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ABSTRACT. In this paper we consider the exterior Neumann problem in-
volving a critical Sobolev exponent. We establish the existence of two
solutions having a prescribed limit at infinity.

1. Introduction

Let © ¢ RY be a bounded domain with a smooth boundary 9Q. We set
Q¢ = RN — Q. We consider the Neumann problem on the exterior domain Q¢

—Au=Q(x)u* "' in Q°,

ou N

— =0 N, u>0 Q,
(1) En on U on

lim w(z)=p >0,

|z|—o00
where 2* = 2N/(N — 2), N > 3, is a critical Sobolev exponent and g > 0 is
a given parameter. We assume that the coefficient @) is locally Holder continuous

on Q°, Q(x) > 0 on Q° and

(Qu) Q) < Cla|"
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for some constant C' > 0 and r < —2 and large |z|. More specific conditions on
r will be given later. The novelty here is that we consider the exterior Neumann
problem with a critical Sobolev exponent and with a prescribed limit at infinity.
A similar problem in the case of the Dirichlet problem has been considered in the
paper [6]. In the present paper we show the existence of two solutions. The first
one is obtained through the method of sub and super-solutions. This solution
will be used to translate the variational functional for (1,) and then apply the
mountain-pass principle to get a second solution.

In this paper we use standard notations. By D'2(¢) we denote the Sobolev
space defined by

DY2(Q°) = {u:u e L¥ (Q°), |Vu| € L*(Q°)},
equipped with the norm

[l 2= ey + IIVulll L2 ey

This norm is equivalent to the norm |||Vl £2(qe) (see [9]). The space D*2(Q°) is
a natural space for the translated variational functional corresponding to problem
(1,). Let
.|Vol2d
S(Q°) = inf fQ;J* il NIQ =
sen"2(@°) (foe |27 dx)N=2)/
470

It is known [11] that if the mean curvature of 92, when seen from inside of €2,
is negative somewhere, then

S

(s) S(Q°) < 52/N

where S is the usual best Sobolev constant, i.e.

Vo2 d
S = 1nf fRN ¥ d)l Nx N
¢€D1’2(RN) (f]RN |¢ 2 dg;)( -2)/
640

Here DV2(RY) is a Sobolev space defined by
DY2(RY) = {u:ue L (RY), |Vu| € L*(RV)}.

Thus if (s) holds, then S(2°) is achieved. Moreover, if = B(0, R), or {2 is close
to a ball, then S(Q°) = §/22/N (see [11]).

In a given Banach space X we denote a strong convergence by “—” and weak
convergence by “—”. We recall that a C'-functional ®: X — R on a Banach
space X satisfies the Palais—-Smale condition at level ¢ ((PS). condition for short),
if each sequence {x,,} such that

(%) ®(xym) — ¢, and

(x%) ®'(xp,) — 0in X*
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is relatively compact in X. Finally, any sequnce satisfying (%) and (xx) is called
a Palais—-Smale sequence at level ¢ (a (PS). sequence for short).
The norms in the Lebesgue spaces L?(2°) will be denoted by || - ||4.

2. Minimal solution

In this section we establish the existence of a solution of (1,) through the
method of sub and super-solutions.
To construct a supersolution we need the solution of the problem
—Aw = Q(z) in Q°,
ow

(2.1) 5 = 0 on 01,
lxlllinoow(ac) =0.
LEMMA 2.1. Problem (2.1) has a solution satisfying
Clz|>~N ifr < —N,
(2.2) 0<w(z) <] Clz|>*Nlog|z| ifr=-N,
Clz|?*r if —N<r<-=2,

for large |z| and some constant C' > 0.

PROOF. Let m, € N be such that Q C B(0,m,). For each m > m, we

consider the problem

—Au=Q(z) in Q°N B(0,m),
(1) @ =0 on 01,

ov

u=0 on 9B(0,m).
For each m > m, problem (1,,) has a solution u,,. We extend u,, by 0 out-
side B(0,m). By the maximum principle the sequence {u,,} is increasing and
uniformly bounded. By the Schauder estimates (see [8]) we may assume that
U, — w in C2(Q°N B(0,R)) and CY(Q° N B(0, R)) for each R > 0 large. Ob-
viously w > 0 on ¢ and w satisfies the equation and the boundary condition
n (2.1). To show that w satisfies (2.2), we introduce a function z(x) which is a
solution of the exterior Dirichlet problem

—Az = Q(x) in Q°,
z=0 on 0f),

lim z(xz)=0.

|z]— o0
The function z is positive on ¢ and satisfies (2.2) (see [6]). Since {u.,} are
uniformly bounded on ¢, there exists a constant C' > 1 such that u,,(z) < Cz(x)
for x € 9B(0,m,) and m > m,. Moreover, u,,(z) =0 for x € 9B(0,m) and

—A(um — Cz2) =Q(z) —CQ(x) <0 on B(0,m)— B(0,ms).
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Hence by the maximum principle u,, < Cz on RY — B(0,m,) for every m > ms.
Letting m — oo we get w(x) < Cz(x) and the result follows. O
LEMMA A. Suppose that

(H) Q:Q° — R is locally Hélder continuous, Q(z) > 0 and Q(z) < ¢lz|" on
Q°, where r < —(N 42)/2 and ¢ > 0.

Then the problems (2.1) and
—Aw = Q(x), w(z) >0 inQ°,
ow _y on 09, w € D2Q°),
ov

are equivalent. Moreover, the solution of (2.1) (or (2.1)) exists and is unique.

(2.1)

PrROOF. Since
Q € LAN/ER(0f) = (17 (),
it follows from the Riesz—Fréchet representation theorem that (2.1°) has a unique
solution w, in DY2(Q¢). On the other hand the problem

“Au=0 in Q°,
ou

= 0 on 0,
‘ llim u(z) =0

has a unique solution v = 0 (see [6]). Hence by Lemma 2.1, problem (2.1) has a
unique solution, say w;. Since by Lemma 2.1 w; € DY2(Q°), wy = wo. O

LEMMA B. Suppose that the assumption (H) holds. Then problems
—Au=Q(z), ulx)>p>0 1inQ°,
% =0 on 90,
and
ou 12
—VZO on 99, (u—p) € DH2(Q°)
are equivalent and have a unique solutions.

{—Au:Q(x), w>0 onQ°,

PROOF. Define u = w + p and apply Lemma A. O

To proceed further we introduce the definition of a subsolution and superso-
lution of (1,).

We say that a function ¢ > 0 on Q° is a supersolution of (1,) if ¢ €
C2(Q°) N CHQY°), —Ad > Q¢P, where p = 2* — 1, on QF, 8¢/ = 0 on O
and im0 ¢(x) > p.

The definition of a subsolution ¢ > 0 is obtained by reversing the inequalities
in the above definition.
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If problem (1,,) has a subsolution ) and a supersolution ¢ such that 0 < ) <
¢ on Q°, then problem (1,) has a minimal solution u and a maximal solution @
such that ¥ < u <7 < ¢ on Q¢. This can be established by employing a standard
monotone iteration technique. First we observe that if w is the solution of (2.1)
then the function w, = p + w is the unique solution of the following problem

—Au = Q(z) in Q°,
(2.3) % =0 on 02,
lim w(z) = p.

|z| =00

Let up = ¢ and for every j > 1 we define u; as a solution of the problem

—Au; = Q(z)uf_, in Q°,
Ou;

5 0 on 02,
| l|im uj(x) = p.

By the maximum principle we have
uj <ujog <...<up <y on Q°

Similarly, we set vg = 1. Let v; for j > 1 be a solution of the problem

—Av; = Q(z)vf_, inQ°,

Ny

% =0 on 012,
lim v;(z) = p.

|z]—o00

By the maximum principle we have
— C
P=vg<v; <...<vyjon Q°

Also, we have v; < u; on Q°. Taking the limits of the sequences {v;} and {u;}
we obtain a minimal solution v and a maximal solution w.

To apply the above method, let wy be a solution of (2.3) with g = 1. Then we
set ¢, = paw; and v, = p. Tt is clear that ¢, < ¢, on Q° and lim|,_o ¢p(2) =
1. We now observe that

—A¢y — Q)62 Tt = pQ(z) — Qx)(nw1)* 7! = Q(z)pu(1 — p* Pwi ) >0

on Q¢ for p small, say 0 < p < po. Obviously, ¢ is a subsolution for (1,). By
the method of sub and supersolutions problem (1,) has a minimal solution u,,
satisfying p <, < ¢y for 0 < p < pio.
We let
7t = sup{p > 0 : problem (1,) has a solution}.
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PROPOSITION 2.2. Suppose that the assumption (H) holds. Problem (1,)
has a solution for every 0 < u < @. Moreover, 0 < i < oo and there are no
solutions for p > @.

PROOF. Let p € (0,72). Then there exists 1t € (u, 1) such that problem (1)
has a solution ug. This solution wuy is a supersolution of (1,) and v = p is a
subsolution of (1,). Hence problem (1,) has a minimal solution u, such that
< uy, < ug. Arguing by contradiction, assume that fI = co. Then for every
i > 0 there exists a minimal solution u,. Letting v = u, — u, we see that

—Av=—Aup 7> Q)i P (uy — p) = Q) P
and v > 0 on Q° By Lemma B v € D"(Q¢). Hence the first eigenvalue
for —A — Q(x)u? ~? is nonnegative. On the other hand for large p, the first
eigenvalue must be negative and we have reached a contradiction. O
3. Properties of minimal solutions
From Lemma B we deduce the following estimate for u, — .

LEMMA 3.1. Suppose that the assumption (H) holds. Let u, be the minimal
solution of (1,,) from Proposition 2.2. Then

Clz|>~N if r < =N,
0<up—p<{ ClaPNloglal ifr=-N,
Clz|?*r if —N<r<-=2,

for some constant C > 0 and large |z|.

LEMMA 3.2. Suppose (H) holds. Further, we assume that u is a bounded
positive solution of (1,,) such that u—u € D¥*(Q°). Then the variational problem

o, = inf { / |Vw|*dz : w € DV2(Q°), p [ Qz)uP tw?dx = 1},
c Qc
where p = 2* — 1, has a minimizer v, satisfying

—Av, = po,Q(x)uP~ 1y, in QF,
(1) {

My _

If there exists a bounded positive solution @ of (1) with T > p and such that
u>u on Q¢ and uw—u € DY?(Q°), then o, > 1.

PRrooOF. The first part of the lemma follows from the fact that the functional
w e DY?(Q°) — [, Q(z)uP~ w? dx is weakly sequentially compact. Here we
need the assumption (Q1). We only give the proof of the second part. We set
v=u—pand v =u— @ Then

A —v)=Qx)@+ )P —Q(z)(v+ p? =Q(z)(W —uP) >0,
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O —v)/0v=0o0n 0N and T — v — 0 as |z| — oo. Therefore by the maximum
principle ¥ > v on Q¢. We now observe that

A ) = Q)@ — uP) > pQe)wr T — v+ (- ) in O,
(3.2) T —

% =0, 7—wve D" on 09Q.
Let w = u — u. Testing (3.2) with ¢, we get

(3.3) /Q Vi, Vwdx > p . Q(z)uP ™ (w + (I — p))b, da.

On the other hand since v, is a solution of (3.1), we get

Vi, Vwdr = pou/ Q(x)up_lwuw dz.
Qe Qe
Then (3.2) and (3.3) imply that

POy (z)uP "t wp, dz > p (z)uP " wip, dz.
Qe Qe

This shows that o, > 1. O

Lemma 3.2 can be applied to a family of minimal solutions {u,}, 0 < u < 7,
since by Lemma B u,,—p € D%?(Q¢). Taking in Lemma 3.2 u = u,, for 0 < p < 1,
we see that the corresponding o, > 1. However, Lemma 3.2 cannot be applied
to ugp. Later we shall show that oy = 1.

LEMMA 3.3. Suppose (H) holds. Then there exists a constant C > 0 inde-
pendent of u such that
IV (uy =)l <C

for every 0 < p < .

Proor. Let v, = v, — . Then by Lemma B we have

(3.4) /Q C Vv, |? dov = . Q(z) (v, + p)Pv, d.
Applying Lemma 3.2 we get

/C |Vv,|? dz > po, o Q) (v, + u)pflvi dx dx.
Combining these two relations we get

3.5 P Q(x)vPT dz < po z) (v, + p)P " de da
( 12 H H 1
Qe Qe

< Q(x) (’UM + N)pvu dz
Qe

=/ Q(z) (v + p)P~ 0 da dx

+ [ Q) (v, + )P v, dz.
Qc
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Hence by the Holder and Young inequalities, we have for every € > 0
(-1 ; Q) (uyy + p)P o da < . Q) (v + )P~ pvy d
§C’( Q(x)vh dx —|—/ Q(x)v, dx)
Qe Qe

1/(p+1) p/(p+1)
< C’( Q(x) dx) ( (an)v,’fr1 dx)
Qe Qe

1/(p+1)

p/(p+1)
+ C’< Q(z) da:) < Q(:c)vﬁ+1 d:c>
Qc Qc
<e Q(x)vﬁ“ de+C. | Q(z)dx.
Qe Qe
Taking ¢ > 0 sufficiently, small we derive from this inequality and (3.5) that
(3.6) Q(:zc)vﬁ'Irl de < C [ Q(z)dx.
Qe Qe
The desired result follows from (3.4) and (3.6) with the aid of the Holder in-
equality. O
We show below that problem (1,) is also solvable for = [
PROPOSITION 3.4. Suppose (H) holds. Then problem (1z) has a solution.

Proor. Let v, be the function introduced in the proof of Lemma 3.3. The
function v,, satisfies

—Av, = Q(z)(v, + p)?  in QF,
v,
o=

lim v, (z) =0.

|z|— 00

(3.7) on 99,

We commence by showing that

(3.8) / vide < C
for some constant C' > 0 independent of p and for all ¢ > 2*. Due to the

estimates of Lemma 2.1 ¢;(v,) € DV?(Q¢), where ¢;(t) = ¢/, j > 1. It follows
from Lemma 3.2 that

(3.9) / ‘¢;’(vu)2‘vvu|2 dz > p/ Q) (v + N)p71¢j (Uu)z dz.
Qc Qc
Let ;(t) = fot ¢(s)*ds = j? /(2] — 1)t* 1. Testing (3.7) with ¢;(v,) we get

1) [ w@efde= [ Q)+ w7, o
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We deduce from (3.9) and (3.10) that

-2

p [ Q)+ do <

p—1,2j
= 2j—1[ e SOt )0 de

+ [ Q@) (v + )" v .
Qec

We now choose j, > 1, close to 1, so that j2/(2j — 1) < p for every j < j,. Let
p—352/(2j — 1) = a(j,p) > 0. We then derive from the above estimate that

1) alip) [ Q) dr <alip) [ Qo+ da

j2

<52 [ Q@+ e da
Cj2 p+25—2 Po,27—1
< 571! Jor Q(x)vy, wdx + o Q(x)pPv,) " dx

SO[/QC Q(x)vﬁ+2j—2 dx+/QCQ(x)vzj—1 dw},

where C = C(f,j). We now estimate both integrals on the right side of this
inequality. By the Holder and Young inequalities we have for every § > 0

| 1/(p+2i-1)
Q)2 du < ( Q) dx)
Qe Qe

] (p+25-2)/(p+2j-1)
: ( Q(z)oh 2t d:v)
Qc

5 ,

<= (x)vﬁ”rl dx + C(9) Q(z) dx.

2 Jo 0
For the second integral we have
. 5 ,
(3.12) Q(x)vij_l de < — Q(x)vﬁ“]_l dzx + C(9) Q(z).
QC 2 QC Qc

It then follows from (3.11) and the last two estimates
(3.13) (x)vffzj*l dx < C1(9)

Qc

for some 0 > 0 small enough with a constant C(d) independent of pr. Combining
(3.10), (3.12), (3.13) and the Sobolev inequality we get

(N—-2)/N
(3.14) (/ vi(pﬂ) dm) < Q(x)vzﬁj*l dr + Cy
c Qc

for some constant Cy > 0 and Cy > 0 independent of pr. We choose 2N/(N —2) <
q <p+2j,—1 and write it as ¢ = (p+ 1)j for some 1 < j < j,. Therefore we
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q
(3.15) /C vide < C

for some constant C independent of 1 € (0, ) and for every p+1 < ¢ < p+2j,—1.
We now take ¢o = p+1=2N/(N —2) and 6 = p+ 2jo — 1 —2N/(N —2) > 0.
Testing (3.7) with vle~! we get

A(go — 1 _
e —1) )/ |wgo/2|2dg;:/ Q@) (v, + p)Poile " da
qO Qc Qe

(3.16)
<C [ Q(x)vﬁ"’q"_l dx + Q(x)vfﬁ_l dac]
QC QC
<C Q(x)vffr%_l dx

Qe
) (¢0—1)/(p+go—1)

+ C’( Q(Jc)vff*'q"_1 dx
QC

p/(p+go—1)
: ( Q(x) da:)
Qe

<Oy | Qb dr+Cy [ Q) da,
QC Qc

where C7 > 0 and C > 0 are constants independent of u. Since go < ¢o+p—1 <
p—1+4qo+25/N, we have

P 140 < oyp= 1440 +26/N | (5 4o
for every t > 0. Applying (3.15) with ¢ = p + 2j, — 1, we get

Q)b dr < & Q(x)vﬁquﬁ%/N dz + C.
@ Qe

2/(p+1) 2/N
SE( (m)(vg°)(p+1)/2 dw) < Q(Jc)vl(f’_1"'2‘5/1\7)1\7/2 dm) +C
Qe Qe

<eC i Q(z)(v,) P24z 4 ¢ < ecg/Q IVoie/2|? dz + Cs.
This combined with (3.16) gives
/Q Vo2 dy < C
for some C > 0 independent of x. By the Sobolev inequality we get
/ UZ‘Z’/ Yde < C
and the result follows by iteration. O

It follows from (3.8) that Q(v, + p) € LI(Q°) for every ¢ > p+ 1. Therefore
using the LP estimates up to the boundary [1] and the interior L? estimates ([8,
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Theorem 9.11]), we show as in [6] that up to a subsequence, v, — v as p — [
in C1 (ﬁc N B(0,R)) for all R > 0. Due to Lemma 3.3 we can also assume that
v € DM2(Q°) and v is a weak solution of

{ —Av =Q(z)(v+m)?P in Q°,

vy,
E =0 on 69

By the results of the next section lim ;o v(2) = 0. Thus v + 7 is a solution
of problem (1;). The solution uz is unique. Indeed, let ugz be another solution
of (1z). Since 4y is a supersolution of (1,) for pu < [, we see that uz > u, for
p < fi. Consequently, ug > uz. We now show that oy = 1. Otherwise, applying
the implicit function theorem to the operator F(v,u) = —Av + Q(z)(vH)? as
a mapping from D2(Q¢) x [0,00) into D¥?(Q°), we deduce the existence of a
positive solution v for every p in a small interval (7 — 0, + §). By the results
of the next section these solutions have limit equal to 0 as |z] — oco. Clearly,
this contradicts the definition of fi. Repeating the argument from p. 216 of [6]
we show that Uy = ug.

4. Application of the mountain-pass principle

For every u € (0,7) we consider the problem
—Av=Q(z)((v+ uu)y_l — ui*_l) in Q¢,

@ =0 on 0,
(4.1) ov

v>0 on °,

‘ l‘im v(z) =0,

where v, is a minimal solution of (1,). If v, is a solution of (4.1), then U, =
v, + uy, is a solution of (1,). A solution of (4.1) will be found as a critical point
of the functional

1 1 *
T =3 [ vePde =g [ Q@+ do

1 - «
+ — Q(x)ui dz —|—/ Q(m)ui 1yt dr
2 Jore 0

for v € DV2(Q°). Tt is easy to show that .J, is a C'-functional and we have
U0).8) = [ (9090 = Qo) (s + v~ oo

for every ¢ € D*?(Q°). To show that the functional .J, has a mountain-pass
structure, we need the following inequality: let p > 2, then for every € > 0 there
exists C; > 0 such that, for every s > 0,

(4.2) (up + 8)P —ub, —pub~'s < eubls + CosP.
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LEMMA 4.1. There exist o« > 0 and p > 0 such that J,(v) > o > 0 for
v € DV2(Q°) with | Vv|2 = p.

Proor. We write J,, in the form
1 2% —1 .
Ju(v) :7/ |Vo|? do — / Q(x)ui *2(v+)2dx

/ / Q(x)[(uy + 5)2 1 uz**l (2* - l)ui**Qs] ds dx.

Applying (4.2) with p = 2* — 1 we get

1

5025 [ [1vef - 2 - D@ 2] as

_ / Qla )[;“i 22 4 C. (“;)2*} dz.

Hence by Lemma 3.2 we have

JAv)Zé(ljﬁ)/ |Vv\2dx——/ Oz

An application of the Sobolev inequality completes the proof. O

In Propositions 4.2 and 4.3, below, we examine the (PS) sequences of the
functional J,,.

PROPOSITION 4.2. Let {v,,} C DV2(Q°) be a (PS). sequence for J,. Then
{vm} is bounded in DV2(Q°).
ProOF. We compute

(43) Tulom) — 5 (T (0m), v}

/ Q) (uy, +vh)? " dx + 2—* Q(x)ui* dx

1 .
Q(x)ui Lot de + 3 / Q(x)(uy, + v)? "o, do
c Qc

Q

1 -

3 ) Q(x)u;, v dz
1 «

Q(x )(uu + 'U;;)Q dr — - Qx )(uu + U;)Q —111;1 dx

N Qe Qe

1 . 1 .
-3 e Q(z)(uy, + UvJvrz)Q 1uu dx + Q( )ui dx

. 1
27 -1 2% —1
+ o Qx)us, ' do — 3 ), Q(x)uu U, dix

1

=% |, Q@) +n)? Tdw - Q@)+ o) "y da

2
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— l/c Q(m)ui o de + i Q( )ui* dx

2
2% _1 2% —1
. Q(z)uz ~tv,f, dx — 5 " Q(x)uu U d
1 x 1 x
s [ Q@+ e =3 [ QU+ i) s
2 Q( ) 271 +dx+— Q( )ufj dx.

Given § > 0 we choose C(d) > 0 that
Q(x)(uu—l—v:;)y_luu dr <0 Q(x)(uy, +v,4,;)2* dz + C(9) Q(x)ui* dx.
Qc Qc Qc

Taking 6 > 0 small and using the fact that {v,,} is a (PS). sequence we deduce
from (4.3) that there exist constants C; > 0 and C > 0 such that

(4.4) Q(x)(uy + v5)* dz < C1 + Cof| Voo
QC

for every m > 1. On the other hand we have

1 1
Ju(vm) — o = (T (vm), vm) = N \va|2dx
1 «
+ 50 [ Q@)+l <m—v$—uﬂ>dw+2—*/ Q)2 da
/Q 2_1+dm——/Q Lo dx
5 [ 1VonPdo = oo [ @@+ 0w da
QC
1 X
—j/ Q(x)(ouerZ)Q _1U;zdx
1
2* Q( u dx—i—/ Q(z 2_1 +dx——/ Q(x Lo dx
1 o*
=N |va|2dx——/ Qx uu—&—v ) 1uuda§
+§/QUQ(J:)u,2;dx+ 1—— / Q(x
1 N
ZN |V, dx— — [ Q@) (uy +v}h)* tu,da.

Qe Qe

From this we derive, using the Young inequality, that
45) Vol < Cs / Q@) (uy + )% di + Ca | V)2 + Cs.
QC

The fact that {v,,} is a bounded sequence in D*?(Q¢) is a consequence of (4.4)
and (4.5). O
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To proceed further we set
= max Q(z) and = max Q(x).
Qm xEBQQ( ) QM reNe Q( )

These two quantities play an essential role in finding an energy level of the
functional J,, below which the Palais-Smale condition holds (see also [4] and [5]).

ProOPOSITION 4.3. Suppose that

SN/Q SN/Q
(4.6) Ju(Um) — ¢ < min ( ~ 373 ~ 3 2), c>0,
INQWN=2/ Nng )/
and
(4.7) Jl(vm) — 0 in D™H2(Q°).

Then the sequence {v,,} has a subsequence converging weakly in DV2(Q°) to a

non zero limit.

PROOF. Since by Proposition 4.2 {v,,} is bounded in D'2(Q¢), we may
assume that v,, — v in DY2(Q°¢) and v,, — v in LP(Q°) N B(0, R)) for each
2<p<2*and R >0 with Q C B(0, R). Testing (4.7) with ¢ = v, we get that

/ |V, |? de = o(1).
Qc

Therefore we may assume that v,, > 0 on Q¢ We now show that v # 0.
Arguing, by contradiction assume that v = 0 on Q¢. We must have v, 4 0 in
D2(Q¢) because ¢ > 0. Hence the sequence {v,,} must concentrate. It cannot
concentrate at infinity since @Q(x) — 0 as |z| — oo. Therefore the concentration
occurs either on 0f2 or inside 2. By the P. L. Lions concentration-compactness
principle (see [10]), there exist sequences of points {z;} C RY and numbers {v;},
{1} € (0, 00) such that

A Zz/jéj and  |Vo,|? > ijéj
J J

[Um

in M, where M is a space of measures, moreover

SV?/? <p; ifx; €

2/2*
V2

52]2/]\/. < pj iij € o0.

From (4.7) we deduce that p; < Q(z;)v; for every j. If v; > 0 and z; € Q,
then v; > SN/2/Q(x;)N/? and if x; € 99, then v; > SV/2/(2Q(x;)N/?). By the
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Brézis—Lieb lemma (see [3]) we have

1

- 1<J;,‘(Um)7'0m> = N

2
-3 [ Q@)+ ) s 3 [ Qe do-+ o)
1

N

f% QCQ( )u dx+—/ Qx u " dx +o(1)
1
N

=N Z (wj)v; + NZQ‘T:J vj +o(1)
;€00 z;EQ
SN/2 SN/2
Z Qa;) V- O D2 TN Z - Qlz Qa;)™-272 +o(1).

1766

J/L(Um) Q( )(uu + Um)z* dx

Q( )ui dx + % Q(x)v??: dx

Qc

Q( )i, dx + o(1)

If Qr >2%/N=2)Q,,, then letting m — oo we derive that ¢ > SN/Q/(Nngy_m/z)

and if Qur <2%(N=2)Q,,, then ¢> SN/Q/(ZNQ%V_Q)/Q). In both cases we get a
contradiction. g

LEMMA 4.4. There exists 1, € DY2(Q°) such that |[Viol|lz > p and
Ju(hs) <0, where p > 0 is a constant from Lemma 4.1.

PROOF. Let ¢, € DV2(Q°) and ¢, > 0 on Q°. We then have for 1, = t¢,

Tu(tée) <= / Vol d

1 Qz)u dz+t [ Qa)ul '¢odz <0
Qc Qc

for t > 0 sufficiently large. O
To apply the mountain-pass principle we define

= inf
c= érérfé}%’i‘]“(())’

where I' = {v : v € C([0,1], D}2(Q°)), v(0) =0, v(1) = 9o}-
THEOREM 4.5.

(a) Let Qu < 22/(N=2Q,,. Suppose that |Q(x) — Q(y)| = o(|x — y|) for =
close to y, Q(y) = Q. and with the mean curvature H(y) < 0 when
viewed from inside Q). Then problem (4.1) has a solution.

(b) Let Qur > 22/ (N=2)Q,,. Suppose that |Q(z) — Q(y)| = of|z —y|V=?) for
x close to y with Q(y) = Qar. Then problem (4.1) has a solution.
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PROOF. Since

v+
/ Q(JU)/ [(uy 4 5)% 1 = ui*_l —s¥ V) dsdx >0,
e 0

we have
1 1 .
Ju(v)=§/m |Vv\2dm—§/m Q) (uy, +v1)? da
1 . .
— Q(x)ui d.’l?—i—/ Q(J})ui 1ot dx
Qe
3 | vk [ Qe
=3/ v dx
,/ Q({E)/ [(UﬂﬁLS)T 1 UIQ: 1 52*71}d5d1‘
e 0
Sl/ |Vv\2d:z:f—/ Q(z
2 Qc
Hence

2
(4.8) max J,, (tv) < maX(t / |Vo|?d
>0 >0

)2* dx)
_ 1 fQL |Vo|? dx)N/2
ch )(vH)2* dx)(N—2)/2'

(a) We consider the case Qp < 22/(V=2)Q, . Let

U y(z) = 5_(N_2)/2U<x_y), £>0, ycRY
5

[N (N —2)) V=272

where U(z) = NN —2) 1 2B D72

This function, called an instanton, has a property

/RN VU, % dx = /RN U2, dv = SN2,

Moreover, it is known that

f IVo[2d g AnH(y)elog(1/e) +O(e) for N =3,

c U :1:

fQ?UQ* o = g T AnH)e+0( log(1/e) for N =4,
AnH(y)e +O(?) for N =5,

where Ay > 0 is a constant depending on N. This estimate can be obtained

from the corresponding estimate on a bounded domain by truncation (see [2],

[11], [9]). Substituting v = U, , in (4.8) and using the above estimate together

with our assumption @) we get the following estimate for the mountain-pass level

SN/2
QNQN 2/2°

c <



ON MULTIPLE SOLUTIONS OF THE EXTERIOR NEUMANN PROBLEM 105
(b) If Qur > 22/N=2Q,,, we take U.,, with Q(y) = Qas. We then have
/ |VU. > dz = / |VU|? dz —/ VU, > dx < SN/ — C1eN 2
Qe RN Q
for some constant C; > 0 and

(2)U2, de = | QuUZ,dx+ / (Qe) — Qum)UZ, dx
Qe Qe Qe

= SN2Qu + O(EN_Q).
Using the last two relations in (4.8) we see that
SN/2

< ——=. O
NQJI\Vg—z/z

5. Main result

To use a solution u of problem (4.1) to construct a second solution of (1,)
we have to show that lim|;|_ u(x) = 0. This will be accomplished by using the
Moser iteration technique. In Proposition 5.1 below, we use some ideas from the
proof of Theorem 8.17 in [8].

PROPOSITION 5.1. Suppose that lim|,| o Q(z) =0 and Q € LN/?(Q°). Let
u € DY2(Q°) be a positive solution of (4.1). Then there exists R > 0 such that
for every B(zo,2) C (Jz| > R) we have

1/2
sup u(z) < C’(/ u? dm) ,
B(zo,1) B(zo,2)

where a constant C' depends on u but is independent of x,.

PROOF. Let € > 0 be fixed and set p = 2* — 1. We choose a constant C. > 0
such that
(u+u)’ —ulf, < (p+ s)uﬁ_lu + C.u?

for every z € Q¢. Then
(5.1) —Au < d(z)u on °,

where d(z) = Q(z)(p + e)ul, ' + C.Q(x)uP~". Let n € Cj(Q°) with supp C
(|z| > R), where R > 0 is large and will be determined later. Taking w = n?u”®,
B >0, as a test function in (5.1) we obtain

(5.2) B 772u5_1|Vu|2 dx + 2/ T]VnVuu’B dr < d(x)772u5+1 d.
Qe Qc Qe

We now use the inequality

‘2/ nVnVuu” dx

2
SE/ 172|Vu|2uﬁ_1d:v+f/ |V 2uP T d,
2 Jae B Jae



106 J. CHABROWSKI M. WILLEM

which inserted into (5.2) gives

(5.3) B uP Y Vul? dz < /
QC

2
2 2,2 ), A+
5 <d(x)77 +6|Vn\ >u dz.

c

We set w = u#+t1)/2 in (5.3) and we obtain
1)2 2
(5.4) / n?|Vw|? dz < (B+1) / (d(gn‘)n2 + |V77|2) w? dz.
Qe 26 Jae g

We now estimate [, d(nw)?* dx

/d<nw>2dz: Qp+ ) () de + Ce | QP (w)? da
c Qc Qc

2
2%

2/N
s<p+s>uu||€ol(/ QN/de> I
supp 7

2/N
+CQum,R (/ u? dﬁ?) (1w
Q(‘.

where Qnr,r = Sup|,~ g Q(z). Setting

2/N
QN2 d$> +CeQum,r (/

2
2%

M(R) = (p+ ) w22 ( / u dx)Z/N7

c

upp 1

we rewrite the above inequality as

2
PER

(5.5) / dlpu)? de < MB)

Also, we have

56) (/me)r dm)(N—2)/N

IN

St / IV (qw)|* dz
QC

st / (n?|Vw|? + w?|Vn? + 2nwVnVw) da
Qc

IN

2871 /Q (n?|Vw|? + w?|Vn|?) da.

Inserting (5.5) into (5.4) we obtain
(B+1)°
20

M(R)|[(nw)

1 2
/nz\Vw\deS §*+(6+2) / |Vn|?w? da.
Qe ﬂ Qc

Combining the last inequality with (5.6) we get

(1= ) ([ o)
<25 (10 O50) [ 1ot

62
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We choose R > 0 so that

_ L (B+1)? _ 1
1-8 5 M(R)—2.
Thus
(N—2)/N
(5.7) (/ (nw)? dm) <A |Vnl2w? dz,
Qe Qc

with A = 4S71(1 + (8 — 1)?/8%). We now make the following choice of n:
n(z) =1 in B(zo,71), n(x) = 0 in Q¢ — B(xo,72), |Vn(z)| < 2/(re —r1) in Q°,
1 <7 <re < 3. It is assumed that B(z,,3) C (|x| > R). Then (5.7) takes form

(N—-2)/2N A 1/2
(5.8) </ w? dx) < ! </ w? dx) ,
B(zo,r1) T2 =71 \ JB(zo,r)

with 4; = 2v/A. Weset y = 41, x = N/(N — 2). Then we get from (5.8)

1/(vx) A 2/v 1/~
(5.9) (/ u’X dx) < ( > </ u? dz) .
B(zo,r1) o —T1 B(zo,r2)

To iterate this inequality we take s,, = 14+ 27, m = 0,1,... By a simple

induction argument we get

1/(vx™)
(/ uX 7dw>
B(:Eo,sm)

m— j . 1/’Y
< ABMEL O g2/ iy 41/ </ u? dx)
B

(woySO

for each m > 1. This inequality implies

o 1/(vx™)
</ wX Vdx
B(zo,1)

m— j . 1/7
< AT/ )2(2/7)ET=0(J‘+1)/XJ< / o dm) .
B

We now choose v = 3+ 1 = 2*. Letting m — oo the result follows. O

(z012)

It follows from Proposition 5.1 that lim|,| . u(z) = 0. By the maximum
principle, since
Q(x)(u+uy)? — Q(m)uﬂ >0
we get u(z) > C1|z[>~V for some constant C; > 0 and large |z|.

If (H) holds, then assumptions of Proposition 5.1 are satisfied.

THEOREM 5.2. Suppose (H) holds. Then problem (1,,) has at least two so-
lutions.
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