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THREE SOLUTIONS FOR A NEUMANN PROBLEM

Biagio Ricceri

Dedicated to Professor Andrzej Granas

Abstract. In this paper we consider a Neumann problem of the type

(Pλ)

8<
:
−∆u = α(x)(|u|q−2u− u) + λf(x, u) in Ω,

∂u

∂ν
= 0 on ∂Ω.

Applying the theory developed in [13], we establish, under suitable as-

sumptions, the existence of an open interval Λ ⊆ R and of a positive real
number %, such that, for each λ ∈ Λ, problem (Pλ) admits at least three

weak solutions in W 1,2(Ω) whose norms are less than %.

Let us recall that a Gâteaux differentiable functional J on a real Banach
space X is said to satisfy the Palais–Smale condition if each sequence {xn} in X

such that supn∈N |J(xn)| < ∞ and limn→∞ ‖J ′(xn)‖X∗ = 0 admits a strongly
converging subsequence.

In [13], we proved the following result:

Theorem A ([13, Theorem 3]). Let X be a separable and reflexive real Ba-
nach space, I ⊆ R an interval, and g:X×I → R a continuous function satisfying
the following conditions:

(i) for each x ∈ X, the function g(x, · ) is concave,
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(ii) for each λ ∈ I, the function g( · , λ) is sequentially weakly lower semi-
continuous and continuously Gâteaux differentiable, satisfies the Palais–
Smale condition and

lim
‖x‖→∞

g(x, λ) = ∞,

(iii) there exists a continuous concave function h: I → R such that

sup
λ∈I

inf
x∈X

(g(x, λ) + h(λ)) < inf
x∈X

sup
λ∈I

(g(x, λ) + h(λ)).

Then, there exist an open interval Λ ⊆ I and a positive real number %, such that,
for each λ ∈ Λ, the equation

g′x(x, λ) = 0

admits at least three solutions in X whose norms are less than %.

There are already several applications of Theorem A to nonlinear boundary
value problems (see [2]–[7], [9], [11]–[13]; see also [8], and [10] for the non-smooth
case). In the mentioned papers, to satisfy the key assumption (iii), one assumes
that the involved nonlinearities have a suitable behaviour in some neighbourhood
of 0.

The aim of the present paper is to offer an application of Theorem A to
a Neumann problem where no assumption of local character is made. Our result
is as follows:

Theorem 1. Let Ω ⊂ Rn be a bounded open connected set, with boundary of
class C1, and let f : Ω × R → R be a Carathéodory function. Assume that there
exist b > 0, p ≥ 0 with p < (n+2)/(n− 2) if n ≥ 3, s ∈ [0, 2[, β ∈ L2n/(n+2)(Ω),
γ ∈ L2n/(2n−(n−2)s)(Ω), δ ∈ L1(Ω) such that

(a1) |f(x, ξ)| ≤ b|ξ|p + β(x) for a.e. x ∈ Ω and every ξ ∈ R,
(a2) |

∫ ξ

0
f(x, t) dt| ≤ γ(x)|ξ|s+β(x)|ξ|+δ(x) for a.e. x ∈ Ω and every ξ ∈ R,

(a3) for a.e. x ∈ Ω, the function f(x, · ) is even.

Then, for every α ∈ L∞(Ω) with ess infΩα > 0, every q ∈ ]1, 2[ and every c > 0
satisfying

(1)
∫

Ω

( ∫ c1/(2−q)

0

f(x, ξ) dξ

)
dx 6= 0,

there exist an open interval Λ ⊆ R and a positive real number %, such that, for
each λ ∈ Λ, the Neumann problem

(Pλ)

{ −∆u = α(x)(c|u|q−2u− u) + λf(x, u) in Ω,

∂u

∂ν
= 0 on ∂Ω,
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(where ν is the outer unit normal to ∂Ω) admits at least three weak solutions in
W 1,2(Ω) whose norms are less than %.

In general, let us recall that, if ϕ: Ω × R → R is a Carathéodory function,
a weak solution of the problem{ −∆u = ϕ(x, u) in Ω,

∂u

∂ν
= 0 on ∂Ω,

(where ν is the outer unit normal to ∂Ω) is any u ∈ W 1,2(Ω) such that∫
Ω

∇u(x)∇v(x) dx−
∫

Ω

ϕ(x, u(x))v(x) dx = 0 for all v ∈ W 1,2(Ω).

To prove Theorem 1 we use Theorem 3 below which is, in turn, a corollary
of the following consequence of Theorem A:

Theorem 2. Let X be a separable and reflexive real Banach space, and let
Φ,Ψ:X → R be two continuously Gâteaux differentiable functionals. Assume
that Φ is sequentially weakly lower semicontinuous, that Ψ is sequentially weakly
continuous and that, for each λ ∈ R, the functional Φ + λΨ satisfies the Palais–
Smale condition and

lim
‖x‖→∞

(Φ(x) + λΨ(x)) = ∞.

Finally, suppose that there exist x1, x2 ∈ X and r ∈ R such that

inf
x∈X

Φ(x) < inf
x∈Ψ−1(r)

Φ(x),(2)

Φ(x1) = Φ(x2) = inf
x∈X

Φ(x),(3)

Ψ(x1) < r < Ψ(x2).(4)

Then, there exist an open interval Λ ⊆ R and a positive real number %, such
that, for each λ ∈ Λ, the equation

Φ′(x) + λΨ′(x) = 0

admits at least three solutions in X whose norms are less than %.

Proof. To get the conclusion, we apply Theorem A taking I = R and

g(x, λ) = Φ(x) + λ(Ψ(x)− r)

for all (x, λ) ∈ X × R. Clearly, g is continuous and conditions (i) and (ii) are
satisfied. It remains to show that condition (iii) holds too. To see this, assume
the contrary. In particular, suppose that

sup
λ∈R

inf
x∈X

(Φ(x) + λ(Ψ(x)− r)) = inf
x∈X

sup
λ∈R

(Φ(x) + λ(Ψ(x)− r)).
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Next, observe that

inf
x∈X

sup
λ∈R

(Φ(x) + λ(Ψ(x))− r)) = inf
x∈Ψ−1(r)

Φ(x).

So, we are assuming that

(5) sup
λ∈R

inf
x∈X

(Φ(x) + λ(Ψ(x)− r)) = inf
x∈Ψ−1(r)

Φ(x).

Since, by (4),

lim
λ→∞

inf
x∈X

(Φ(x) + λ(Ψ(x)− r)) ≤ lim
λ→∞

(Φ(x1) + λ(Ψ(x1)− r)) = −∞,

lim
λ→−∞

inf
x∈X

(Φ(x) + λ(Ψ(x)− r)) ≤ lim
λ→−∞

(Φ(x2) + λ(Ψ(x2)− r)) = −∞,

it follows that the real-valued function λ → infx∈X(Φ(x) + λ(Ψ(x)− r)) (which
is continuous in R being concave) attains its supremum. So, let λ∗ ∈ R be such
that

inf
x∈X

(Φ(x) + λ∗(Ψ(x)− r)) = sup
λ∈R

inf
x∈X

(Φ(x) + λ(Ψ(x)− r)).

Hence, from (5), we get

(6) inf
x∈X

(Φ(x) + λ∗(Ψ(x)− r)) = inf
x∈Ψ−1(r)

Φ(x).

Observe that, by (2), one has λ∗ 6= 0. Finally, putting (3), (4) and (6) together,
we get

inf
x∈Ψ−1(r)

Φ(x) ≤ min{Φ(x1) + λ∗(Ψ(x1)− r),Φ(x2) + λ∗(Ψ(x2)− r)} < inf
x∈X

Φ(x)

which is absurd. �

As a corollary of Theorem 2, we get

Theorem 3. Let X be a separable and reflexive real Banach space, and let
Φ,Ψ:X → R be two continuously Gâteaux differentiable functionals. Assume
that Φ is sequentially weakly lower semicontinuous and even, that Ψ is sequen-
tially weakly continuous and odd, and that, for each λ ∈ R, the functional Φ+λΨ
satisfies the Palais–Smale condition and

lim
‖x‖→∞

(Φ(x) + λΨ(x)) = ∞.

Finally, assume that
inf

x∈X
Φ(x) < inf

x∈Ψ−1(0)
Φ(x).

Then, the conclusion of Theorem 2 holds.

Proof. Let u be a global minimum of Φ. So, by assumption, one has
Ψ(u) 6= 0. For instance, assume Ψ(u) < 0. Then, since Φ is even and Ψ is
odd, to satisfy conditions (2)–(4) of Theorem 2, we can take r = 0, x1 = u and
x2 = −u. �
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We now are in a position to prove Theorem 1.

Proof of Theorem 1. Let α ∈ L∞(Ω) with ess infΩα > 0, q ∈ ]1, 2[ and
let c > 0 satisfy (1). We are going to apply Theorem 3 taking X = W 1,2(Ω)
with the norm

‖u‖ =
( ∫

Ω

(|∇u(x)|2 + α(x)|u(x)|2) dx

)1/2

,

which is equivalent to the usual one, and setting

J(u) =
c

q

∫
Ω

α(x)|u(x)|q dx, Φ(u) =
1
2
‖u‖2 − J(u)

and

Ψ(u) = −
∫

Ω

( ∫ u(x)

0

f(x, ξ) dξ

)
dx

for all u ∈ X. By classical results, the functionals Φ and Ψ are (well-defined
and) continuously Gâteaux differentiable in X, the critical points of Φ + λΨ
being precisely the weak solutions of problem (Pλ). Moreover, by the Rellich–
Kondrachov theorem, the operators J ′ and Ψ′ are compact, and so, in particular,
the functional Φ is sequentially weakly lower semicontinuous and the functional
Ψ is sequentially weakly continuous. Moreover, by (a2), Sobolev embedding
theorem and Hölder inequality, for a suitable constant η > 0, we have

Φ(u) + λΨ(u) ≥ 1
2
‖u‖2 − η(‖u‖q + |λ|(‖u‖s + ‖u‖+ 1))

for every u ∈ X and every λ ∈ R, and so, since q, s < 2,

lim
‖u‖→∞

(Φ(u) + λΨ(u)) = ∞.

This fact, together with the compactness of J ′ and Ψ′, implies that the functional
Φ + λΨ satisfies the Palais–Smale condition (see, for instance, Example 38.25
of [15]). We also observe that the functional Φ is even and that, by (a3), the
functional Ψ is odd. So, to get the conclusion directly from Theorem 3, it remains
to show that

(7) inf
u∈X

Φ(u) < inf
u∈Ψ−1(0)

Φ(u).

To this end, we first observe that, for a.e. x ∈ Ω, the points c1/(2−q) and −c1/(2−q)

are the only two global minima of the function ξ → (α(x)/2)|ξ|2− (cα(x)/q)|ξ|q.
Denote by w the constant function in Ω taking the value c1/(2−q). Then, for
every u ∈ X with |u| 6= w, we have

Φ(u) ≥ 1
2

∫
Ω

α(x)|u(x)|2 dx− c

q

∫
Ω

α(x)|u(x)|q dx

>

(
1
2
− 1

q

)
c2/(2−q)

∫
Ω

α(x) dx = Φ(w).
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This means that w and −w are the only two global minima of the functional Φ
over X (take into account that Ω is connected and that, by classical regularity
results, the minima of Φ are continuous). Since Ψ−1(0) is sequentially weakly
closed, the functional Φ|Ψ−1(0) has a global minimum which, by (1), is different
from w and −w. From this (7) follows, and the proof is complete. �

Remark 1. It is an open question to know whether the conclusion of The-
orem 1 is still true without assuming condition (1).

Remark 2. Another open question is to know whether the open interval Λ
in the conclusion of Theorem 1 can actually be taken of the form ]−λ∗, λ∗[ for
some λ∗ > 0.

Note, in particular, the following consequence of Theorem 1.

Proposition 1. Let α, γ ∈ L∞(Ω), with ess infΩα > 0, β ∈ L2n/(n+2)(Ω),
q ∈ ]1, 2[, h a positive even integer, k a positive odd integer, with h < k, and
c > 0. Assume that

(8)
k

h + k
ch/(k(2−q))

∫
Ω

γ(x) dx 6= −
∫

Ω

β(x) dx.

Then, there exist an open interval Λ ⊆ R and a positive real number % such that,
for each λ ∈ Λ, the Neumann problem{ −∆u = α(x)(c|u|q−2u− u) + λ(γ(x)uh/k + β(x)) in Ω,

∂u

∂ν
= 0 on ∂Ω,

admits at least three weak solutions in W 1,2(Ω) whose norms are less than %.

Of course, if Theorem 1 was true without condition (1), then Proposition 1
would be true without condition (8).

For other multiplicity results on problem (Pλ) see [1] and the references
therein, in particular [14].
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