PERIODIC SOLUTIONS OF A CLASS OF INTEGRAL EQUATIONS

Shugui Kang - Guang Zhang - Sui Sun Cheng

$$
\begin{aligned}
& \text { AbSTRACT. Based on the fixed point index theory for a Banach space, } \\
& \text { nontrivial periodic solutions are found for a class of integral equation of the } \\
& \text { form } \\
& \qquad \phi(x)=\int_{[x, x+\omega] \cap \Omega} K(x, y) f(y, \phi(y-\tau(y))) d y, \quad x \in \Omega
\end{aligned}
$$

where $\Omega$ is a closed subset of $\mathbb{R}^{N}$ with perioidc structure.

Nonlinear Hammerstein integral equations of the form

$$
\phi(x)=\int_{\Omega} K(x, y) f(y, \phi(y)) d y
$$

have been extensively studied under the assumptions that $\Omega$ is a bounded and closed subset of $\mathbb{R}^{N}$ with positive Lebesgue measure $\mu(\Omega)$, see e.g. [4], [5].

There are situations, however, where $\Omega$ is not fixed but depends on $x$. For instance, suppose we are concerned with the periodic solutions of the differential equation

$$
\begin{equation*}
\phi^{\prime}(x)=-a(x) \phi(x)+f(\phi(x)), \quad x \in \mathbb{R} . \tag{1}
\end{equation*}
$$

2000 Mathematics Subject Classification. 45M15.
Key words and phrases. Perioidc solution, fixed point index.
Supported by Natural Science Foundation of Shanxi Province (20001001), Development Foundation of Higher Education Department of Shanxi Province (200138) of China and Natural Science Foundation of Yanbei Normal University (200304105).

Under the conditions that $a=a(x)$ is a positive continuous $2 \pi$-periodic function defined on $\mathbb{R}$, we may check that a $2 \pi$-periodic solution of

$$
\begin{equation*}
\phi(x)=\int_{x}^{x+2 \pi} K(x, y) f(\phi(y)) d y, \quad x \in \mathbb{R} \tag{2}
\end{equation*}
$$

where

$$
K(x, y)=\frac{\exp \int_{x}^{y} a(t) d t}{\exp \int_{0}^{\omega} a(t) d t-1}, \quad x, y \in \mathbb{R}
$$

is also a $2 \pi$-periodic solution of (1), see e.g. [2], [3]. Therefore, it is desirable to study the equation (2).

More generally, let $\mathbb{R}^{N}$ be the $N$-dimensional Euclidean space endowed with componentwise ordering $\leq$. For any $u, v \in \mathbb{R}^{N}$, the "interval" $[u, v]$ is the set $\left\{x \in \mathbb{R}^{N}: u \leq x \leq v\right\}$. Let $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right) \in \mathbb{R}^{N}$ with positive components and let $e^{(1)}=(1,0, \ldots, 0), \ldots, e^{(N)}=(0, \ldots, 0,1)$ be the standard orthonormal vectors in $\mathbb{R}^{N}$. Let $\Omega$ be a closed subset of $\mathbb{R}^{N}$ which has the following "periodic" structure:

$$
x+\omega_{i} e^{(i)} \in \Omega \quad \text { for each } x \in \Omega
$$

and, for each pair $y, z \in \Omega$,

$$
\mu([y, y+\omega] \cap \Omega)=\mu([z, z+\omega] \cap \Omega)>0
$$

A trivial example is $\Omega=\mathbb{R}$ with accompanying $\omega=2 \pi$. As a nontrivial example, $\Omega$ may be taken as

$$
\begin{equation*}
\left\{(x, y) \in \mathbb{R}^{2}: 4 n \pi \leq x, y \leq 4 n \pi+2 \pi, n=0, \pm 1, \pm 2, \ldots\right\} \tag{3}
\end{equation*}
$$

with accompanying $\omega=(4 \pi, 4 \pi)$.
We will be concerned with integral equations of the form

$$
\begin{equation*}
\phi(x)=\int_{[x, x+\omega] \cap \Omega} K(x, y) f(y, \phi(y-\tau(y))) d y, \quad x \in \Omega \tag{4}
\end{equation*}
$$

where the functions $K, f$ and $\tau$ satisfy the following conditions:

- $K \in C\left(\Omega \times \Omega, \mathbb{R}^{+}\right)$and $K\left(x+\omega_{i} e^{(i)}, y+\omega_{i} e^{(i)}\right)=K(x, y)$ for any $(x, y) \in \Omega \times \Omega$ and $i \in\{1, \ldots, N\}$,
- $f \in C(\Omega \times \mathbb{R}, \mathbb{R})$ and $f\left(x+\omega_{i} e^{(i)}, u\right)=f(x, u)$ for $i \in\{1, \ldots, N\}$ and $x \in \Omega$,
- $\tau: \Omega \rightarrow \Omega$ is continuous and $\tau\left(x+\omega_{i} e^{(i)}\right)=\tau(x)$ for any $x \in \Omega$ and $i \in\{1, \ldots, N\}$.
As an example, let $\Omega$ be defined by (3) and let $a_{1}\left(t_{1}\right)=\left|\cos t_{1}\right|, a_{2}\left(t_{2}\right)=$ $\left|\cos t_{2}\right|, \tau(t)=0, f(x)=\sin x_{1} \sin x_{2}$,

$$
G_{1}\left(t_{1}, s_{1}\right)=\frac{\exp \int_{t_{1}}^{s_{1}}\left|\cos x_{1}\right| d x_{1}}{\exp \int_{0}^{2 \pi}\left|\cos x_{1}\right| d x_{1}-1}
$$

and

$$
G_{2}\left(t_{2}, s_{2}\right)=\frac{\exp \int_{t_{2}}^{s_{2}}\left|\cos x_{2}\right| d x_{2}}{\exp \int_{0}^{2 \pi}\left|\cos x_{2}\right| d x_{2}-1}
$$

Then the following equation

$$
\begin{aligned}
& \phi_{1}\left(t_{1}\right) \phi_{2}\left(t_{2}\right) \\
& =\iint_{\left[\left(t_{1}, t_{2}\right),\left(t_{1}+4 \pi, t_{2}+4 \pi\right)\right] \cap \Omega} G_{1}\left(t_{1}, s_{1}\right) G_{2}\left(t_{2}, s_{2}\right) \sin \left(\phi_{1}\left(s_{1}\right)\right) \sin \left(\phi_{2}\left(s_{2}\right)\right) d s_{1} d s_{2}
\end{aligned}
$$

is a special case of (4).
Our main concern will be the existence of periodic solutions of our equation (4). More precisely, we will look for solutions in the set of all real continuous functions of the form $\phi: \Omega \rightarrow \mathbb{R}$ such that $\phi\left(x+\omega_{i} e^{(i)}\right)=\phi(x)$ for $x \in \Omega$. This set will be denoted by $C(\Omega)$ in the sequel. Note that when endowed with the usual linear and ordering structure as well as the norm

$$
\|\phi\|=\max _{z \in[x, x+\omega] \cap \Omega, x \in \Omega}|\phi(z)|
$$

$C(\Omega)$ is a normed ordered linear space with normal cone $P_{0}=\{\phi \in C(\Omega)$ : $\phi(x) \geq 0, x \in \Omega\}$. For the sake of convenience, we will use the norm $\|(\phi, \psi)\|=$ $\max \{\|\phi\|,\|\psi\|\}$ for the naturally ordered product space $C(\Omega) \times C(\Omega)$. For the same reason, we will also set

$$
\Omega(x)=[x, x+\omega] \cap \Omega .
$$

Our proofs will involve the fixed point index, the basic properties of which are listed in the following lemma. A proof of this lemma based on the LeraySchauder degree theory can be found in [1] and [4].

Lemma 1. Let $Q$ be a retract of a Banach space $E$. For every open subset $U$ of $Q$ and every completely continuous map $A: \bar{U} \rightarrow Q$ which has no fixed points on the boundary $\partial U$ of $U$, there exists an integer $i(A, U, Q)$ satisfying:
(a) if $A: \bar{U} \rightarrow U$ is a constant map, then $i(A, U, Q)=1$,
(b) if $U_{1}$ and $U_{2}$ are disjoint open subsets of $U$ such that $A$ has no fixed points on $U \backslash\left(U_{1} \cup U_{2}\right)$, then $i(A, U, Q)=i\left(A, U_{1}, Q\right)+i\left(A, U_{2}, Q\right)$, where $i\left(A, U_{k}, Q\right)=i\left(A \backslash \bar{U}_{k}, U_{k}, Q\right)$ for $k=1,2$,
(c) if $I$ is a compact interval in $\mathbb{R}$ and $h: I \times \bar{U} \rightarrow Q$ is a continuous map with relatively compact range such that $h(\lambda, x) \neq x$ for $(\lambda, x) \in I \times \partial U$, then $i(h(\lambda, \cdot), U, Q)$ is well-defined and independent of $\lambda$,
(d) if $i(A, U, Q) \neq 0$, then $A$ has at least one fixed point in $U$,
(e) if $Q_{1}$ is a retract of $Q$ and $A(\bar{U}) \subset Q_{1}$, then $i(A, U, Q)=i(A, U \cap$ $\left.Q_{1}, Q_{1}\right)$, where $i\left(A, U \cap Q_{1}, Q_{1}\right)=i\left(A \backslash \overline{U \cap Q_{1}}, U \cap Q_{1}, Q_{1}\right)$,
(f) if $V$ is open in $U$ and $A$ has no fixed points in $U \backslash V$, then $i(A, U, Q)=$ $i(A, V, Q)$.

## Theorem 2. Suppose

(H1) $K(x, y) \geq m>0$ for $x, y \in \Omega(t)$ and $t \in \Omega$,
(H2) $f(x, u)=f_{1}(x, u)-f_{2}(x, u)$, where $f_{i}(x, u)$ is nonnegative and continuous on $\Omega \times \mathbb{R}$ and $f_{i}(x, 0)=0$ for $i=1,2$.
Suppose further that

$$
\begin{equation*}
\lim _{|u| \rightarrow 0} \frac{f_{1}(x, u)}{|u|}=\infty \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
\limsup _{|u| \rightarrow 0} \frac{f_{2}(x, u)}{|u|}<\infty  \tag{6}\\
\lim _{u \rightarrow \infty} \frac{f_{1}(x, u)}{u}=0  \tag{7}\\
\lim _{|u| \rightarrow \infty} \frac{f_{2}(x, u)}{|u|}=0 \tag{8}
\end{gather*}
$$

uniformly with respect to all $x \in \Omega$. Then the integral equation (4) has at least one nontrivial periodic solution in $C(\Omega)$.

Proof. Note that $M=\sup _{x, y \in \Omega(t), t \in \Omega} K(x, y)<\infty$. Thus, in view of (H1), $\widehat{c}=m / M>0$. Furthermore, for any $x, y, z \in \Omega(t)$, we have

$$
\begin{equation*}
K(x, y) \geq \widehat{c} K(z, y) \tag{9}
\end{equation*}
$$

Let $P=\{\phi \in C(\Omega): \phi(x) \geq 0, \phi(x) \geq \widehat{c} \phi(z)$, for all $x, z \in \Omega(t), t \in \Omega\}$. Then it is not difficult to check that $P$ is a cone in $C(\Omega)$ and $P \times P$ is also a cone in $C(\Omega) \times C(\Omega)$. Let

$$
\begin{aligned}
& A_{1}(\phi, \psi)(x)=\int_{\Omega(x)} K(x, y) f_{1}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y \\
& A_{2}(\phi, \psi)(x)=\int_{\Omega(x)} K(x, y) f_{2}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y
\end{aligned}
$$

and $A(\phi, \psi)(x)=\left(A_{1}(\phi, \psi)(x), A_{2}(\phi, \psi)(x)\right)$. Then it is easily seen that $A: P \times$ $P \rightarrow C(\Omega) \times C(\Omega)$ is completely continuous. Furthermore, for any $x, z \in \Omega(t)$ where $t \in \Omega$,

$$
\begin{aligned}
A_{i}(\phi, \psi)(z) & =\int_{\Omega(z)} K(z, y) f_{i}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y \\
& \leq M \int_{\Omega(z)} f_{i}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y \\
A_{i}(\phi, \psi)(x) & =\int_{\Omega(x)} K(x, y) f_{i}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y \\
& \geq m \int_{\Omega(x)} f_{i}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y
\end{aligned}
$$

$$
\begin{aligned}
& =m \int_{\Omega(z)} f_{i}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y \\
& \geq \widehat{c} A_{i}(\phi, \psi)(z)
\end{aligned}
$$

for $i=1,2$. Thus $A$ maps $P \times P$ into $P \times P$. From (6), there exist $\beta>0$ and $r_{1}>0$ such that when $|u| \leq r_{1}$, we have

$$
\begin{equation*}
f_{2}(x, u) \leq \beta|u|, \quad x \in \Omega \tag{10}
\end{equation*}
$$

Let $0<\varepsilon<\min \{1, \widehat{c} /(2+2 M \beta \mu(\Omega(x)))\}$. Then when $(\phi, \psi) \in P \times P,\|(\phi, \psi)\|=$ $r \leq r_{1}$ and $A_{2}(\phi, \psi)=\psi$, we have

$$
\begin{equation*}
\mu\left(\Omega_{0}\right) \geq \min \left\{\mu(\Omega(x)), \frac{\widehat{c}}{2 M \beta}\right\} \tag{11}
\end{equation*}
$$

where

$$
\Omega_{0}=\{y \in \Omega(x):|\phi(y-\tau(y))-\psi(y-\tau(y))| \geq \varepsilon r\}
$$

Indeed, if $|\phi(y-\tau(y))-\psi(y-\tau(y))| \geq \varepsilon r$ for any $y \in \Omega(x)$, then (11) is obvious. If there exists $x_{1} \in \Omega(x)$ such that $\left|\phi\left(x_{1}-\tau\left(x_{1}\right)\right)-\psi\left(x_{1}-\tau\left(x_{1}\right)\right)\right|<\varepsilon r$, then

$$
\|\psi\| \geq \psi\left(x_{1}-\tau\left(x_{1}\right)\right)>\phi\left(x_{1}-\tau\left(x_{1}\right)\right)-\varepsilon r \geq \widehat{c}\|\phi\|-\varepsilon r,
$$

hence, $\|\psi\|>(\widehat{c}-\varepsilon) r$. Suppose $\psi\left(x_{2}\right)=\|\psi\|$. Then in view of the fact that $A_{2}(\phi, \psi)=\psi$ and (10), we have

$$
\begin{aligned}
(\widehat{c}-\varepsilon) r & \leq \psi\left(x_{2}\right)=\int_{\Omega\left(x_{2}\right)} K\left(x_{2}, y\right) f_{2}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y \\
& \leq M \beta\left(\int_{\Omega_{0}}+\int_{\Omega\left(x_{2}\right) \backslash \Omega_{0}}\right)|\phi(y-\tau(y))-\psi(y-\tau(y))| d y \\
& \leq M \beta r\left(\mu\left(\Omega_{0}\right)+\varepsilon \mu\left(\Omega\left(x_{2}\right) \backslash \Omega_{0}\right)\right)
\end{aligned}
$$

Hence, in view of the definition of $\varepsilon$ and by a simple computation, $\mu\left(\Omega_{0}\right) \geq$ $\widehat{c} /(2 M \beta)$. Our assertion (11) thus holds.

Let $a=\min \{\mu(\Omega(x)), \widehat{c} /(2 M \beta)\}$. Choose an $\alpha$ such that $\alpha \geq 1 /$ maع. In view of (5), there exists $r \leq r_{1}$ such that when $|u| \leq r$, we have

$$
\begin{equation*}
f_{1}(x, u) \geq \alpha|u|, \quad x \in \Omega \tag{12}
\end{equation*}
$$

Let $h(x)=\int_{\Omega(x)} K(x, y) d y$. Then $h \in P$. Furthermore, for any $(\phi, \psi)$ in

$$
\partial(P \times P)_{r}=\{(\phi, \psi) \in P \times P:\|(\phi, \psi)\|=r\}
$$

we have

$$
\begin{equation*}
(\phi, \psi)-A(\phi, \psi) \neq t(h, \theta), \quad t \geq 0 \tag{13}
\end{equation*}
$$

Indeed, if there is $\left(\phi_{0}, \psi_{0}\right) \in \partial(P \times P)_{r}$ and $t_{0} \geq 0$ such that $\left(\phi_{0}, \psi_{0}\right)-A\left(\phi_{0}, \psi_{0}\right)=$ $t_{0}(h, \theta)$, then

$$
\begin{equation*}
\phi_{0}-A_{1}\left(\phi_{0}, \psi_{0}\right)=t_{0} h \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{0}-A_{2}\left(\phi_{0}, \psi_{0}\right)=\theta \tag{15}
\end{equation*}
$$

If $t_{0}=0$, then $\left(\phi_{0}, \psi_{0}\right)$ is a fixed point of $A$. Thus, we suppose $t_{0}>0$. In view of (15), for above $\varepsilon$, (11) holds. From (14), we have $\phi_{0} \geq t_{0} h$.

Note that $t^{*}=\sup \left\{t: \phi_{0} \geq t h\right\} \geq t_{0}>0$. From (11), (12) and (14), we have

$$
\begin{aligned}
\phi_{0}(x) & =t_{0} h(x)+A_{1}\left(\phi_{0}, \psi_{0}\right)(x) \\
& =t_{0} h(x)+\int_{\Omega(x)} K(x, y) f_{1}\left(y, \phi_{0}(y-\tau(y))-\psi_{0}(y-\tau(y))\right) d y \\
& \geq t_{0} h(x)+\int_{\Omega_{0}} K(x, y) f_{1}\left(y, \phi_{0}(y-\tau(y))-\psi_{0}(y-\tau(y)) d y\right. \\
& \geq t_{0} h(x)+\alpha \int_{\Omega_{0}} K(x, y)\left|\phi_{0}(y-\tau(y))-\psi_{0}(y-\tau(y))\right| d y \\
& \geq t_{0} h(x)+\operatorname{ma\varepsilon r} \mu\left(\Omega_{0}\right) \geq t_{0} h(x)+\operatorname{ma\alpha \varepsilon t}^{*} h(x) \geq\left(t_{0}+t^{*}\right) h(x)
\end{aligned}
$$

which is a contradiction. Thus (13) holds. Therefore (see e.g. [1], [4])

$$
\begin{equation*}
i\left(A,(P \times P)_{r}, P \times P\right)=0 \tag{16}
\end{equation*}
$$

Next, we will prove that there is $R>0$ such that when $(\phi, \psi) \in \partial(P \times P)_{R}$,

$$
\begin{equation*}
A(\phi, \psi) \nsupseteq(\phi, \psi) . \tag{17}
\end{equation*}
$$

Indeed, choose $c$ satisfying $0<c<\widehat{c} /(M \mu(\Omega(x)))$. In view of (7) and (8), we see that there exists $R_{0}$ such that when $u \geq R_{0}$ and $|v| \geq R_{0}$, we have

$$
f_{1}(x, u) \leq c u, \quad f_{2}(x, v) \leq c|v| \quad \text { for all } x \in \Omega
$$

Let

$$
T_{0}=\max \left\{\sup _{0 \leq u \leq R_{0}, x \in \Omega} f_{1}(x, u), \sup _{0 \leq|v| \leq R_{0}, x \in \Omega} f_{2}(x, v)\right\} .
$$

Then for any $u \geq 0, v \in \mathbb{R}$ and $x \in \Omega$,

$$
\begin{align*}
& f_{1}(x, u) \leq c u+T_{0}  \tag{18}\\
& f_{2}(x, v) \leq c|v|+T_{0} \tag{19}
\end{align*}
$$

Choose $R>\max \left\{r, R_{0}, M T_{0} \mu(\Omega(x)) /(\widehat{c}-c M \mu(\Omega(x)))\right\}$. Then (17) will be satisfied for $(\phi, \psi) \in \partial(P \times P)_{R}$. Indeed, when $\|(\phi, \psi)\|=R$, if $\phi(x) \geq \psi(x)$ for any $x \in \Omega$, then from (18), we have

$$
\begin{aligned}
A_{1}(\phi, \psi)(x) & =\int_{\Omega(x)} K(x, y) f_{1}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y \\
& \leq \int_{\Omega(x)} K(x, y)\left[c(\phi(y-\tau(y))-\psi(y-\tau(y)))+T_{0}\right] d y \\
& \leq M R c \mu(\Omega(x))+M T_{0} \mu(\Omega(x))<R=\|\phi\| .
\end{aligned}
$$

Thus, $A_{1}(\phi, \psi) \nsupseteq \phi$ and consequently $A(\phi, \psi) \nsupseteq(\phi, \psi)$. If there exists $x_{0} \in \Omega$ such that $\phi\left(x_{0}\right)<\psi\left(x_{0}\right)$, then $\|\psi\| \geq \widehat{c} R$, and consequently from (19), we have

$$
\begin{aligned}
A_{2}(\phi, \psi)(x) & =\int_{\Omega(x)} K(x, y) f_{2}(y, \phi(y-\tau(y))-\psi(y-\tau(y))) d y \\
& \leq \int_{\Omega(x)} K(x, y)\left[c|\phi(y-\tau(y))-\psi(y-\tau(y))|+T_{0}\right] d y \\
& \leq M R c \mu(\Omega(x))+m T_{0} \mu(\Omega(x)) \leq \widehat{c} R \leq\|\psi\|
\end{aligned}
$$

Thus $A_{2}(\phi, \psi) \nsupseteq \psi$ and consequently $A(\phi, \psi) \nsupseteq(\phi, \psi)$. From (17) we have

$$
\begin{equation*}
i\left(A,(P \times P)_{R}, P \times P\right)=1 \tag{20}
\end{equation*}
$$

From (16) and (20), we have

$$
i\left(A,(P \times P)_{R} \backslash(P \times P)_{r}, P \times P\right)=1
$$

Thus by Lemma $1(\mathrm{~d})$, there exists $\left(\phi^{*}, \psi^{*}\right) \in(P \times P)_{R} \backslash(P \times P)_{r}$ such that $A\left(\phi^{*}, \psi^{*}\right)=\left(\phi^{*}, \psi^{*}\right)$, i.e.

$$
\begin{aligned}
\phi^{*}(x) & =\int_{\Omega(x)} K(x, y) f_{1}\left(y, \phi^{*}(y-\tau(y))-\psi^{*}(y-\tau(y))\right) d y \\
\psi^{*}(x) & =\int_{\Omega(x)} K(x, y) f_{2}\left(y, \phi^{*}(y-\tau(y))-\psi^{*}(y-\tau(y))\right) d y
\end{aligned}
$$

Finally, from the assumption that $f_{1}(x, 0)=f_{2}(x, 0)=0$ for all $x \in \Omega$, we know that $\phi^{*} \neq \psi^{*}$. (Indeed, if $\phi^{*}=\psi^{*}$, then $\phi^{*}=\psi^{*}=0$, which is contrary to the fact that $\left.\left(\phi^{*}, \psi^{*}\right) \in(P \times P)_{R} \backslash(P \times P)_{r}\right)$. This shows that $\phi^{*}-\psi^{*}$ is a nontrivial periodic solution of (4) in $C(\Omega)$. The proof is complete.

As a nontrivial example, consider the first-order functional differential equation

$$
\begin{equation*}
y^{\prime}(t)=-a(t) y(t)+h(t) f(y(t-\tau(t))) \tag{21}
\end{equation*}
$$

where $a=a(t), h=h(t)$ and $\tau=\tau(t)$ are continuous $T$-periodic functions. We assume that $T>0$, that $h=h(t)$ are nonnegative, that $\int_{0}^{T} a(t) d t>0$ and $f=f(t)$ is continuous function satisfying $f(0)=0$. Then it is easily checked that any $T$-periodic function $y(t)$ that satisfies the following integral equation

$$
\begin{equation*}
y(t)=\int_{t}^{t+T} G(t, s) h(s) f(y(s-\tau(s))) d s \tag{22}
\end{equation*}
$$

where

$$
G(t, s)=\frac{\exp \int_{t}^{s} a(u) d u}{\exp \int_{0}^{T} a(u) d u-1}, \quad s, t \in \mathbb{R}
$$

is also a $T$-periodic solution of (21). Note that

$$
G(t, s) \geq \min _{0 \leq s, t \leq T} \frac{\exp \int_{t}^{s} a(u) d u}{\exp \int_{0}^{T} a(u) d u-1}=m>0, \quad|s-t| \leq T
$$

and $f(u)=f_{1}(u)-f_{2}(u)$ where $f_{1}$ and $f_{2}$ are nonnegative and continuous functions satisfying $f_{1}(0)=f_{2}(0)=0$. Thus by Theorem 2, we may assert that if

$$
\begin{array}{ll}
\lim _{|u| \rightarrow 0} \frac{f_{1}(u)}{|u|}=\infty, & \limsup _{|u| \rightarrow 0} \frac{f_{2}(u)}{|u|}<\infty \\
\lim _{u \rightarrow \infty} \frac{f_{1}(u)}{u}=0, & \lim _{|u| \rightarrow \infty} \frac{f_{2}(u)}{u}=0
\end{array}
$$

then equation (21) has at least one nontrivial $T$-periodic solution.

## References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709.
[2] S. S. Cheng and G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differential Equations 59 (2001), 1-8.
[3] , Positive periodic solutions of nonautonomous functional differential equations depending on a parameter, Abstr. Appl. Anal. 7 (2002), 279-286.
[4] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, 1988.
[5] J. G. WANG, Nontrivial solutions of Hammerstein integral equations with applications, Acta Math. Sinica 44 (2001), 535-540. (Chinese)

Shugui Kang
Department of Mathematics
Yanbei Normal University
Datong, Shanxi 037000, P. R. CHINA
E-mail address: dtkangshugui@yahoo.com.cn
Guang Zhang
Department of Mathematics
Qingdao Institute of Architecture and Engineering
Qingdao, Shandong 266033, P. R. CHINA
E-mail address: dtguangzhang@yahoo.com.cn
Sui Sun Cheng
Department of Mathematics
Tsing Hua Univeristy
Hsinchu, Taiwan 30043, R. O. CHINA
E-mail address: sscheng@math.nthu.edu.tw
TMNA: Volume $22-2003-\mathrm{N}^{\mathrm{o}} 2$

