1, we have

(10) f2(x, u) ≤ β|u|, x ∈ Ω.

Let 0 < ε < min{1, ĉ/(2+2Mβµ(Ω(x)))}. Then when (φ, ψ) ∈ P×P , ‖(φ, ψ)‖ =
r ≤ r1 and A2(φ, ψ) = ψ, we have

(11) µ(Ω0) ≥ min
{
µ(Ω(x)),

ĉ

2Mβ

}
,

where
Ω0 = {y ∈ Ω(x) : |φ(y − τ(y))− ψ(y − τ(y))| ≥ εr}.

Indeed, if |φ(y− τ(y))−ψ(y− τ(y))| ≥ εr for any y ∈ Ω(x), then (11) is obvious.
If there exists x1 ∈ Ω(x) such that |φ(x1 − τ(x1))− ψ(x1 − τ(x1))| < εr, then

‖ψ‖ ≥ ψ(x1 − τ(x1)) > φ(x1 − τ(x1))− εr ≥ ĉ‖φ‖ − εr,

hence, ‖ψ‖ > (ĉ − ε)r. Suppose ψ(x2) = ‖ψ‖. Then in view of the fact that
A2(φ, ψ) = ψ and (10), we have

(ĉ− ε)r ≤ ψ(x2) =
∫

Ω(x2)

K(x2, y)f2(y, φ(y − τ(y))− ψ(y − τ(y))) dy

≤Mβ

( ∫
Ω0

+
∫

Ω(x2)\Ω0

)
|φ(y − τ(y))− ψ(y − τ(y))| dy

≤Mβr(µ(Ω0) + εµ(Ω(x2) \ Ω0)).

Hence, in view of the definition of ε and by a simple computation, µ(Ω0) ≥
ĉ/(2Mβ). Our assertion (11) thus holds.

Let a = min{µ(Ω(x)), ĉ/(2Mβ)}. Choose an α such that α ≥ 1/maε. In
view of (5), there exists r ≤ r1 such that when |u| ≤ r, we have

(12) f1(x, u) ≥ α|u|, x ∈ Ω.

Let h(x) =
∫
Ω(x)

K(x, y) dy. Then h ∈ P . Furthermore, for any (φ, ψ) in

∂(P × P )r = {(φ, ψ) ∈ P × P : ‖(φ, ψ)‖ = r},

we have

(13) (φ, ψ)−A(φ, ψ) 6= t(h, θ), t ≥ 0.

Indeed, if there is (φ0, ψ0) ∈ ∂(P×P )r and t0 ≥ 0 such that (φ0, ψ0)−A(φ0, ψ0) =
t0(h, θ), then

(14) φ0 −A1(φ0, ψ0) = t0h,
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(15) ψ0 −A2(φ0, ψ0) = θ.

If t0 = 0, then (φ0, ψ0) is a fixed point of A. Thus, we suppose t0 > 0. In view
of (15), for above ε, (11) holds. From (14), we have φ0 ≥ t0h.

Note that t∗ = sup{t : φ0 ≥ th} ≥ t0 > 0. From (11), (12) and (14), we have

φ0(x) = t0h(x) +A1(φ0, ψ0)(x)

= t0h(x) +
∫

Ω(x)

K(x, y)f1(y, φ0(y − τ(y))− ψ0(y − τ(y))) dy

≥ t0h(x) +
∫

Ω0

K(x, y)f1(y, φ0(y − τ(y))− ψ0(y − τ(y)) dy

≥ t0h(x) + α

∫
Ω0

K(x, y)|φ0(y − τ(y))− ψ0(y − τ(y))| dy

≥ t0h(x) +mαεrµ(Ω0) ≥ t0h(x) +maαεt∗h(x) ≥ (t0 + t∗)h(x),

which is a contradiction. Thus (13) holds. Therefore (see e.g. [1], [4])

(16) i(A, (P × P )r, P × P ) = 0.

Next, we will prove that there is R > 0 such that when (φ, ψ) ∈ ∂(P × P )R,

(17) A(φ, ψ) 6≥ (φ, ψ).

Indeed, choose c satisfying 0 < c < ĉ/(Mµ(Ω(x))). In view of (7) and (8), we
see that there exists R0 such that when u ≥ R0 and |v| ≥ R0, we have

f1(x, u) ≤ cu, f2(x, v) ≤ c|v| for all x ∈ Ω.

Let

T0 = max
{

sup
0≤u≤R0,x∈Ω

f1(x, u), sup
0≤|v|≤R0,x∈Ω

f2(x, v)
}
.

Then for any u ≥ 0, v ∈ R and x ∈ Ω,

f1(x, u) ≤ cu+ T0,(18)

f2(x, v) ≤ c|v|+ T0.(19)

Choose R > max{r,R0,MT0µ(Ω(x))/(ĉ− cMµ(Ω(x)))}. Then (17) will be sat-
isfied for (φ, ψ) ∈ ∂(P × P )R. Indeed, when ‖(φ, ψ)‖ = R, if φ(x) ≥ ψ(x) for
any x ∈ Ω, then from (18), we have

A1(φ, ψ)(x) =
∫

Ω(x)

K(x, y)f1(y, φ(y − τ(y))− ψ(y − τ(y))) dy

≤
∫

Ω(x)

K(x, y)[c(φ(y − τ(y))− ψ(y − τ(y))) + T0] dy

≤MRcµ(Ω(x)) +MT0µ(Ω(x)) < R = ‖φ‖.
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Thus, A1(φ, ψ) 6≥ φ and consequently A(φ, ψ) 6≥ (φ, ψ). If there exists x0 ∈ Ω
such that φ(x0) < ψ(x0), then ‖ψ‖ ≥ ĉR, and consequently from (19), we have

A2(φ, ψ)(x) =
∫

Ω(x)

K(x, y)f2(y, φ(y − τ(y))− ψ(y − τ(y))) dy

≤
∫

Ω(x)

K(x, y)[c|φ(y − τ(y))− ψ(y − τ(y))|+ T0] dy

≤MRcµ(Ω(x)) +mT0µ(Ω(x)) ≤ ĉR ≤ ‖ψ‖.

Thus A2(φ, ψ) 6≥ ψ and consequently A(φ, ψ) 6> (φ, ψ). From (17) we have

(20) i(A, (P × P )R, P × P ) = 1.

From (16) and (20), we have

i(A, (P × P )R \ (P × P )r, P × P ) = 1.

Thus by Lemma 1(d), there exists (φ∗, ψ∗) ∈ (P × P )R \ (P × P )r such that
A(φ∗, ψ∗) = (φ∗, ψ∗), i.e.

φ∗(x) =
∫

Ω(x)

K(x, y)f1(y, φ∗(y − τ(y))− ψ∗(y − τ(y))) dy,

ψ∗(x) =
∫

Ω(x)

K(x, y)f2(y, φ∗(y − τ(y))− ψ∗(y − τ(y))) dy.

Finally, from the assumption that f1(x, 0) = f2(x, 0) = 0 for all x ∈ Ω, we
know that φ∗ 6= ψ∗. (Indeed, if φ∗ = ψ∗, then φ∗ = ψ∗ = 0, which is contrary
to the fact that (φ∗, ψ∗) ∈ (P × P )R \ (P × P )r). This shows that φ∗ − ψ∗ is a
nontrivial periodic solution of (4) in C(Ω). The proof is complete. �

As a nontrivial example, consider the first-order functional differential equa-
tion

(21) y′(t) = −a(t)y(t) + h(t)f(y(t− τ(t)))

where a = a(t), h = h(t) and τ = τ(t) are continuous T -periodic functions. We
assume that T > 0, that h = h(t) are nonnegative, that

∫ T

0
a(t) dt > 0 and

f = f(t) is continuous function satisfying f(0) = 0. Then it is easily checked
that any T -periodic function y(t) that satisfies the following integral equation

(22) y(t) =
∫ t+T

t

G(t, s)h(s)f(y(s− τ(s))) ds

where

G(t, s) =
exp

∫ s

t
a(u)du

exp
∫ T

0
a(u) du− 1

, s, t ∈ R.
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is also a T -periodic solution of (21). Note that

G(t, s) ≥ min
0≤s,t≤T

exp
∫ s

t
a(u) du

exp
∫ T

0
a(u) du− 1

= m > 0, |s− t| ≤ T,

and f(u) = f1(u) − f2(u) where f1 and f2 are nonnegative and continuous
functions satisfying f1(0) = f2(0) = 0. Thus by Theorem 2, we may assert
that if

lim
|u|→0

f1(u)
|u|

= ∞, lim sup
|u|→0

f2(u)
|u|

<∞,

lim
u→∞

f1(u)
u

= 0, lim
|u|→∞

f2(u)
u

= 0,

then equation (21) has at least one nontrivial T -periodic solution.
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