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THREE SOLUTIONS FOR A NEUMANN PROBLEM

B1aGio RICCERI

Dedicated to Professor Andrzej Granas

ABSTRACT. In this paper we consider a Neumann problem of the type

—Au = a(z)(|u|?%u — u) + A\f(z,u) in Q,
(Px) Ou

520 on 0f).

Applying the theory developed in [13], we establish, under suitable as-
sumptions, the existence of an open interval A C R and of a positive real
number p, such that, for each A € A, problem (P,) admits at least three
weak solutions in W1+2(Q) whose norms are less than .

Let us recall that a Gateaux differentiable functional J on a real Banach
space X is said to satisfy the Palais—Smale condition if each sequence {z, } in X
such that sup,cy |J(2n)| < 0o and lim, o ||J'(2n)] x+ = 0 admits a strongly
converging subsequence.

In [13], we proved the following result:

THEOREM A ([13, Theorem 3]). Let X be a separable and reflexive real Ba-
nach space, I C R an interval, and g: X x I — R a continuous function satisfying
the following conditions:

(i) for each xz € X, the function g(x, -) is concave,
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(ii) for each X € I, the function g(-,)\) is sequentially weakly lower semi-
continuous and continuously Gateauz differentiable, satisfies the Palais—
Smale condition and

lim g(z,\) = oo,

llzl|—o0

(iii) there exists a continuous concave function h:I — R such that

sup inf (g(z, A) + h(N)) < inf sup(g(x, A) + h(X)).

el TEX z€X \eT
Then, there exist an open interval A C I and a positive real number o, such that,
for each X\ € A, the equation

ge(z,\) =0

admits at least three solutions in X whose norms are less than o.

There are already several applications of Theorem A to nonlinear boundary
value problems (see [2]-[7], [9], [11]-[13]; see also [8], and [10] for the non-smooth
case). In the mentioned papers, to satisfy the key assumption (iii), one assumes
that the involved nonlinearities have a suitable behaviour in some neighbourhood
of 0.

The aim of the present paper is to offer an application of Theorem A to
a Neumann problem where no assumption of local character is made. Our result
is as follows:

THEOREM 1. Let 2 C R™ be a bounded open connected set, with boundary of
class C', and let f: Q2 x R — R be a Carathéodory function. Assume that there
existb >0, p>0 withp < (n+2)/(n—2) ifn>3, s €[0,2[, 3 € L>/"+2(Q),
v € L2/ Cn=(=2)5)(Q) § € L}(Q) such that

(a1) |f(z, )| < blEIP + B(x) for a.e. x € Q and every £ € R,

(ag) |f05 f(z,t) dt] < v(@)|E]°+B(x)|E|+6(x) for a.e. z € Q and every € € R,

(ag) for a.e. x € Q, the function f(x, -) is even.

Then, for every a € L>®(Q) with essinfoa > 0, every q € 11,2] and every ¢ > 0
satisfying

2 UL

there exist an open interval A C R and a positive real number o, such that, for

RYICE!

f(,€) ds) dz 0,

each A\ € A, the Neumann problem
—Au = ofx)(c|u|9%u — u) + Af(z,u) in Q,
(Px)

ou
Eoie 0 on 09,
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(where v is the outer unit normal to 052) admits at least three weak solutions in
W12(Q) whose norms are less than .

In general, let us recall that, if p: Q2 x R — R is a Carathéodory function,
a weak solution of the problem

{ —Au = @(x,u) in Q,

0
8—1: =0 on 0%},
(where v is the outer unit normal to 99) is any u € WH2(£2) such that

/ Vu(z)Vu(z)dx — / o(x,u(x))v(z)de =0 for all v € WH3(Q).
Q Q

To prove Theorem 1 we use Theorem 3 below which is, in turn, a corollary
of the following consequence of Theorem A:

THEOREM 2. Let X be a separable and reflexive real Banach space, and let
P U: X — R be two continuously Gateaux differentiable functionals. Assume
that ® s sequentially weakly lower semicontinuous, that ¥ is sequentially weakly
continuous and that, for each A\ € R, the functional ® + AV satisfies the Palais—
Smale condition and
lim (®(z) + A¥(x)) = oo.

llzl|—o0

Finally, suppose that there exist x1,x9 € X and r € R such that

3) D) = @) = inf B(a)
(4) U(w) < r < Ulas).

Then, there exist an open interval A C R and a positive real number o, such
that, for each X € A, the equation

() + A0 (2) =0
admits at least three solutions in X whose norms are less than o.
Proor. To get the conclusion, we apply Theorem A taking I = R and
gz, \) = () + A(¥(z) — )

for all (z,A\) € X x R. Clearly, g is continuous and conditions (i) and (ii) are
satisfied. It remains to show that condition (iii) holds too. To see this, assume
the contrary. In particular, suppose that

Sup nf (9(z) + AM(¥(2) — 7)) = inf ilég(fb(w) +A(Y(z) — 7).



278 B. RICCERI

Next, observe that

nf ilelﬁ@(x) +A(Y(2) — 7)) = we\iﬁfl(,-) P(z).

So, we are assuming that

(5) Sup nf (9(z) + A(¥(2) 7)) = weggfl(r) ®(z).

Since, by (4),
lim inf (®(z) + A(V(z) — 7)) < AILH;O(CI)(;EQ + A(¥(z1) — 1)) = —00,

A—oo x€X
Jiminf (8(2) + A(W(z) = 7)) £ Jim ((wz) + A(¥(wz) — 1)) = —ox,

it follows that the real-valued function A — inf e x (®(z) + A(¥(z) — r)) (which
is continuous in R being concave) attains its supremum. So, let A* € R be such
that

inf () + X" (U(2) — 1)) = sup nf (2(2) + A(¥(z) — 7).

Hence, from (5), we get

(6) zlg)f((fb(x) + A (U(z)—7r)) = a:e\%lrlf;('r) D(x).

Observe that, by (2), one has A* # 0. Finally, putting (3), (4) and (6) together,
we get

meérlfl(r) O(z) < min{®(x1) + A" (U(x1) —7), P(x2) + A (¥(22) — 1)} < Zlgf( O(z)

which is absurd. 0
As a corollary of Theorem 2, we get

THEOREM 3. Let X be a separable and reflexive real Banach space, and let
O, U: X — R be two continuously Gateauz differentiable functionals. Assume
that ® is sequentially weakly lower semicontinuous and even, that ¥ is sequen-
tially weakly continuous and odd, and that, for each X € R, the functional ®+ AV
satisfies the Palais—Smale condition and

lim (®(z) + A¥(x)) = oo.

l|lzl|—o0

Finally, assume that

inf ® inf ®(x).
sex (x)<7;6\i/111(0) (@)

Then, the conclusion of Theorem 2 holds.

PRrROOF. Let u be a global minimum of ®. So, by assumption, one has
U(u) # 0. For instance, assume ¥(u) < 0. Then, since ® is even and ¥ is
odd, to satisfy conditions (2)—(4) of Theorem 2, we can take r = 0, x; = v and
To = —U. O
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We now are in a position to prove Theorem 1.

PROOF OF THEOREM 1. Let oo € L () with ess infoar > 0, ¢ € ]1,2[ and
let ¢ > 0 satisfy (1). We are going to apply Theorem 3 taking X = WH2(Q)
with the norm

nw=(1yVMMP+MwmumQ”i

which is equivalent to the usual one, and setting
c

T = [ a@lu@)dz, o) = ul?® - I

v = - [ ( / " d£> da

for all w € X. By classical results, the functionals ® and ¥ are (well-defined

and

and) continuously Gateaux differentiable in X, the critical points of ® + AW
being precisely the weak solutions of problem (Py). Moreover, by the Rellich—
Kondrachov theorem, the operators J' and ¥’ are compact, and so, in particular,
the functional ® is sequentially weakly lower semicontinuous and the functional
U is sequentially weakly continuous. Moreover, by (az), Sobolev embedding
theorem and Hoélder inequality, for a suitable constant n > 0, we have

1 S
®(w) + AU(u) > Slull® —n(ull? + Al + full + 1)
for every u € X and every A € R, and so, since ¢, s < 2,

lim (®(u) + A¥(u)) = oco.

llull—o0

This fact, together with the compactness of J’ and ¥, implies that the functional
® + AU satisfies the Palais-Smale condition (see, for instance, Example 38.25
of [15]). We also observe that the functional ® is even and that, by (as), the
functional ¥ is odd. So, to get the conclusion directly from Theorem 3, it remains
to show that

(™) uuelgf (u) < uE&/I}f;(O) (w)-

To this end, we first observe that, for a.e. z € Q, the points ¢!/(2=9) and —¢!/(2-9)
are the only two global minima of the function & — (a(z)/2)|¢|> — (ca(z)/q)|€]9.
Denote by w the constant function in © taking the value ¢'/(2=9 . Then, for
every u € X with |u| # w, we have

c

1 q
D(u) > i/ﬂa(:c)|u(x)|2dx—6/Qa(:r)\u(x)| dz

> (; - ;)CW—@ /Q o(z) dz = B(w).
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This means that w and —w are the only two global minima of the functional ®
over X (take into account that €2 is connected and that, by classical regularity
results, the minima of ® are continuous). Since ¥~1(0) is sequentially weakly
closed, the functional ®|g-1(py has a global minimum which, by (1), is different
from w and —w. From this (7) follows, and the proof is complete. O

REMARK 1. It is an open question to know whether the conclusion of The-
orem 1 is still true without assuming condition (1).

REMARK 2. Another open question is to know whether the open interval A
in the conclusion of Theorem 1 can actually be taken of the form |—A*, A*[ for
some A* > 0.

Note, in particular, the following consequence of Theorem 1.

PROPOSITION 1. Let a,y € L>®(Q), with ess infoa > 0, 8 € L/ (+2)(Q),
€ 11,2[, h a positive even integer, k a positive odd integer, with h < k, and
¢ > 0. Assume that

k

(8) mch/(k(Q—q))/fy(x) dx7é—/ B(x) du.
9] Q

Then, there exist an open interval A C R and a positive real number o such that,
for each A € A, the Neumann problem

—Au = a(z)(c|uli?u — u) + A(y(x)u"/* + B(x)) inQ,

% =0 on 052,
admits at least three weak solutions in W12(2) whose norms are less than o.

Of course, if Theorem 1 was true without condition (1), then Proposition 1
would be true without condition (8).

For other multiplicity results on problem (P,) see [1] and the references
therein, in particular [14].
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