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ON MULTIPLE SOLUTIONS
OF THE EXTERIOR NEUMANN PROBLEM

INVOLVING CRITICAL SOBOLEV EXPONENT

Jan Chabrowski — Michel Willem

Dedicated to the memory of Professor Olga A. Ladyzhenskaya

Abstract. In this paper we consider the exterior Neumann problem in-
volving a critical Sobolev exponent. We establish the existence of two

solutions having a prescribed limit at infinity.

1. Introduction

Let Ω ⊂ RN be a bounded domain with a smooth boundary ∂Ω. We set
Ωc = RN − Ω. We consider the Neumann problem on the exterior domain Ωc

(1µ)


−∆u = Q(x)u2∗−1 in Ωc,

∂u

∂ν
= 0 on ∂Ω, u > 0 on Ω

c
,

lim
|x|→∞

u(x) = µ > 0,

where 2∗ = 2N/(N − 2), N ≥ 3, is a critical Sobolev exponent and µ > 0 is
a given parameter. We assume that the coefficient Q is locally Hölder continuous
on Ωc, Q(x) > 0 on Ωc and

(Q1) Q(x) ≤ C|x|r
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for some constant C > 0 and r < −2 and large |x|. More specific conditions on
r will be given later. The novelty here is that we consider the exterior Neumann
problem with a critical Sobolev exponent and with a prescribed limit at infinity.
A similar problem in the case of the Dirichlet problem has been considered in the
paper [6]. In the present paper we show the existence of two solutions. The first
one is obtained through the method of sub and super-solutions. This solution
will be used to translate the variational functional for (1µ) and then apply the
mountain-pass principle to get a second solution.

In this paper we use standard notations. By D1,2(Ωc) we denote the Sobolev
space defined by

D1,2(Ωc) = {u : u ∈ L2∗(Ωc), |∇u| ∈ L2(Ωc)},

equipped with the norm

‖u‖L2∗ (Ωc) + ‖|∇u|‖L2(Ωc).

This norm is equivalent to the norm ‖|∇u|‖L2(Ωc) (see [9]). The space D1,2(Ωc) is
a natural space for the translated variational functional corresponding to problem
(1µ). Let

S(Ωc) = inf
φ∈D1,2(Ωc)

φ6=0

∫
Ωc |∇φ|2 dx

(
∫
Ωc |φ|2∗ dx)(N−2)/N

.

It is known [11] that if the mean curvature of ∂Ω, when seen from inside of Ω,
is negative somewhere, then

(s) S(Ωc) <
S

22/N
,

where S is the usual best Sobolev constant, i.e.

S = inf
φ∈D1,2(RN )

φ6=0

∫
RN |∇φ|2 dx

(
∫

RN |φ|2∗ dx)(N−2)/N
.

Here D1,2(RN ) is a Sobolev space defined by

D1,2(RN ) = {u : u ∈ L2∗(RN ), |∇u| ∈ L2(RN )}.

Thus if (s) holds, then S(Ωc) is achieved. Moreover, if Ω = B(0, R), or Ω is close
to a ball, then S(Ωc) = S/22/N (see [11]).

In a given Banach space X we denote a strong convergence by “→” and weak
convergence by “⇀”. We recall that a C1-functional Φ:X → R on a Banach
spaceX satisfies the Palais–Smale condition at level c ((PS)c condition for short),
if each sequence {xm} such that

(∗) Φ(xm) → c, and
(∗∗) Φ′(xm) → 0 in X∗
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is relatively compact in X. Finally, any sequnce satisfying (∗) and (∗∗) is called
a Palais–Smale sequence at level c (a (PS)c sequence for short).

The norms in the Lebesgue spaces Lq(Ωc) will be denoted by ‖ · ‖q.

2. Minimal solution

In this section we establish the existence of a solution of (1µ) through the
method of sub and super-solutions.

To construct a supersolution we need the solution of the problem

(2.1)


−∆w = Q(x) in Ωc,

∂w

∂ν
= 0 on ∂Ω,

lim
|x|→∞

w(x) = 0.

Lemma 2.1. Problem (2.1) has a solution satisfying

(2.2) 0 < w(x) ≤


C|x|2−N if r < −N,
C|x|2−N log |x| if r = −N,
C|x|2+r if −N < r < −2,

for large |x| and some constant C > 0.

Proof. Let m◦ ∈ N be such that Ω ⊂ B(0,m◦). For each m > m◦ we
consider the problem

(1m)


−∆u = Q(x) in Ωc ∩B(0,m),
∂u

∂ν
= 0 on ∂Ω,

u = 0 on ∂B(0,m).

For each m ≥ m◦ problem (1m) has a solution um. We extend um by 0 out-
side B(0,m). By the maximum principle the sequence {um} is increasing and
uniformly bounded. By the Schauder estimates (see [8]) we may assume that
um → w in C2(Ωc ∩ B(0, R)) and C1(Ω

c ∩ B(0, R)) for each R > 0 large. Ob-
viously w > 0 on Ωc and w satisfies the equation and the boundary condition
in (2.1). To show that w satisfies (2.2), we introduce a function z(x) which is a
solution of the exterior Dirichlet problem

−∆z = Q(x) in Ωc,

z = 0 on ∂Ω,

lim
|x|→∞

z(x) = 0.

The function z is positive on Ωc and satisfies (2.2) (see [6]). Since {um} are
uniformly bounded on Ωc, there exists a constant C > 1 such that um(x) ≤ Cz(x)
for x ∈ ∂B(0,m◦) and m > m◦. Moreover, um(x) = 0 for x ∈ ∂B(0,m) and

−∆(um − Cz) = Q(x)− CQ(x) < 0 on B(0,m)−B(0,m◦).



92 J. Chabrowski — M. Willem

Hence by the maximum principle um ≤ Cz on RN −B(0,m◦) for every m > m◦.
Letting m→∞ we get w(x) ≤ Cz(x) and the result follows. �

Lemma A. Suppose that

(H) Q: Ω
c → R is locally Hölder continuous, Q(x) > 0 and Q(x) ≤ c|x|r on

Ω
c
, where r < −(N + 2)/2 and c > 0.

Then the problems (2.1) and

(2.1’)

{ −∆w = Q(x), w(x) > 0 in Ωc,

∂w

∂ν
= 0 on ∂Ω, w ∈ D1,2Ωc),

are equivalent. Moreover, the solution of (2.1) (or (2.1’)) exists and is unique.

Proof. Since
Q ∈ L2N/(N+2)(Ωc) ∼= (L2∗(Ωc))′,

it follows from the Riesz–Fréchet representation theorem that (2.1’) has a unique
solution w◦ in D1,2(Ωc). On the other hand the problem

−∆u = 0 in Ωc,

∂u

∂ν
= 0 on ∂Ω,

lim
|x|→∞

u(x) = 0

has a unique solution u ≡ 0 (see [6]). Hence by Lemma 2.1, problem (2.1) has a
unique solution, say w1. Since by Lemma 2.1 w1 ∈ D1,2(Ωc), w1 ≡ w◦. �

Lemma B. Suppose that the assumption (H) holds. Then problems
−∆u = Q(x), u(x) > µ > 0 in Ωc,

∂u

∂ν
= 0 on ∂Ωc,

lim|x|→∞ u(x) = µ

and { −∆u = Q(x), µ > 0 on Ωc,

∂u

∂ν
= 0 on ∂Ω, (u− µ) ∈ D1,2(Ωc)

are equivalent and have a unique solutions.

Proof. Define u = w + µ and apply Lemma A. �

To proceed further we introduce the definition of a subsolution and superso-
lution of (1µ).

We say that a function φ > 0 on Ωc is a supersolution of (1µ) if φ ∈
C2(Ωc) ∩ C1(Ω

c
), −∆φ ≥ Qφp, where p = 2∗ − 1, on Ωc, ∂φ/∂ν = 0 on ∂Ω

and lim|x|→∞ φ(x) ≥ µ.
The definition of a subsolution ψ > 0 is obtained by reversing the inequalities

in the above definition.
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If problem (1µ) has a subsolution ψ and a supersolution φ such that 0 < ψ <

φ on Ωc, then problem (1µ) has a minimal solution u and a maximal solution u
such that ψ ≤ u ≤ u ≤ φ on Ωc. This can be established by employing a standard
monotone iteration technique. First we observe that if w is the solution of (2.1)
then the function wµ = µ+ w is the unique solution of the following problem

(2.3)


−∆u = Q(x) in Ωc,

∂u

∂ν
= 0 on ∂Ω,

lim
|x|→∞

u(x) = µ.

Let u0 = φ and for every j ≥ 1 we define uj as a solution of the problem
−∆uj = Q(x)up

j−1 in Ωc,

∂uj

∂ν
= 0 on ∂Ω,

lim
|x|→∞

uj(x) = µ.

By the maximum principle we have

uj ≤ uj−1 ≤ . . . ≤ u1 ≤ u0 on Ωc.

Similarly, we set v0 = ψ. Let vj for j ≥ 1 be a solution of the problem
−∆vj = Q(x)vp

j−1 in Ωc,

∂vj

∂ν
= 0 on ∂Ω,

lim
|x|→∞

vj(x) = µ.

By the maximum principle we have

ψ = v0 ≤ v1 ≤ . . . ≤ vj on Ωc.

Also, we have vj ≤ uj on Ωc. Taking the limits of the sequences {vj} and {uj}
we obtain a minimal solution u and a maximal solution u.

To apply the above method, let w1 be a solution of (2.3) with µ = 1. Then we
set φµ = µw1 and ψµ = µ. It is clear that ψµ < φµ on Ωc and lim|x|→∞ φµ(x) =
µ. We now observe that

−∆φµ −Q(x)φ2∗−1
µ = µQ(x)−Q(x)(µw1)2

∗−1 = Q(x)µ(1− µ2∗−2w2∗−1
1 ) ≥ 0

on Ωc for µ small, say 0 < µ ≤ µ◦. Obviously, ψ is a subsolution for (1µ). By
the method of sub and supersolutions problem (1µ) has a minimal solution uµ

satisfying µ ≤ uµ ≤ φµ for 0 < µ ≤ µ◦.
We let

µ = sup{µ > 0 : problem (1µ) has a solution}.



94 J. Chabrowski — M. Willem

Proposition 2.2. Suppose that the assumption (H) holds. Problem (1µ)
has a solution for every 0 < µ < µ. Moreover, 0 < µ < ∞ and there are no
solutions for µ > µ.

Proof. Let µ ∈ (0, µ). Then there exists µ̃ ∈ (µ, µ) such that problem (1eµ)
has a solution ueµ. This solution ueµ is a supersolution of (1µ) and v = µ is a
subsolution of (1µ). Hence problem (1µ) has a minimal solution uµ such that
µ ≤ uµ ≤ ueµ. Arguing by contradiction, assume that µ = ∞. Then for every
µ > 0 there exists a minimal solution uµ. Letting v = uµ − µ, we see that

−∆v = −∆u2∗−1
µ ≥ Q(x)µ2∗−2(uµ − µ) = Q(x)µ2∗−2v

and v > 0 on Ωc. By Lemma B v ∈ D1,2(Ωc). Hence the first eigenvalue
for −∆ − Q(x)µ2∗−2 is nonnegative. On the other hand for large µ, the first
eigenvalue must be negative and we have reached a contradiction. �

3. Properties of minimal solutions

From Lemma B we deduce the following estimate for uµ − µ.

Lemma 3.1. Suppose that the assumption (H) holds. Let uµ be the minimal
solution of (1µ) from Proposition 2.2. Then

0 < uµ − µ ≤


C|x|2−N if r < −N,
C|x|2−N log |x| if r = −N,
C|x|2+r if −N < r < −2,

for some constant C > 0 and large |x|.

Lemma 3.2. Suppose (H) holds. Further, we assume that u is a bounded
positive solution of (1µ) such that u−µ ∈ D1,2(Ωc). Then the variational problem

σµ = inf
{ ∫

Ωc

|∇w|2 dx : w ∈ D1,2(Ωc), p
∫

Ωc

Q(x)up−1w2 dx = 1
}
,

where p = 2∗ − 1, has a minimizer ψµ satisfying

(3.1)

{ −∆ψµ = pσµQ(x)up−1ψµ in Ωc,

∂ψµ

∂ν
= 0 on ∂Ω.

If there exists a bounded positive solution u of (1µ) with µ > µ and such that
u > u on Ωc and u− µ ∈ D1,2(Ωc), then σµ > 1.

Proof. The first part of the lemma follows from the fact that the functional
w ∈ D1,2(Ωc) →

∫
Ωc Q(x)up−1w2 dx is weakly sequentially compact. Here we

need the assumption (Q1). We only give the proof of the second part. We set
v = u− µ and v = u− µ. Then

−∆(v − v) = Q(x)(v + µ)p −Q(x)(v + µ)p = Q(x)(up − up) ≥ 0,
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∂(v − v)/∂ν = 0 on ∂Ω and v − v → 0 as |x| → ∞. Therefore by the maximum
principle v > v on Ωc. We now observe that

(3.2)

{ −∆(v − v) = Q(x)(up − up) ≥ pQ(x)up−1(v − v + (µ− µ)) in Ωc,

∂(v − v)
∂ν

= 0, v − v ∈ D1,2(Ωc) on ∂Ω.

Let w = u− u. Testing (3.2) with ψµ we get

(3.3)
∫

Ωc

∇ψµ∇w dx ≥ p

∫
Ωc

Q(x)up−1
(
w + (µ− µ)

)
ψµ dx.

On the other hand since ψµ is a solution of (3.1), we get∫
Ωc

∇ψµ∇w dx = pσµ

∫
Ωc

Q(x)up−1ψµw dx.

Then (3.2) and (3.3) imply that

pσµ

∫
Ωc

Q(x)up−1wψµ dx > p

∫
Ωc

Q(x)up−1wψµ dx.

This shows that σµ > 1. �

Lemma 3.2 can be applied to a family of minimal solutions {uµ}, 0 < µ < µ,
since by Lemma B uµ−µ ∈ D1,2(Ωc). Taking in Lemma 3.2 u = uµ for 0 < µ < µ,
we see that the corresponding σµ > 1. However, Lemma 3.2 cannot be applied
to uµ. Later we shall show that σµ = 1.

Lemma 3.3. Suppose (H) holds. Then there exists a constant C > 0 inde-
pendent of µ such that

‖∇(uµ − µ)‖2 ≤ C

for every 0 < µ < µ.

Proof. Let vµ = uµ − µ. Then by Lemma B we have

(3.4)
∫

Ωc

|∇vµ|2 dx =
∫

Ωc

Q(x)(vµ + µ)pvµ dx.

Applying Lemma 3.2 we get∫
Ωc

|∇vµ|2 dx ≥ pσµ

∫
Ωc

Q(x)(vµ + µ)p−1v2
µ dx dx.

Combining these two relations we get

p

∫
Ωc

Q(x)vp+1
µ dx ≤ pσµ

∫
Ωc

Q(x)(vµ + µ)p−1v2
µ dx dx(3.5)

≤
∫

Ωc

Q(x)(vµ + µ)pvµ dx

=
∫

Ωc

Q(x)(vµ + µ)p−1v2
µ dx dx

+
∫

Ωc

Q(x)(vµ + µ)p−1µvµ dx.
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Hence by the Hölder and Young inequalities, we have for every ε > 0

(p− 1)
∫

Ωc

Q(x)(uµ + µ)p−1v2
µ dx ≤

∫
Ωc

Q(x)(vµ + µ)p−1µvµ dx

≤C
( ∫

Ωc

Q(x)vp
µ dx+

∫
Ωc

Q(x)vµ dx

)
≤C

(∫
Ωc

Q(x) dx
)1/(p+1)(∫

Ωc

Q(x)vp+1
µ dx

)p/(p+1)

+ C

(∫
Ωc

Q(x) dx
)p/(p+1)(∫

Ωc

Q(x)vp+1
µ dx

)1/(p+1)

≤ ε
∫

Ωc

Q(x)vp+1
µ dx+ Cε

∫
Ωc

Q(x) dx.

Taking ε > 0 sufficiently, small we derive from this inequality and (3.5) that

(3.6)
∫

Ωc

Q(x)vp+1
µ dx ≤ C

∫
Ωc

Q(x) dx.

The desired result follows from (3.4) and (3.6) with the aid of the Hölder in-
equality. �

We show below that problem (1µ) is also solvable for µ = µ.

Proposition 3.4. Suppose (H) holds. Then problem (1µ) has a solution.

Proof. Let vµ be the function introduced in the proof of Lemma 3.3. The
function vµ satisfies

(3.7)


−∆vµ = Q(x)(vµ + µ)p in Ωc,

∂vµ

∂ν
= 0 on ∂Ω,

lim
|x|→∞

vµ(x) = 0.

We commence by showing that

(3.8)
∫

Ωc

vq
µ dx ≤ C

for some constant C > 0 independent of µ and for all q ≥ 2∗. Due to the
estimates of Lemma 2.1 φj(vµ) ∈ D1,2(Ωc), where φj(t) = tj , j ≥ 1. It follows
from Lemma 3.2 that

(3.9)
∫

Ωc

|φ′j(vµ)2|∇vµ|2 dx ≥ p

∫
Ωc

Q(x)(vµ + µ)p−1φj(vµ)2 dx.

Let ψj(t) =
∫ t

0
φ′j(s)

2 ds = j2/(2j − 1)t2j−1. Testing (3.7) with ψj(vµ) we get

(3.10)
∫

Ωc

ψ′j(vµ)|∇vµ|2 dx =
∫

Ωc

Q(x)(vµ + µ)pψj(vµ) dx.



On Multiple Solutions of the Exterior Neumann Problem 97

We deduce from (3.9) and (3.10) that

p

∫
Ωc

Q(x)(vµ + µ)p−1v2j
µ dx ≤ j2

2j − 1

[ ∫
Ωc

Q(x)(vµ + µ)p−1v2j
µ dx

+
∫

Ωc

Q(x)(vµ + µ)p−1µv2j−1
µ

]
.

We now choose j◦ > 1, close to 1, so that j2/(2j − 1) < p for every j ≤ j◦. Let
p− j2/(2j − 1) = α(j, p) > 0. We then derive from the above estimate that

(3.11) α(j, p)
∫

Ωc

Q(x)vp+2j−1
µ dx ≤ α(j, p)

∫
Ωc

Q(x)(vµ + µ)p−1v2j
µ dx

≤ j2

2j − 1

∫
Ωc

Q(x)(vµ + µ)p−1µv2j−1
µ dx

≤ Cj2

2j − 1

[ ∫
Ωc

Q(x)vp+2j−2
µ µdx+

∫
Ωc

Q(x)µpv2j−1
µ dx

]
≤C

[ ∫
Ωc

Q(x)vp+2j−2
µ dx+

∫
Ωc

Q(x)v2j−1
µ dx

]
,

where C = C(µ, j). We now estimate both integrals on the right side of this
inequality. By the Hölder and Young inequalities we have for every δ > 0∫

Ωc

Q(x)vp+2j−2
µ dx ≤

( ∫
Ωc

Q(x) dx
)1/(p+2j−1)

·
( ∫

Ωc

Q(x)vp+2j−1
µ dx

)(p+2j−2)/(p+2j−1)

≤ δ

2

∫
Ωc

Q(x)vp+2j−1
µ dx+ C(δ)

∫
Ωc

Q(x) dx.

For the second integral we have

(3.12)
∫

Ωc

Q(x)v2j−1
µ dx ≤ δ

2

∫
Ωc

Q(x)vp+2j−1
µ dx+ C(δ)

∫
Ωc

Q(x).

It then follows from (3.11) and the last two estimates

(3.13)
∫

Ωc

Q(x)vp+2j−1
µ dx ≤ C1(δ)

for some δ > 0 small enough with a constant C1(δ) independent of µ. Combining
(3.10), (3.12), (3.13) and the Sobolev inequality we get

(3.14)
( ∫

Ωc

vj(p+1)
µ dx

)(N−2)/N

≤ C1

∫
Ωc

Q(x)vp+2j−1
µ dx+ C2

for some constant C1 > 0 and C2 > 0 independent of µ. We choose 2N/(N−2) <
q ≤ p + 2j◦ − 1 and write it as q = (p + 1)j for some 1 < j ≤ j◦. Therefore we
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have

(3.15)
∫

Ωc

vq
µ dx ≤ C

for some constant C independent of µ ∈ (0, µ) and for every p+1 ≤ q ≤ p+2j◦−1.
We now take q◦ = p+ 1 = 2N/(N − 2) and δ = p+ 2j◦ − 1− 2N/(N − 2) > 0.
Testing (3.7) with vq◦−1

µ we get

4(q◦ − 1)
q◦

∫
Ωc

|∇vq◦/2
µ |2 dx =

∫
Ωc

Q(x)(vµ + µ)pvq◦−1
µ dx(3.16)

≤C
[ ∫

Ωc

Q(x)vp+q◦−1
µ dx+

∫
Ωc

Q(x)vq◦−1
µ dx

]
≤C

∫
Ωc

Q(x)vp+q◦−1
µ dx

+ C

( ∫
Ωc

Q(x)vp+q◦−1
µ dx

)(q◦−1)/(p+q◦−1)

·
( ∫

Ωc

Q(x) dx
)p/(p+q◦−1)

≤C1

∫
Ωc

Q(x)vp+q◦−1
µ dx+ C2

∫
Ωc

Q(x) dx,

where C1 > 0 and C2 > 0 are constants independent of µ. Since q◦ < q◦+p−1 <
p− 1 + q◦ + 2δ/N , we have

tp−1+q◦ ≤ εtp−1+q◦+2δ/N + Cεt
q◦

for every t ≥ 0. Applying (3.15) with q = p+ 2j◦ − 1, we get∫
Ωc

Q(x)vp+q◦−1
µ dx ≤ ε

∫
Ωc

Q(x)vp−1+q◦+2δ/N
µ dx+ Cε

≤ ε
( ∫

Ωc

Q(x)(vq◦
µ )(p+1)/2 dx

)2/(p+1)( ∫
Ωc

Q(x)v(p−1+2δ/N)N/2
µ dx

)2/N

+ C

≤ εC
∫

Ωc

Q(x)(vµ)q◦(p+1)/2 dx+ C1 ≤ εC2

∫
Ωc

|∇vq◦/2
µ |2 dx+ C3.

This combined with (3.16) gives∫
Ωc

|∇vq◦/2
µ |2 dx ≤ C

for some C > 0 independent of µ. By the Sobolev inequality we get∫
Ωc

v
q2
◦/2

µ dx ≤ C

and the result follows by iteration. �

It follows from (3.8) that Q(vµ + µ) ∈ Lq(Ωc) for every q ≥ p+ 1. Therefore
using the Lp estimates up to the boundary [1] and the interior Lp estimates ([8,
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Theorem 9.11]), we show as in [6] that up to a subsequence, vµ → v as µ → µ

in C1
(
Ω

c ∩ B(0, R)) for all R > 0. Due to Lemma 3.3 we can also assume that
v ∈ D1,2(Ωc) and v is a weak solution of{ −∆v = Q(x)(v + µ)p in Ωc,

∂vµ

∂ν
= 0 on ∂Ω.

By the results of the next section lim|x|→∞ v(x) = 0. Thus v + µ is a solution
of problem (1µ). The solution uµ is unique. Indeed, let ũµ be another solution
of (1µ). Since ũµ is a supersolution of (1µ) for µ < µ, we see that ũµ > uµ for
µ < µ. Consequently, ũµ ≥ uµ. We now show that σµ = 1. Otherwise, applying
the implicit function theorem to the operator F (v, µ) = −∆v + Q(x)(vµ)p as
a mapping from D1,2(Ωc) × [0,∞) into D1,2(Ωc), we deduce the existence of a
positive solution v for every µ in a small interval (µ − δ, µ + δ). By the results
of the next section these solutions have limit equal to 0 as |x| → ∞. Clearly,
this contradicts the definition of µ. Repeating the argument from p. 216 of [6]
we show that ũµ = uµ.

4. Application of the mountain-pass principle

For every µ ∈ (0, µ) we consider the problem

(4.1)



−∆v = Q(x)((v + uµ)2
∗−1 − u2∗−1

µ ) in Ωc,

∂v

∂ν
= 0 on ∂Ω,

v > 0 on Ωc,

lim
|x|→∞

v(x) = 0,

where uµ is a minimal solution of (1µ). If vµ is a solution of (4.1), then Uµ =
vµ + uµ is a solution of (1µ). A solution of (4.1) will be found as a critical point
of the functional

Jµ(v) =
1
2

∫
Ωc

|∇v|2 dx− 1
2∗

∫
Ωc

Q(x)(uµ + v+)2
∗
dx

+
1
2∗

∫
Ωc

Q(x)u2∗

µ dx+
∫

Ωc

Q(x)u2∗−1
µ v+ dx

for v ∈ D1,2(Ωc). It is easy to show that Jµ is a C1-functional and we have

〈J ′µ(v), φ〉 =
∫

Ωc

[∇v∇φ−Q(x)
(
(uµ + v+)2

∗−1 − u2∗−1
µ

)
]φdx

for every φ ∈ D1,2(Ωc). To show that the functional Jµ has a mountain-pass
structure, we need the following inequality: let p > 2, then for every ε > 0 there
exists Cε > 0 such that, for every s ≥ 0,

(4.2) (uµ + s)p − up
µ − pup−1

µ s ≤ εup−1
µ s+ Cεs

p.
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Lemma 4.1. There exist α > 0 and ρ > 0 such that Jµ(v) ≥ α > 0 for
v ∈ D1,2(Ωc) with ‖∇v‖2 = ρ.

Proof. We write Jµ in the form

Jµ(v) =
1
2

∫
Ωc

|∇v|2 dx− 2∗ − 1
2

∫
Ωc

Q(x)u2∗−2
µ

(
v+

)2
dx

−
∫

Ωc

∫ v+

0

Q(x)[(uµ + s)2
∗−1 − u2∗−1

µ − (2∗ − 1)u2∗−2
µ s] ds dx.

Applying (4.2) with p = 2∗ − 1 we get

Jµ(v) ≥ 1
2

∫
Ωc

[
|∇v|2 − (2∗ − 1)Q(x)u2∗−2

µ (v+)2
]
dx

−
∫

Ωc

Q(x)
[
ε

2
u2∗−2

µ (v+)2 + Cε
(v+)2

∗

2∗

]
dx.

Hence by Lemma 3.2 we have

Jµ(v) ≥ 1
2

(
1− 2∗ − 1− ε

σµ(2∗ − 1)

) ∫
Ωc

|∇v|2 dx− Cε

2∗

∫
Ωc

Q(x)

(
v+

)2∗

2∗
dx.

An application of the Sobolev inequality completes the proof. �

In Propositions 4.2 and 4.3, below, we examine the (PS) sequences of the
functional Jµ.

Proposition 4.2. Let {vm} ⊂ D1,2(Ωc) be a (PS)c sequence for Jµ. Then
{vm} is bounded in D1,2(Ωc).

Proof. We compute

(4.3) Jµ(vm) − 1
2
〈J ′µ(vm), vm〉

= − 1
2∗

∫
Ωc

Q(x)(uµ + v+
m)2

∗
dx+

1
2∗

∫
Ωc

Q(x)u2∗

µ dx

+
∫

Ωc

Q(x)u2∗−1
µ v+

m dx+
1
2

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1vm dx

− 1
2

∫
Ωc

Q(x)u2∗−1
µ vm dx

=
1
N

∫
Ωc

Q(x)(uµ + v+
m)2

∗
dx− 1

2

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1v−m dx

− 1
2

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1uµ dx+
1
2∗

∫
Ωc

Q(x)u2∗

µ dx

+
∫

Ωc

Q(x)u2∗−1
µ v+

m dx− 1
2

∫
Ωc

Q(x)u2∗−1
µ vm dx

=
1
N

∫
Ωc

Q(x)(uµ + v+
m)2

∗
dx− 1

2

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1uµ dx
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− 1
2

∫
Ωc

Q(x)u2∗−1
µ v−m dx+

1
2∗

∫
Ωc

Q(x)u2∗

µ dx

+
∫

Ωc

Q(x)u2∗−1
µ v+

m dx− 1
2

∫
Ωc

Q(x)u2∗−1
µ vm dx

=
1
N

∫
Ωc

Q(x)(uµ + v+
m)2

∗
dx− 1

2

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1uµ dx

+
1
2

∫
Ωc

Q(x)u2∗−1
µ v+

m dx+
1
2∗

∫
Ωc

Q(x)u2∗

µ dx.

Given δ > 0 we choose C(δ) > 0 that∫
Ωc

Q(x)(uµ + v+
m)2

∗−1uµ dx ≤ δ

∫
Ωc

Q(x)(uµ + v+
m)2

∗
dx+C(δ)

∫
Ωc

Q(x)u2∗

µ dx.

Taking δ > 0 small and using the fact that {vm} is a (PS)c sequence we deduce
from (4.3) that there exist constants C1 > 0 and C2 > 0 such that

(4.4)
∫

Ωc

Q(x)(uµ + v+
m)2

∗
dx ≤ C1 + C2‖∇vm‖2

for every m ≥ 1. On the other hand we have

Jµ(vm) − 1
2∗
〈J ′µ(vm), vm〉 =

1
N

∫
Ωc

|∇vm|2 dx

+
1
2∗

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1(vm − v+
m − uµ) dx+

1
2∗

∫
Ωc

Q(x)u2∗

µ dx

+
∫

Ωc

Q(x)u2∗−1
µ v+

m dx− 1
2∗

∫
Ωc

Q(x)u2∗−1
µ vm dx

=
1
N

∫
Ωc

|∇vm|2 dx−
1
2∗

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1uµ dx

− 1
2∗

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1v−m dx

+
1
2∗

∫
Ωc

Q(x)u2∗

µ dx+
∫

Ωc

Q(x)u2∗−1
µ v+

m dx− 1
2∗

∫
Ωc

Q(x)u2∗−1
µ vm dx

=
1
N

∫
Ωc

|∇vm|2 dx−
1
2∗

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1uµ dx

+
1
2∗

∫
Ωc

Q(x)u2∗

µ dx+
(
1− 1

2∗
) ∫

Ωc

Q(x)u2∗−1
µ v+

m dx

≥ 1
N

∫
Ωc

|∇vm|2 dx−
1
2∗

∫
Ωc

Q(x)(uµ + v+
m)2

∗−1uµ dx.

From this we derive, using the Young inequality, that

(4.5) ‖∇vm‖22 ≤ C3

∫
Ωc

Q(x)(uµ + v+
m)2

∗
dx+ C4‖∇vm‖2 + C5.

The fact that {vm} is a bounded sequence in D1,2(Ωc) is a consequence of (4.4)
and (4.5). �
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To proceed further we set

Qm = max
x∈∂Ω

Q(x) and QM = max
x∈Ωc

Q(x).

These two quantities play an essential role in finding an energy level of the
functional Jµ below which the Palais–Smale condition holds (see also [4] and [5]).

Proposition 4.3. Suppose that

(4.6) Jµ(vm) → c < min
(

SN/2

2NQ(N−2)/2
m

,
SN/2

NQ
(N−2)/2
M

)
, c > 0,

and

(4.7) J ′µ(vm) → 0 in D−1,2(Ωc).

Then the sequence {vm} has a subsequence converging weakly in D1,2(Ωc) to a
non zero limit.

Proof. Since by Proposition 4.2 {vm} is bounded in D1,2(Ωc), we may
assume that vm ⇀ v in D1,2(Ωc) and vm → v in Lp(Ωc) ∩ B(0, R)) for each
2 ≤ p < 2∗ and R > 0 with Ω ⊂ B(0, R). Testing (4.7) with φ = v−m we get that∫

Ωc

|∇v−m|2 dx = o(1).

Therefore we may assume that vm ≥ 0 on Ωc. We now show that v 6≡ 0.
Arguing, by contradiction assume that v = 0 on Ωc. We must have vm 6→ 0 in
D1,2(Ωc) because c > 0. Hence the sequence {vm} must concentrate. It cannot
concentrate at infinity since Q(x) → 0 as |x| → ∞. Therefore the concentration
occurs either on ∂Ω or inside Ω. By the P. L. Lions concentration-compactness
principle (see [10]), there exist sequences of points {xj} ⊂ RN and numbers {νj},
{µj} ⊂ (0,∞) such that

|vm|2
∗ ∗
⇀

∑
j

νjδj and |∇vm|2
∗
⇀

∑
j

µjδj

in M, where M is a space of measures, moreover

Sν
2/2∗

j ≤ µj if xj ∈ Ω,

S
ν

2/2∗

j

22/N
≤ µj if xj ∈ ∂Ω.

From (4.7) we deduce that µj ≤ Q(xj)νj for every j. If νj > 0 and xj ∈ Ω,
then νj ≥ SN/2/Q(xj)N/2 and if xj ∈ ∂Ω, then νj ≥ SN/2/(2Q(xj)N/2). By the
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Brézis–Lieb lemma (see [3]) we have

Jµ(vm) − 1
2
〈J ′µ(vm), vm〉 =

1
N

∫
Ωc

Q(x)(uµ + vm)2
∗
dx

− 1
2

∫
Ωc

Q(x)(uµ + vm)2
∗−1uµ dx+

1
2∗

∫
Ωc

Q(x)u2∗

µ dx+ o(1)

=
1
N

∫
Ωc

Q(x)u2∗

µ dx+
1
N

∫
Ωc

Q(x)v2∗

m dx

− 1
2

∫
Ωc

Q(x)u2∗

µ dx+
1
2∗

∫
Ωc

Q(x)u2∗

µ dx+ o(1)

=
1
N

∫
Ωc

Q(x)v2∗

m dx+ o(1)

=
1
N

∑
xj∈∂Ω

Q(xj)νj +
1
N

∑
xj∈Ω

Q(xj)νj + o(1)

≥ 1
N

∑
xj∈∂Ω

SN/2

Q(xj)(N−2)/2
+

1
N

∑
xj∈Ω

SN/2

Q(xj)(N−2)/2
+ o(1).

If QM >22/(N−2)Qm, then letting m→∞ we derive that c ≥ SN/2/(NQ(N−2)/2
M )

and if QM ≤ 22/(N−2)Qm, then c≥SN/2/(2NQ(N−2)/2
m ). In both cases we get a

contradiction. �

Lemma 4.4. There exists ψ◦ ∈ D1,2(Ωc) such that ‖∇ψ◦‖2 > ρ and
Jµ(ψ◦) < 0, where ρ > 0 is a constant from Lemma 4.1.

Proof. Let φ◦ ∈ D1,2(Ωc) and φ◦ > 0 on Ωc. We then have for ψ◦ = tφ◦

Jµ(tφ◦) ≤
t2

2

∫
Ωc

|∇φ◦|2 dx−
t2
∗

2∗

∫
Ωc

Q(x)φ2∗

◦ dx

+
1
2∗

∫
Ωc

Q(x)u2∗

µ dx+ t

∫
Ωc

Q(x)u2∗−1
µ φ◦ dx < 0

for t > 0 sufficiently large. �

To apply the mountain-pass principle we define

c = inf
γ∈Γ

max
t∈[0,1]

Jµ(γ(t)),

where Γ = {γ : γ ∈ C([0, 1], D1,2(Ωc)), γ(0) = 0, γ(1) = ψ◦}.

Theorem 4.5.

(a) Let QM ≤ 22/(N−2)Qm. Suppose that |Q(x) −Q(y)| = o(|x − y|) for x
close to y, Q(y) = Qm and with the mean curvature H(y) < 0 when
viewed from inside Ω. Then problem (4.1) has a solution.

(b) Let QM > 22/(N−2)Qm. Suppose that |Q(x)−Q(y)| = o(|x−y|N−2) for
x close to y with Q(y) = QM . Then problem (4.1) has a solution.
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Proof. Since∫
Ωc

Q(x)
∫ v+

0

[(uµ + s)2
∗−1 − u2∗−1

µ − s2
∗−1] ds dx ≥ 0,

we have

Jµ(v) =
1
2

∫
Ωc

|∇v|2 dx− 1
2∗

∫
Ωc

Q(x)(uµ + v+)2
∗
dx

+
1
2∗

∫
Ωc

Q(x)u2∗

µ dx+
∫

Ωc

Q(x)u2∗−1
µ v+ dx

=
1
2

∫
Ωc

|∇v|2 dx− 1
2∗

∫
Ωc

Q(x)
(
v+

)2∗

dx

−
∫

Ωc

Q(x)
∫ v+

0

[(uµ + s)2
∗−1 − u2∗−1

µ − s2
∗−1] ds dx

≤ 1
2

∫
Ωc

|∇v|2 dx− 1
2∗

∫
Ωc

Q(x)
(
v+

)2∗

dx.

Hence

(4.8) max
t≥0

Jµ(tv) ≤ max
t≥0

(
t2

2

∫
Ωc

|∇v|2 dx− t2
∗

2∗

∫
Ωc

Q(x)
(
v+

)2∗

dx

)
=

1
N

(
∫
Ωc |∇v|2 dx)N/2

(
∫
Ωc Q(x)(v+)2∗ dx)(N−2)/2

.

(a) We consider the case QM ≤ 22/(N−2)Qm. Let

Uε,y(x) = ε−(N−2)/2U

(
x− y

ε

)
, ε > 0, y ∈ RN

where U(x) =
[N(N − 2)](N−2)/2

(N(N − 2) + |x|2)(N−2)/2
.

This function, called an instanton, has a property∫
RN

|∇Uε,y|2 dx =
∫

RN

U2∗

ε,y dx = SN/2.

Moreover, it is known that

∫
Ωc |∇v|2 dx

(
∫
Ωc U2∗

ε,y dx)2/2∗
=

S

22/N
+


ANH(y)ε log(1/ε) +O(ε) for N = 3,

ANH(y)ε+O(ε2 log(1/ε) for N = 4,

ANH(y)ε+O(ε2) for N = 5,

where AN > 0 is a constant depending on N . This estimate can be obtained
from the corresponding estimate on a bounded domain by truncation (see [2],
[11], [9]). Substituting v = Uε,y in (4.8) and using the above estimate together
with our assumption Q we get the following estimate for the mountain-pass level

c <
SN/2

2NQN−2/2
m

.
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(b) If QM > 22/(N−2)Qm, we take Uε,y with Q(y) = QM . We then have∫
Ωc

|∇Uε,y|2 dx =
∫

RN

|∇U |2 dx−
∫

Ω

|∇Uε,y|2 dx ≤ SN/2 − C1ε
N−2

for some constant C1 > 0 and∫
Ωc

Q(x)U2∗

ε,y dx =
∫

Ωc

QMU2∗

ε,y dx+
∫

Ωc

(
Q(x)−QM

)
U2∗

ε,y dx

= SN/2QM + o
(
εN−2

)
.

Using the last two relations in (4.8) we see that

c <
SN/2

NQ
N−2/2
M

. �

5. Main result

To use a solution u of problem (4.1) to construct a second solution of (1µ)
we have to show that lim|x|→∞ u(x) = 0. This will be accomplished by using the
Moser iteration technique. In Proposition 5.1 below, we use some ideas from the
proof of Theorem 8.17 in [8].

Proposition 5.1. Suppose that lim|x|→∞Q(x) = 0 and Q ∈ LN/2(Ωc). Let
u ∈ D1,2(Ωc) be a positive solution of (4.1). Then there exists R > 0 such that
for every B(x◦, 2) ⊂ (|x| > R) we have

sup
B(x◦,1)

u(x) ≤ C

(∫
B(x◦,2)

u2∗ dx

)1/2∗

,

where a constant C depends on u but is independent of x◦.

Proof. Let ε > 0 be fixed and set p = 2∗− 1. We choose a constant Cε > 0
such that

(u+ uµ)p − up
µ ≤ (p+ ε)up−1

µ u+ Cεu
p

for every x ∈ Ωc. Then

(5.1) −∆u ≤ d(x)u on Ωc,

where d(x) = Q(x)(p + ε)up−1
µ + CεQ(x)up−1. Let η ∈ C1

0 (Ωc) with supp ⊂
(|x| > R), where R > 0 is large and will be determined later. Taking w = η2uβ ,
β > 0, as a test function in (5.1) we obtain

(5.2) β

∫
Ωc

η2uβ−1|∇u|2 dx+ 2
∫

Ωc

η∇η∇uuβ dx ≤
∫

Ωc

d(x)η2uβ+1 dx.

We now use the inequality∣∣∣∣2 ∫
Ωc

η∇η∇uuβ dx

∣∣∣∣ ≤ β

2

∫
Ωc

η2|∇u|2uβ−1 dx+
2
β

∫
Ωc

|∇η|2uβ+1 dx,
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which inserted into (5.2) gives

(5.3)
β

2

∫
Ωc

η2uβ−1|∇u|2 dx ≤
∫

Ωc

(
d(x)η2 +

2
β
|∇η|2

)
uβ+1 dx.

We set w = u(β+1)/2 in (5.3) and we obtain

(5.4)
∫

Ωc

η2|∇w|2 dx ≤ (β + 1)2

2β

∫
Ωc

(
d(x)η2 +

2
β
|∇η|2

)
w2 dx.

We now estimate
∫
Ωc d(ηw)2 dx∫

Ωc

d(ηw)2 dx =
∫

Ωc

Q(p+ ε)up−1
µ (ηw)2 dx+ Cε

∫
Ωc

Qup−1(ηw)2 dx

≤ (p+ ε)‖uµ‖p−1
∞

(∫
supp η

QN/2 dx

)2/N

‖ηw‖22∗

+ CεQM,R

(∫
Ωc

u2∗ dx

)2/N

‖ηw‖22∗ ,

where QM,R = sup|x|>RQ(x). Setting

M(R) = (p+ ε)‖uµ‖p−1
∞

(∫
supp η

QN/2 dx

)2/N

+ CεQM,R

(∫
Ωc

u2∗ dx

)2/N

,

we rewrite the above inequality as

(5.5)
∫

Ωc

d(ηw)2 dx ≤M(R)‖ηw‖22∗ .

Also, we have

(5.6)
(∫

Ωc

(ηw)2
∗
dx

)(N−2)/N

≤S−1

∫
Ωc

|∇(ηw)|2 dx

=S−1

∫
Ωc

(η2|∇w|2 + w2|∇η|2 + 2ηw∇η∇w) dx

≤ 2S−1

∫
Ωc

(η2|∇w|2 + w2|∇η|2) dx.

Inserting (5.5) into (5.4) we obtain∫
Ωc

η2|∇w|2 dx ≤ (β + 1)2

2β
M(R)‖(ηw)‖22∗ +

(β + 1)2

β2

∫
Ωc

|∇η|2w2 dx.

Combining the last inequality with (5.6) we get(
1− S−1 (β + 1)2

β
M(R)

)( ∫
Ωc

(ηw)2
∗
dx

)(N−2)/N

≤ 2S−1

(
1 +

(β + 1)2

β2

) ∫
Ωc

|∇η|2w2 dx.
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We choose R > 0 so that

1− S−1 (β + 1)2

β
M(R) =

1
2
.

Thus

(5.7)
( ∫

Ωc

(ηw)2
∗
dx

)(N−2)/N

≤ A

∫
Ωc

|∇η|2w2 dx,

with A = 4S−1(1 + (β − 1)2/β2). We now make the following choice of η:
η(x) = 1 in B(x◦, r1), η(x) = 0 in Ωc − B(x◦, r2), |∇η(x)| ≤ 2/(r2 − r1) in Ωc,
1 ≤ r1 < r2 < 3. It is assumed that B(x◦, 3) ⊂ (|x| > R). Then (5.7) takes form

(5.8)
(∫

B(x◦,r1)

w2∗ dx

)(N−2)/2N

≤ A1

r2 − r1

( ∫
B(x◦,r2)

w2 dx

)1/2

,

with A1 = 2
√
A. We set γ = β + 1, χ = N/(N − 2). Then we get from (5.8)

(5.9)
( ∫

B(x◦,r1)

uγχ dx

)1/(γχ)

≤
(

A1

r2 − r1

)2/γ( ∫
B(x◦,r2)

uγ dx

)1/γ

.

To iterate this inequality we take sm = 1 + 2−m, m = 0, 1, . . . By a simple
induction argument we get( ∫

B(x◦,sm)

uχmγ dx

)1/(γχm)

≤ A
(2/γ)

Pm−1
j=0 (1/χj)

1 2(2/γ)
Pm

j=0(j+1)/χj

( ∫
B(x◦,s0

uγ dx

)1/γ

for each m > 1. This inequality implies( ∫
B(x◦,1)

uχmγ dx

)1/(γχm)

≤ A
(2/γ)

Pm−1
j=0 (1/χj)

1 2(2/γ)
Pm

j=0(j+1)/χj

( ∫
B(x◦,2)

uγ dx

)1/γ

.

We now choose γ = β + 1 = 2∗. Letting m→∞ the result follows. �

It follows from Proposition 5.1 that lim|x|→∞ u(x) = 0. By the maximum
principle, since

Q(x)(u+ uµ)p −Q(x)up
µ > 0

we get u(x) ≥ C1|x|2−N for some constant C1 > 0 and large |x|.
If (H) holds, then assumptions of Proposition 5.1 are satisfied.

Theorem 5.2. Suppose (H) holds. Then problem (1µ) has at least two so-
lutions.
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