
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 26, 2005, 35–74

HOMOLOGY INDEX BRAIDS
IN INFINITE-DIMENSIONAL CONLEY INDEX THEORY

Maria C. Carbinatto — Krzysztof P. Rybakowski

Dedicated to the memory of Olga Ladyzhenskaya

Abstract. We extend the notion of a categorial Conley–Morse index, as

defined in [20], to the case based on a more general concept of an index

pair introduced in [12]. We also establish a naturality result of the long
exact sequence of attractor-repeller pairs with respect to the choice of in-

dex triples. In particular, these results immediately give a complete and

rigorous existence result for homology index braids in infinite dimensional
Conley index theory.

Finally, we describe some general regular and singular continuation

results for homology index braids obtained in our recent papers [6] and [7].

1. Introduction

The concept of the categorial Morse index for flows on locally compact spaces
is a refinement of Conley index. It was developed by Conley [8] and his students
(mainly Kurland [14]). Roughly speaking, the categorial Morse index (or Conley–
Morse index) I(S) of a compact isolated invariant set S (relative to a given flow)
is a connected simple system and a subcategory of the homotopy category of
pointed spaces with objects (N1/N2, [N2]) where (N1, N2) is an index pair in
some compact isolating neighbourhood N of S. The morphisms of I(S) are
inclusion or flow induced. Later Franzosa [9]–[11] used a somewhat more general
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concept of an index pair and an ensuing categorial Conley–Morse index, more
suitable for applications to Morse-decompositions and homology index braids.

The Conley index theory and the categorial Conley–Morse index were ex-
tended by Rybakowski [19], [20] to semiflows on (not necessarily locally compact)
metric spaces. The isolating neighbourhoods in that theory are required to sat-
isfy an admissibility condition, making the theory applicable to various classes
of evolution equations. The concept of index pairs in this extended theory is
analogous to that used in [8] and [14].

Parts of Franzosa’s theory of Morse-decompositions and homology index
braids were extended by Franzosa and Mischaikow [12] to the setting of [19]
and [20]. These authors use a definition of index pairs which is the analogue of
Franzosa’s definition in the locally compact case.

Motivated by [12] we define in the present paper a categorial Conley–Morse
index C(S) whose objects are generated by index pairs in the sense of [12] (rather
than index pairs as defined in [19]). We also establish existence of C(S) (Propo-
sitions 4.1 and 4.2) and prove that certain types of inclusion induced morphisms
lie in C(S) (Propositions 4.4 and 4.5). These results are not only of interest
in themselves but they are also needed for a precise definition of long exact se-
quences of attractor-repeller pairs in the non-locally compact case considered
here.

Simplifying slightly the approach of Kurland [16] we also define the category
of connected simple systems in a given category K. Moreover, for a given con-
nected simple system C in K and a functor Φ from K to a module category, we
define the image module Φ̂(C) (cf Section 3).

All this allows us, in Section 5, to define the long exact homology sequence
of an attractor-repeller pair (A,A∗) in S, associated with a given index triple
(N1, N2, N3) for (S,A,A∗). In Theorem 5.1 we prove that this sequence is inde-
pendent of the choice of (N1, N2, N3).

These results also resolve some technical issues which remained open in the
derivation of the homology index braid as outlined in [12] (the hints given on
pp. 282–283 of [12] are insufficient for that). In particular, we can now proceed
exactly as in [9] and [12] to obtain a precise definition of the homology index braid
for a given (partially ordered) Morse-decomposition. This is done in Section 6,
in which we also discuss morphisms from one homology index pair to another.
In particular, we define inclusion induced morphisms between homology index
braids and show that, under a certain nesting property, these morphism are
isomorphisms.

In Section 7, which is based on our recent paper [6], we consider a sequence
πn, n ∈ N0, of local semiflows on X and a sequence (πn, Sn, (Mp,n)p∈P ), n ∈ N0,
of Morse-decompositions such that (πn, Sn, (Mp,n)p∈P ) regularly converges to



Homology Index Braids 37

(π0, S0, (Mp,0)p∈P ). We state the nested index filtration theorem (Theorem 7.3),
which immediately implies a general (regular) continuation result for homology
index braids and Morse-decompositions (Theorems 7.4 and 7.6). We apply this
result to Galerkin approximations of semilinear parabolic equations.

Finally, in Section 8, based on our recent work [7], we state a nested in-
dex filtration theorem in the context of singular perturbation problems (The-
orem 8.5), which implies a general singular continuation result for homology
index braids and connection matrices (Theorem 8.6). We apply this result to
reaction-diffusion equations on thin domains.

2. Preliminaries

The purpose of this section is to recall a few concepts from Conley index
theory and to establish some preliminary results needed later in this paper.
We assume the reader’s familiarity with the (infinite-dimensional) Conley index
theory, as expounded in the papers [19] and [20] (or the book [21]), and with the
papers [9], [11] and [12].

Let X be a topological space. Choose an arbitrary, but fixed point p /∈ X.
Let A, Y be subspaces of X. Suppose first that Y ∩A 6= ∅. Define an equivalence
relation on Y by letting x ∼ y if and only if x = y or x, y ∈ Y ∩ A. We denote
by Y/A the quotient space of Y modulo this equivalence relation. We write [A]
to denote the equivalence class of any member x of Y ∩ A. Set-theoretically,
[A] = Y ∩A. We endow Y/A with the quotient topology.

Now let Y ∩A = ∅. We endow the set X ′ := X ∪{p} with the sum topology,
i.e. U is open in X∪{p} if and only if U ∩X is open in X. Setting Y ′ := Y ∪{p},
A′ := {p} we define Y ′/A′ and [A′] as above and set Y/A := Y ′/A′ and [A] :=
[A′]. Note that [A] = {p} this time.

With our choice p /∈ X the following simple result holds.

Proposition 2.1. If A ⊂ Y ⊂ X then the pair (Y,A) is uniquely determined
by the pointed space (Y/A, [A]).

Proof. If A 6= ∅, then A = [A] while Y is the union of all equivalence classes
of the relation ∼, i.e. Y =

⋃
Y/A. If A = ∅, then Y = { y ∈ X | {y} ∈ Y/A }. �

Remark. If A, Y are subspaces of a topological space X, we will often
denote the pointed space (Y/A, [A]) simply by Y/A. This should not lead to
confusion.

For the rest of this paper, unless otherwise specified, X is a metric space, π
is a local semiflow on X and all (the relevant) concepts are defined relative to π.

Suppose that Y is a subset of X. By Inv+
π (Y ), resp. Inv−π (Y ), resp. Invπ(Y )

we denote the largest positively invariant, resp. negatively invariant, resp. invari-
ant subset of Y . Moreover, let the function ρY = ρY,π:Y → R ∪ {∞} be given
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by

(2.1) ρY (x) := sup{ t ≥ 0 | xπt is defined and xπ[0, t] ⊂ Y }.

It is clear that

(2.2) if Y , Y ′ ⊂ X and x ∈ Y ∩ Y ′, then ρY ∩Y ′(x) = min(ρY (x), ρY ′(x)).

Y is called π-admissible if Y is closed and whenever (xn)n and (tn)n are such
that tn →∞ and xnπ [0, tn] ⊂ Y for all n ∈ N, then the sequence (xnπtn)n has a
convergent subsequence. We say that π does not explode in Y if whenever x ∈ X
and xπt ∈ Y as long as xπt is defined, then xπt is defined for all t ∈ [0,∞[. Y is
called strongly π-admissible if Y is π-admissible and π does not explode in Y .

Let N and Y be subsets of X. The set Y is called N -positively invariant if
whenever x ∈ Y , t ≥ 0 are such that xπ [0, t] ⊂ N , then xπ [0, t] ⊂ Y .

Let N , Y1 and Y2 be subsets of X. The set Y2 is called an exit ramp for N
within Y1 if whenever x ∈ Y1 and xπt′ 6∈ N for some t′ ∈ [0,∞[, then there exists
a t0 ∈ [0, t′] such that xπ [0, t0] ⊂ N and xπt0 ∈ Y2.

If Y1 and Y2 are subsets of X then Y2 is called an exit ramp for Y1 if Y2 is
an exit ramp for N within Y1, where N = Y1.

Definition 2.2. Let B ⊂ X be a closed set and x ∈ ∂B. The point x is
called a strict egress (respectively strict ingress, respectively bounce-off ) point
of B, if for every solution σ: [−δ1, δ2] → X of π through x, with δ1 ≥ 0 and
δ2 > 0, the following properties hold:

(a) There exists an ε2 ∈ ]0, δ2[ such that σ(t) 6∈ B (respectively σ(t) ∈
IntX(B), respectively σ(t) 6∈ B), for t ∈ ]0, ε2].

(b) If δ1 > 0, then there exists an ε1 ∈ ]0, δ1[ such that σ(t) ∈ IntX(B)
(respectively σ(t) 6∈ B, respectively σ(t) 6∈ B), for t ∈ [−ε1, 0[.

The set of all strict egress (respectively strict ingress, respectively bounce-
off) points of B is denoted by Be (respectively Bi, respectively Bb). Moreover,
we call B− := Be ∪ Bb the exit set of B and B+ := Bi ∪ Bb the entrance set
of B. B is called an isolating block , if ∂B = Be ∪ Bi ∪ Bb and B− is closed. If
B is also an isolating neighbourhood of an invariant set S, then we say that B
is an isolating block for S.

If B is an isolating block then (B,B−) is an example of an index pair in B.
More generally, we have the following definition.

Definition 2.3. Let N be closed in X. A pair (N1, N2) is called an index
pair in N (relative to π) if:

(a) N1 and N2 are closed and N -positively invariant subsets of N ;
(b) N2 is an exit ramp for N within N1;
(c) Invπ(N) is closed and Invπ(N) ⊂ IntX(N1 \N2).
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Definition 2.4. A pair (N1, N2) is called a Franzosa–Mischaikow-index pair
(or FM-index pair) for (π, S) if:

(a) N1 andN2 are closed subsets ofX withN2 ⊂ N1 andN2 isN1-positively
invariant;

(b) N2 is an exit ramp for N1;
(c) S is closed, S ⊂ IntX(N1 \ N2) and S is the largest invariant set in

ClX(N1 \N2);

Proposition 2.5 (cf. [12]). Let (N1, N2) be a pair of closed subsets of X
with N2 ⊂ N1.

(a) If S is an isolated invariant set, N1 is an isolating neighbourhood of S
and (N1, N2) is an index pair in N1, then (N1, N2) is an FM-index pair
for (π, S).

(b) If (N1, N2) is an FM-index pair for (π, S) and N is an isolating neigh-
bourhood of S with N1 \ N2 ⊂ N , then N1 ∩ N is an isolating neigh-
bourhood of S and (N1 ∩N,N2 ∩N) is an index pair in N1 ∩N .

Proposition 2.6. Let N1, N2 and N be closed subsets of X with N1 \N2 ⊂
N . Then the inclusion induced map

j: (N1 ∩N)/(N2 ∩N) → N1/N2

is an isomorphism in the category of pointed spaces.

Proof. Proposition I.6.2 in [21] implies that j is a continuous map. More-
over, there is an inclusion induced map (in the sense of Definition I.6.1 in [21])
k:N1/N2 → (N1 ∩ N)/(N2 ∩ N) which is also continuous (by Proposition I.6.2
in [21]).

We need to show that k is the inverse of j. Let z ∈ (N1 ∩ N)/(N2 ∩ N).
If z = [x], where x ∈ (N1 ∩ N) \ (N2 ∩ N), then j(z) = [x] ∈ N1/N2 and so
k(j(z)) = [x] ∈ (N1 ∩N)/(N2 ∩N). Otherwise, z = [N2 ∩N ] and j(z) = [N2].
Thus, k(j(z)) = [N2 ∩N ], since k and j are base-point preserving maps.

Let z ∈ N1/N2. If z = [x], where x ∈ N1 \ N2, then k(z) = [x] ∈ (N1 ∩
N)/(N2 ∩N) and x ∈ (N1 ∩N) \ (N2 ∩N). Therefore, j(k(z)) = [x] ∈ N1/N2.
Otherwise, z = [N2] and k(z) = [N2 ∩N ] and so j(k(z)) = [N2]. �

Definition 2.7. Let S be a compact invariant set and (A,A∗) be an attr-
actor-repeller pair in S, relative to π. A pair (B1, B2) is called a block pair (for
(π, S,A,A∗)) if B1 is an isolating block for A∗, B2 is an isolating block for A,
B := B1 ∪B2 is an isolating block for S and B1 ∩B2 ⊂ B−

1 ∩B+
2 .

If (B1, B2) is a block pair then (B,B2 ∪ B−, B−) is an example of an FM-
index triple:
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Definition 2.8. Let S be a compact invariant set and (A,A∗) be an attr-
actor-repeller pair in S relative to π. A triple (N1, N2, N3) with N3 ⊂ N2 ⊂ N1

is called an FM-index triple (for (π, S,A,A∗)) if (N1, N3) is an FM-index pair
for (π, S) and (N2, N3) is an FM-index pair for (π,A).

Proposition 2.9 (cf. [12]). Let (N1, N2, N3) be an FM-index triple for
(π, S,A,A∗). Then (N1, N2) is an FM-index pair for (π,A∗).

For the rest of this paper we fix a (commutative) ring Γ and a Γ-module G.
Given a chain complex C, we denote by Hq(C), q ∈ Z, the homology of C with
coefficients in G.

Recall (cf. [11]) that a sequence

C1
i // C2

p
// C3

of chain maps is called weakly exact if ker i = 0, p ◦ i = 0 and the map
Hq(ρ):Hq(C2/ im i) → Hq(C3) is an isomorphism for each q ∈ Z. Here, the
map ρ:C2/ im i → C3 is the (uniquely determined) chain map with ρ ◦ Q = p,
where Q:C2 → C2/ im i is the quotient map.

Given a weakly exact sequence

C1
i // C2

p
// C3

and q ∈ Z, define ∂̂q:Hq(C3) → Hq−1(C1) by ∂̂q := ∂∗q ◦ Hq(ρ)−1, where
∂∗q:Hq(C2/ im i) → Hq−1(C1) is the connecting homomorphism in the long exact
sequence induced by the short exact sequence

0 // C1
i // C2

Q
// C2/ im i // 0.

Using elementary homology theory we obtain the following result.

Proposition 2.10 (cf. [11]). Given a weakly exact sequence

C1
i // C2

p
// C3

the corresponding homology sequence

// Hq(C1)
Hq(i)

// Hq(C2)
Hq(p)

// Hq(C3)
b∂q

// Hq−1(C1) //

is exact. Moreover, given a commutative diagram

C1
i //

f1

��

C2
p

//

f2

��

C3

f3

��

C̃1
ei

// C̃2
ep

// C̃3
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of chain maps with weakly exact rows, the induced long homology ladder

// Hq(C1)
Hq(i)

//

Hq(f1)

��

Hq(C2)
Hq(p)

//

Hq(f2)

��

Hq(C3)
b∂q

//

Hq(f3)

��

Hq−1(C1) //

Hq−1(f1)

��

// Hq(C̃1)
Hq(ei)

// Hq(C̃2) Hq(ep)
// Hq(C̃3)

f

b∂q

// Hq−1(C̃1) //

is commutative.

If Y is a topological space, then ∆(Y ) denotes the singular chain complex
(see [23]). If (Y,B) is a topological pair, we define

C(Y/B) = C(Y/B, {[B]}) := ∆(Y/B)/∆({[B]}).

As usual, we set
Hq(Y/B) := Hq(C(Y/B)), q ∈ Z.

Thus,

(2.3) for q ∈ Z, Hq(Y/B) is the q-th singular homology group of the pair
(Y/B, {[B]}), with coefficients in G.

Proposition 2.11 (cf. [11] and [12]). Let (N1, N2, N3) be an FM-index triple
for (π, S,A,A∗) with ClX(N1 \ N3) strongly π-admissible. Then the inclusion
induced sequence

(2.4) N2/N3
i // N1/N3

p
// N1/N2

of pointed spaces induces a weakly exact sequence

C(N2/N3)
i // C(N1/N3)

p
// C(N1/N2)

of chain maps.

Propositions 2.10 and 2.11 thus imply the following result.

Proposition 2.12. Let (N1, N2, N3) be an FM-index triple for (π, S,A,A∗)
with ClX(N1 \N3) strongly π-admissible. Then the long sequence

(2.5) // Hq(N2/N3)
Hq(i)

// Hq(N1/N3)
Hq(p)

// Hq(N1/N2)
b∂q

// Hq−1(N2/N3) //

induced by (2.4) is exact.

There is a similar result for Alexander–Spanier cohomology [23]. More pre-
cisely, let Hq, q ∈ Z, denote the q-th Alexander–Spanier cohomology functor
with values in G. If Y and B are closed in X and B ⊂ Y , then the strong
excision property of Alexander–Spanier cohomology implies that the quotient
map

Q = QY,B : (Y,B) → (Y/B, {[B]})
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induces a module isomorphism

Hq(Q):Hq(Y/B, {[B]}) → Hq(Y,B), q ∈ Z.

Again we set Hq(Y/B) := Hq(Y/B, {[B]}) for short. In other words,

(2.6) for q ∈ Z, Hq(Y/B) is the q-th Alexander–Spanier cohomology group
of the pair (Y/B, {[B]}), with coefficients in G.

Therefore, given a triple (N1, N2, N3) of closed sets in X with N1 ⊃ N2 ⊃ N3

we can define, for each q ∈ Z, the map

∂̂q:Hq+1(N2/N3) → Hq(N1/N2)

by

∂̂q = Hq(QN1,N2)
−1 ◦ ∂q∗ ◦Hq+1(QN2,N3),

where ∂q∗:Hq+1(N2, N3) → Hq(N1, N2) is the connecting homomorphism of the
exact cohomology sequence for the triple (N1, N2, N3).

From the cohomology sequence of space triples we thus obtain the following
result.

Proposition 2.13. Let (N1, N2, N3) be a triple of closed sets in X with
N1 ⊃ N2 ⊃ N3. Then inclusion induced sequence

N2/N3
i // N1/N3

p
// N1/N2

induces a long exact cohomology sequence

Hq(N2/N3)oo Hq(N1/N3)
Hq(i)
oo Hq(N1/N2)

Hq(p)
oo Hq+1(N2/N3)

b∂q
oo oo

3. Categories of connected simple systems

In this section, simplifying a little the approach by Kurland [16], we will
define categories of connected simple subsystems of a given category. We will
also define images of connected simple systems under functors with values in a
category of modules. These notions are required for a precise development of
the categorial Conley–Morse index and the long exact (co)homology sequence of
an attractor-repeller pair.

Let K be a fixed category. The letters C, C′ and C′′ will denote subcategories
of K which are connected simple systems.

Given objects A, B in C and objects A′, B′ in C′ and α ∈ MorK(A,A′),
β ∈ MorK(B,B′) we say that α is related to β in K relative to (C, C′) (and we
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write α%C,C′β or just α%β) if and only if the following diagram commutes (in K):

A
α //

f

��

A′

f ′

��

B
β

// B′

Here, f (resp. f ′) are the unique elements of MorC(A,B) (resp. MorC′(A′, B′)).
Since f and f ′ are isomorphisms (in K), it follows that α%β implies β%α. More-
over, the diagram

A
α //

IdA

��

A

IdA

��

A α
// A

commutes, so α%α. If the diagrams

A
α //

f

��

A′

f ′

��

and

B
β

//

g

��

B′

g′

��

B
β

// B′ C γ
// C ′

commute, then so does the diagram

A
α //

g◦f
��

A′

g′◦f ′

��

C γ
// C ′

Thus α%β and β%γ imply that α%γ. It follows that % = %C,C′ is an equivalence
relation on the set

(3.1) Ω(C, C′) :=
⋃
{MorK(A,A′) | A ∈ Obj(C) and A′ ∈ Obj(C′)}.

Given α ∈ Ω(C, C′), let [α] = [α]%C,C′ be the equivalence class of α.
We define a category [K] whose objects are all the subcategories of K which

are connected simple systems. Given objects C and C′ in K, let Mor[K](C, C′) be
the set of all ζ for which there is an α ∈ Ω(C, C′) with ζ = [α].

(In order to make the morphism sets mutually disjoint, as is required in
the definition of a category, one should more precisely consider ordered triples
(ζ, C, C′) rather than just ζ to be morphisms from C to C′. We shall not bother,
however.)

Given ζ ∈ Mor[K](C, C′) and ζ ′ ∈ Mor[K](C′, C′′) let α:A → A′ and α′:C ′ →
A′′ be such that ζ = [α] and ζ ′ = [α′]. Let f ′ be the unique element of
MorC′(A′, C ′) and define ζ ′ ◦ ζ := [α′ ◦ f ′ ◦ α]. We claim that this definition
is independent of the choice of α and α′. In fact, if β:B → B′ and β′:D′ → B′′
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are such that ζ = [β] and ζ ′ = [β′] and g:B′ → D′ is the unique element of
MorC′(B′, D′), then the following diagram commutes:

A
α //

��

A′

��

f ′
// C ′

��

α′ // A′′

��

B
β

// B′
g′

// D′
β′

// B′′.

Here, the vertical arrows are the unique morphisms in the respective connected
simple systems. It follows that (α′ ◦ f ′ ◦α)%C,C′′(β′ ◦ g′ ◦ β) and so [α′ ◦ f ′ ◦α] =
[β′ ◦ g′ ◦ β] which proves our claim.

Thus the composition ζ ◦ ζ ′ is well-defined and is clearly associative. Indeed,
the consideration of sequences of the form

A
α // A′

f ′
// C ′

α′ // A′′
f ′′

// C ′′
α′′ // A′′′

implies that (α′′ ◦ f ′′ ◦ α′) ◦ f ′ ◦ α = α′′ ◦ f ′′ ◦ (α′ ◦ f ′ ◦ α). Thus, if ζ = [α],
ζ ′ = [α′] and ζ ′′ = [α′′], we have

(ζ ′′ ◦ ζ ′) ◦ ζ = [α′′ ◦ f ′′ ◦ α′] ◦ [α] = [(α′′ ◦ f ′′ ◦ α′) ◦ f ′ ◦ α]

and
ζ ′′ ◦ (ζ ′ ◦ ζ) = [α′′] ◦ [α′ ◦ f ′ ◦ α] = [α′′ ◦ f ′′ ◦ (α′ ◦ f ′ ◦ α)].

Hence, (ζ ′′ ◦ ζ ′) ◦ ζ = ζ ′′ ◦ (ζ ′ ◦ ζ). Moreover, the commutativity of the diagram

A
IdA //

f

��

A

f

��

B
IdB

// B,

where f is the unique element of MorC(A,B), shows that IdA % IdB and so [IdA] =
[IdB ] for any two objects in C. We set IdC := [IdA], where A is any object in C.
Clearly whenever ζ ∈ Mor[K](C, C′), then there are objects A and A′ in C and C′

respectively, such that ζ = [α], where α ∈ MorK(A,A′). Thus IdA ◦α = α and
α ◦ IdA = α so IdC′ ◦ζ = ζ and ζ ◦ IdC = ζ. It follows that IdC is an identity
for the composition in [K] and so [K] is, indeed, a category, which we term the
category of connected simple systems in K.

If C, C′ are objects in [K] and α ∈ Ω(C, C′) (with Ω(C, C′) being defined
in (3.1)), then ζ := [α]%C,C′ is called the morphism in [K] induced by α, relative
to (C, C′).

Remark. The present definition of the category [K], while conceptually
(hopefully!) simpler, is equivalent to the definition of the category CSS(K)
given in [16] in the sense that [K] and CSS(K) are isomorphic categories.
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Now, suppose Φ is a covariant functor from K to the category Mod(Γ) of
modules over the (commutative) ring Γ. Let C be an object of [K]. Let S = SC
be the disjoint union of all Φ(A), where A is an arbitrary object of C. Thus,
formally we have

S = SC :=
⋃

A∈Obj(C)

Φ(A)× {A}.

On S = SC define a relation R = RC as follows:

(x,A)R(y,B) if and only if y = Φ(f)x, where f is the unique mor-
phism in C from A to B.

Clearly, R is an equivalence relation on S. Let S/R be the set of equivalence
classes of R and Q = QC :S → S/R given by

Q((x,A)) = [(x,A)]R for (x,A) ∈ S

be the canonical quotient map. In the sequel we write Φ̂(C) := S/R.
For each A ∈ Obj(C), the map QA = QC,A: Φ(A) → Φ̂(C) given by QA(x) =

Q((x,A)) for x ∈ Φ(A) is easily seen to be bijective. Moreover, if (x,A)R(y,B)
and (x̃, A)R(ỹ, B), then (x +A x̃, A)R(y +B ỹ, B) and (λ ·A x,A)R(λ ·B y,B)
for every λ ∈ Γ. Here, for every C ∈ Obj(C), +C (resp. ·C) is the addition
(resp. scalar multiplication) in the Γ-module Φ(C). Therefore, there is a unique
addition + = +C and scalar multiplication · = ·C in Φ̂(C) such that for every
A ∈ Obj(C), the map QA is a Γ-module isomorphism. The Γ-module Φ̂(C) is
called the image module of C under Φ.

Now let C and C′ be objects of [K] and A ∈ Obj(C), A′ ∈ Obj(C′) be arbi-
trary. If F is a morphism in Mod(Γ) from Φ(A) to Φ(A′), then define the map
〈F 〉: Φ̂(C) → Φ̂(C′) by

〈F 〉 := QC′,A′ ◦ F ◦QC,A
−1.

Then 〈F 〉 is a Γ-module homomorphism. Moreover,

Proposition 3.1. Suppose A, B ∈ Obj(C), A′, B′ ∈ Obj(C′). If the dia-
gram

Φ(A) F //

Φ(f)

��

Φ(A′)

Φ(f ′)

��

Φ(B)
G

// Φ(B′)

commutes, then 〈F 〉 = 〈G〉, where f (resp. f ′) is the unique morphism in C (resp.
C′) from A to B (resp. from A′ to B′).

Proof. Let η ∈ Φ̂(C) be arbitrary. Then there exist an x ∈ Φ(A) and a
y ∈ Φ(B) such that η = Q ((x,A)) = Q ((y,B)). It follows that y = Φ(f)x. Now

〈F 〉(η) = (QA′ ◦ F ◦QA
−1)(η) = QA′Fx
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and

〈G〉(η) = (QB′ ◦G ◦QB
−1)(η) = QB′(Gy) = QB′G(Φ(f)x) = QB′(Φ(f ′)Fx).

Notice that QB′(Φ(f ′)Fx) = Q ((Φ(f ′)Fx,B′)) = Q ((Fx,A′)) = QA′(Fx).
This implies that 〈F 〉(η) = 〈G〉(η). The proposition is proved. �

The following result is obvious.

Proposition 3.2. Let C, C′ and C′′ be objects of [K] and A ∈ Obj(C),
A′ ∈ Obj(C′), A′′ ∈ Obj(C′′) be arbitrary. Let F be a morphism in Mod(Γ) from
Φ(A) to Φ(A′) and F ′ be a morphism in Mod(Γ) from Φ(A′) to Φ(A′′) then

〈F ′ ◦ F 〉 = 〈F ′〉 ◦ 〈F 〉.

If (F, F ′) is exact, i.e., kerF ′ = imF , then so is (〈F 〉, 〈F ′〉).

We call the assignment F 7→ 〈F 〉 the 〈 · 〉-operation (associated with Φ).

4. The categorial Conley–Morse index

In this section we will extend the notion of the categorial Morse index
from [20] in the sense that index pairs (and quasi-index pairs) will be replaced
by FM-index pairs.

Let K̃ be the homotopy category of pointed spaces. If π is a local semiflow
defined in a metric space X and S is an isolated π-invariant set admitting a
strongly π-admissible isolating neighbourhood, then we define a subcategory
C(S) = C(π, S) as follows. The objects of C(S) are the pointed spaces (E, p) =
(N1/N2, [N2]), where (N1, N2) is an FM-index pair for (π, S) and ClX(N1 \N2)
is strongly π-admissible.

Given two objects (E, p) and (Ẽ, p̃) in C(S), Proposition 2.1 implies that
there are unique FM-index pairs (N1, N2) and (Ñ1, Ñ2) for (π, S) with ClX(N1 \
N2) and ClX(Ñ1 \ Ñ2) strongly π-admissible such that (E, p) = (N1/N2, [N2])
and (Ẽ, p̃) = (Ñ1/Ñ2, [Ñ2]). Let N and Ñ be arbitrary strongly π-admissible
isolating neighbourhoods of S with N1 \N2 ⊂ N and Ñ1 \ Ñ2 ⊂ Ñ (e.g. we may
take N = ClX(N1 \N2) and Ñ = ClX(Ñ1 \ Ñ2)). Then Proposition 2.5 implies
that (N1 ∩ N,N2 ∩ N) and (Ñ1 ∩ Ñ , Ñ2 ∩ Ñ) are index pairs in N1 ∩ N and
Ñ1∩ Ñ , respectively. Therefore, there is a unique morphism τ :N1/N2 → Ñ1/Ñ2

in K̃ making the following diagram commutative in K̃.

(4.1)

(N1 ∩N)/(N2 ∩N)
β

//

α

��

(Ñ1 ∩ Ñ)/(Ñ2 ∩ Ñ)

eα

��

N1/N2 τ
// Ñ1/Ñ2
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Here, α and α̃ are the homotopy classes of the inclusion induced maps defined
in Proposition 2.6 and β is the unique morphism from (N1 ∩ N)/(N2 ∩ N) to
(Ñ1∩Ñ)/(Ñ2∩Ñ) in the categorial Conley–Morse index I(π, S) as defined in [19]
or [21].

Proposition 4.1. The definition of τ is independent of the choice of the
sets N and Ñ .

Proof. Let N ′ and Ñ ′ be some other strongly π-admissible isolating neigh-
bourhoods of S with N1 \N2 ⊂ N ′ and Ñ1 \ Ñ2 ⊂ Ñ ′.

First we will assume that N ′ ⊂ N and Ñ ′ ⊂ Ñ . Then we have the following
diagram in K̃:

(N1 ∩N ′)/(N2 ∩N ′)
β′

//

γ

��

(Ñ1 ∩ Ñ ′)/(Ñ2 ∩ Ñ ′)

eγ

��

(N1 ∩N)/(N2 ∩N)
β

//

α

��

(Ñ1 ∩ Ñ)/(Ñ2 ∩ Ñ)

eα

��

N1/N2 τ
// Ñ1/Ñ2

Here, γ and γ̃ are inclusion induced maps and β′ is the unique morphism from
(N1 ∩ N ′)/(N2 ∩ N ′) to (Ñ1 ∩ Ñ ′)/(Ñ2 ∩ Ñ ′) in the categorial Conley–Morse
index I(π, S). Notice that β, γ and γ̃ are also morphisms in I(π, S). Therefore,
the upper diagram is commutative. Thus, the following diagram also commutes.

(N1 ∩N ′)/(N2 ∩N ′)
β′

//

α◦γ

��

(Ñ1 ∩ Ñ ′)/(Ñ2 ∩ Ñ ′)

eα◦eγ
��

N1/N2 τ
// Ñ1/Ñ2

Therefore, we have proved the proposition in the case N ′ ⊂ N and Ñ ′ ⊂ Ñ . The
general case can be reduced to this particular one by considering the intersections
N ′ ∩N and Ñ ′ ∩ Ñ . This completes the proof. �

Using Proposition 4.1 we now define the set of morphisms of C(π, S) from
(E, p) = (N1/N2, [N2]) to (Ẽ, p̃) = (Ñ1/Ñ2, [Ñ2]) as the singleton {τ} where τ is
defined in (4.1). The morphism composition in C(π, S) is that of K̃. With these
definitions the following result holds.

Proposition 4.2. C(π, S) is a subcategory of K̃ and a connected simple
system.

Proof. Let (E, p), (Ẽ, p̃) and (E′, p′) be objects in C(π, S). It follows
from Proposition 2.1 that there are unique FM-index pairs (N1, N2), (Ñ1, Ñ2)
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and (N ′
1, N

′
2) for (π, S) with N = ClX(N1 \ N2), Ñ = ClX(Ñ1 \ Ñ2) and

N ′ = ClX(N ′
1 \ N ′

2) strongly π-admissible isolating neighbourhoods such that
(E, p) = (N1/N2, [N2]), (Ẽ, p̃) = (Ñ1/Ñ2, [Ñ2]) and (E′, p′) = (N ′

1/N
′
2, [N

′
2]).

The following diagram

(N1 ∩N)/(N2 ∩N)
β

//

α

��

(Ñ1 ∩ Ñ)/(Ñ2 ∩ Ñ)

eα

��

eβ
// (N ′

1 ∩N ′)/N ′
2 ∩N ′)

α′

��

N1/N2 τ
// Ñ1/Ñ2

eτ
// N ′

1/N
′
2

shows that the composite of two morphisms in C(π, S) is also a morphism in
C(π, S). Moreover, the commutative diagram

(N1 ∩N)/(N2 ∩N) Id //

α

��

(N1 ∩N)/(N2 ∩N)

α

��

N1/N2
Id

// N1/N2

shows that the identity morphism Id(E,p) of K̃ lies in C(π, S) for every object
(E, p) of C(π, S). Therefore, we have shown that C(π, S) is a subcategory of K̃.
Since for each two objects (E, p) and (Ẽ, p̃) of C(π, S) there is exactly one mor-
phism in C(π, S) from (E, p) to (Ẽ, p̃), we have that C(π, S) is a connected simple
system. �

We can now make the following definition.

Definition 4.3. Given an isolated π-invariant set S admitting a strongly π-
admissible isolating neighbourhood, set Hq(π, S) := Φ̂(C(π, S)), where Φ = Hq,
q ∈ Z, the q-th singular homology functor with coefficients in G (cf. (2.3)).
The graded module (Hq(π, S))q∈Z is called the homology Conley index of S. If
Φ = Hq, where Hq, q ∈ Z, denotes the q-th Alexander–Spanier cohomology
functor (cf. (2.6)), then (Hq(π, S))q∈Z, where Hq(π, S) := Φ̂(C(π, S)), q ∈ Z, is
called the cohomology Conley index of S.

In the remaining part of this section we will show that certain inclusion
induced maps in K̃ between objects of C(π, S) are morphisms of C(π, S).

The first result is almost obvious.

Proposition 4.4. Let (N1, N2) and (Ñ1, Ñ2) be FM-index pairs for (π, S)
with

(4.2) N1 \N2 = Ñ1 \ Ñ2

such that
N := ClX(N1 \N2) = ClX(Ñ1 \ Ñ2)
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is strongly π-admissible. Then the inclusion induced map

τ :N1/N2 → Ñ1/Ñ2

in K̃ lies in MorC(π,S)((N1/N2, [N2]), (Ñ1/Ñ2, [Ñ2])) and so is an isomorphism
in K̃.

Proof. By (4.2) there is a commutative diagram

(4.3)

(N1 ∩N)/(N2 ∩N)
β

//

α

��

(Ñ1 ∩N)/(Ñ2 ∩N)

eα

��

N1/N2 τ
// Ñ1/Ñ2

and the map β is a morphism of I(π, S). (Cf. Definition 9.2 in [21].) The
proposition now follows from the definition of C(π, S). �

The next proposition is harder to prove.

Proposition 4.5. Let (N1, N2) and (Ñ1, Ñ2) be FM-index pairs for (π, S)
such that ClX(N1 \ N2) and ClX(Ñ1 \ Ñ2) are strongly π-admissible. Assume
that (N1, N2) ⊂ (Ñ1, Ñ2). Then the inclusion induced map N1/N2 → Ñ1/Ñ2

in K̃ lies in MorC(π,S)((N1/N2, [N2]), (Ñ1/Ñ2, [Ñ2])) and so is an isomorphism
in K̃.

The rest of this section is devoted to the proof of Proposition 4.5.
Let N , Y be subsets of X such that Y ⊂ N . For s ≥ 0, define

(4.4) Y −s = Y −s(N) := {x ∈ X | there is an s′, 0 ≤ s′ ≤ s, such that
xπs′ is defined, xπ [0, s′] ⊂ N and xπs′ ∈ Y }.

Proposition 4.6. Let s ∈ ]0,∞[ and (N1, N2) be an FM-index pair for
(π, S) such that π does not explode in N1 \N2. Then (N1, N

−s
2 (N1)) is an FM-

index pair for (π, S).

Proof. We need to prove that the conditions of Definition 2.4 are satisfied
for the pair (N1, N

−s
2 (N1)). We only verify that

(4.5) N−s
2 (N1) is a closed set.

The other conditions are trivial to check. To prove (4.5) let (xn)n be a sequence
in N−s

2 (N1) such that xn → x as n→∞. Since xn ∈ N−s
2 (N1) for all n ∈ N, it

follows that for each n ∈ N, there exists an s′n ∈ [0, s] such that xnπ[0, s′n] ⊂ N1

and xnπs
′
n ∈ N2. Since (s′n)n is a bounded sequence, without loss of generality,

we can assume that there exists an s′ ∈ [0, s] such that s′n → s′ as n→∞. We
need to show that x ∈ N−s

2 (N1). Now this will certainly be the case if xπs′ is
defined.
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First suppose that ρN1(x) = 0. It follows that there exists a τ ∈ ]0, s] such
that xπτ is defined and xπτ /∈ N1. Since xn → x as n → ∞, it follows that
there exists an nτ ∈ N such that xnπτ is defined and xnπτ /∈ N1 for all n ≥ nτ .
Hence sn < τ for all n ≥ nτ . Hence s′ ≤ τ and so xπs′ is defined.

Assume now that ρN1(x) > 0. We have two cases.
First suppose that xπ [0, ρN1(x)[ ⊂ N1 \ N2. Since π does not explode in

N1 \N2, it follows that xπρN1(x) is defined. Moreover, there exists a δ > 0 such
that xπ(ρN1(x) + δ) is defined and xπ(ρN1(x) + δ) /∈ N1. Hence s′n < ρN1(x) + δ

for all n sufficiently large and so s′ ≤ ρN1(x) + δ. This implies that xπs′ is
defined.

If xπ [0, ρN1(x)[ 6⊂ N1\N2, there exists a t0 ∈ [0, ρN1(x)[ such that xπt0 ∈ N2.
If t0 ≤ s then x ∈ N−s

2 (N1) and we are done. If t0 > s ≥ s′ then xπs′ is defined
and we are done again.

This proves that N−s
2 (N1) is closed. �

Proposition 4.7. Let S 6= ∅ be an isolated invariant set and N be a strongly
π-admissible isolating neighbourhood of S. Then there is a δ0 ∈ ]0,∞[ and for
all δ ∈ ]0, δ0], there is an isolating block Bδ for S with Bδ ⊂ N such that

(a) Bδ2 ⊂ Bδ1 , (Bδ2)
− ⊂ (Bδ1)

− for all δ2, δ1 ∈ ]0, δ0] with δ2 < δ1;
(b) whenever (δn)n and (xn)n are sequences such that δn → 0+ as n → ∞

and xn ∈ Bδn
for all n ∈ N, then there is a subsequence of (xn)n that

converges to an element of Inv−π (N).

Proof. The proposition follows from the proof of Theorem I.5.1 in [21]. �

Lemma 4.8. Let (N1, N2) and (Ñ1, Ñ2) be FM-index pairs for (π, S) such
that ClX(N1 \N2) and ClX(Ñ1 \ Ñ2) are strongly π-admissible. Then there exist
an s ∈ [0,∞[, an isolating neighbourhood L1 of S and an index pair (L1, L2) in
L1 such that

(L1, L2) ⊂ (N1, N
−s
2 ) and (L1, L2) ⊂ (Ñ1, Ñ

−s
2 ),

where N−s
2 = N−s

2 (N1) and Ñ−s
2 = Ñ−s

2 (Ñ1).

Proof. If S = ∅, define L1 = L2 = ∅. Let us assume that S 6= ∅. Define
N := ClX(N1 \N2)∩ClX(Ñ1 \ Ñ2). Thus, N is a strongly π-admissible isolating
neighbourhood of S. Let δ0 ∈ ]0,∞[ and (Bδ)δ∈]0,δ0] be as in Proposition 4.7.
We claim that

(4.6) there are an s0 ∈ ]0,∞[ and a δ0 ∈ ]0, δ0] such that (Bδ)− ⊂
N−s

2 (N1) ∩ Ñ−s
2 (Ñ1) for all s ∈ [s0,∞[ and δ ∈ ]0, δ0].

Suppose that (4.6) does not hold. Then there exist sequences (sn)n, (δn)n and
(xn)n such that sn → ∞ and δn → 0+ as n → ∞ and for each n ∈ N, xn ∈
(Bδn

)− \ (N−sn
2 (N1) ∩ Ñ−sn

2 (Ñ1)). Proposition 4.7 implies that there exists a
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subsequence of (xn)n, denoted again by (xn)n, and an x ∈ Inv−π (N) such that
xn → x as n→∞. It follows that x ∈ Inv−π (N1) ∩ Inv−π (Ñ1).

As xn /∈ N−sn
2 (N1)∩ Ñ−sn

2 (Ñ1), it follows that for each n ∈ N, xnπ [0, sn] ⊂
N1 \ N2 or xnπ [0, sn] ⊂ Ñ1 \ Ñ2. Since sn → ∞ as n → ∞, this implies that
x ∈ Inv+

π (N1)∪Inv+
π (Ñ1) (cf. Theorem I.4.5 in [21]) and so x ∈ S. However, xn ∈

(Bδn)− ⊂ (Bδ0)
− and this implies x ∈ S ∩ (Bδ0)

− = ∅ which is a contradiction.
This proves (4.6).

Fix an s ∈ [s0,∞[ and a δ ∈ ]0, δ0]. Define

L1 := Bδ and L2 := (Bδ)−.

Thus, L1 is an isolating neighbourhood of S and (L1, L2) is an index pair in L1.
Moreover, L1 ⊂ N and so, L1 ⊂ N1 and L1 ⊂ Ñ1. Inclusion (4.6) implies that
L2 ⊂ N−s

2 and L2 ⊂ Ñ−s
2 . The proof is complete. �

Proof of Proposition 4.5. Define N := ClX(N1\N2) and Ñ := ClX(Ñ1\
Ñ2). Proposition 2.5 implies that (N1 ∩N,N2 ∩N) is an index pair in N1 ∩N
and (Ñ1 ∩ Ñ , Ñ2 ∩ Ñ) is an index pair in Ñ1 ∩ Ñ and so (N1 ∩N,N2 ∩N) and
(Ñ1 ∩ Ñ , Ñ2 ∩ Ñ) are FM-index pairs for (π, S).

Lemma 4.8 implies that there are an s ∈ [0,∞[, an isolating neighbourhood
L1 of S and an index pair (L1, L2) in L1 such that

(L1, L2) ⊂ (N1 ∩N, (N2 ∩N)−s) and (L1, L2) ⊂ (Ñ1 ∩ Ñ , (Ñ2 ∩ Ñ)−s),

where (N2∩N)−s = (N2∩N)−s(N1∩N) and (Ñ2∩Ñ)−s = (Ñ2∩Ñ)−s(Ñ1∩Ñ).
Consider the following diagram in K̃:

L1/L2
α1 //

Id

��

(N1 ∩N)/(N2 ∩N)−s α2 // (N1 ∩N)/(N−s
2 ∩N)

α5 //

βs

��

N1/N
−s
2

τs

��

L1/L2 α3
// (Ñ1 ∩ Ñ)/(Ñ2 ∩ Ñ)−s

α4
// (Ñ1 ∩ Ñ)/(Ñ−s

2 ∩ Ñ) α6
// Ñ1/Ñ

−s
2

where, N−s
2 = N−s

2 (N1), Ñ−s
2 = Ñ−s

2 (Ñ1) and the morphisms τs and αi, i ∈
{1, . . . , 6}, are inclusion induced maps and βs is the unique morphism from
(N1 ∩ N)/(N−s

2 ∩ N) to (Ñ1 ∩ Ñ)/(Ñ−s
2 ∩ Ñ) lying in I(π, S). Since all the

morphisms in the left rectangle lie in I(π, S), the left rectangle commutes and
all the maps are isomorphisms. Hence

(4.7) α6 ◦ βs = α6 ◦ α4 ◦ α3 ◦ α−1
1 ◦ α−1

2 .

Moreover, the full rectangle, obtained by taking out βs, is inclusion induced and
commutes. Thus

(4.8) τs ◦ α5 ◦ α2 ◦ α1 = α6 ◦ α4 ◦ α3.
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Equalities (4.7) and (4.8) imply that α6 ◦ βs = τs ◦α5. In other words, the right
rectangle also commutes.

By the definition of C(π, S) we thus see that the inclusion induced morphism
τs is a morphism in C(π, S). Now consider the following diagram of inclusion
induced maps:

N1/N2
α //

γ

��

N1/N
−s
2

τs

��

Ñ1/Ñ2
eα

// Ñ1/Ñ
−s
2

It follows that this diagram commutes. If we show that α and α̃ are morphisms in
C(π, S), then it follows that γ is also a morphism in C(π, S) and the proposition
is proved. To show that α is a morphism in C(π, S) consider the diagram

(N1 ∩N)/(N2 ∩N) //

��

(N1 ∩N)/(N−s
2 ∩N)

��

N1/N2
// N1/N

−s
2

Since N1 \ N−s
2 ⊂ N1 \ N2 ⊂ N , it follows from the definition of C(π, S) and

Proposition 4.1 that α is a morphism in C(π, S). Analogously, we prove that α̃
is a morphism in C(π, S). The proof is complete. �

5. Attractor-repeller pairs
and long exact sequences in (co)homology

For the rest of this section let S be a compact π-invariant set and (A,A∗) be
an attractor-repeller pair of S relative to π.

Let (N1, N2, N3) be an FM-index triple for (π, S,A,A∗) such that ClX(N1 \
N3) strongly π-admissible. Then, by Propositions 2.12 and 2.13, the inclusion
induced sequence

N2/N3
i // N1/N3

p
// N1/N2

of pointed spaces induces the long exact sequences

// Hq(N2/N3)
Hq(i)

// Hq(N1/N3)
Hq(p)

// Hq(N1/N2)
b∂q

// Hq−1(N2/N3) //

and

Hq(N2/N3)oo Hq(N1/N3)
Hq(i)
oo Hq(N1/N2)

Hq(p)
oo Hq+1(N2/N3)

b∂q
oo oo

By Proposition 3.2 and Definition 4.3 we obtain the long exact sequences

(5.1) // Hq(π,A)
〈Hq(i)〉

// Hq(π, S)
〈Hq(p)〉

// Hq(π,A∗)
〈b∂q〉

// Hq−1(π,A) //
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and

(5.2) Hq(π,A)oo Hq(π, S)
〈Hq(i)〉
oo Hq(π,A∗)

〈Hq(p)〉
oo Hq+1(π,A)

〈b∂q〉
oo oo

The purpose of this section is to show that these sequences are independent of
the choice of FM-index triples. More precisely we will prove the following result:

Theorem 5.1. If (N1, N2, N3) and (Ñ1, Ñ2, Ñ3) are FM-index triples for
(π, S,A,A∗) with ClX(N1 \ N3) and ClX(Ñ1 \ Ñ3) strongly π-admissible, then
the diagrams

(5.3)

// Hq(N2/N3)
Hq(i)

//

Hq(ιA)

��

Hq(N1/N3)
Hq(p)

//

Hq(ιS)

��

Hq(N1/N2)
b∂q

//

Hq(ιA∗ )

��

Hq−1(N2/N3) //

Hq−1(ιA)

��

// Hq(Ñ2/Ñ3)
Hq(ei)

// Hq(Ñ1/Ñ3)Hq(ep)
// Hq(Ñ1/Ñ2)

f

b∂q

// Hq−1(Ñ2/Ñ3) //

and

(5.4)

Hq(N2/N3)oo Hq(N1/N3)
Hq(i)
oo Hq(N1/N2)

Hq(p)
oo Hq+1(N2/N3)

b∂q
oo oo

Hq(Ñ2/Ñ3)oo

Hq(ιA)

OO

Hq(Ñ1/Ñ3)
Hq(ei)

oo

Hq(ιS)

OO

Hq(Ñ1/Ñ2)Hq(ep)
oo

Hq(ιA∗ )

OO

Hq+1(Ñ2/Ñ3)
f

b∂q

oo

Hq+1(ιA)

OO

oo

commute, where ιA is the unique morphism from N2/N3 to Ñ2/Ñ3 in C(π,A), ιS
is the unique morphism from N1/N3 to N1/Ñ3 in C(π, S) and ιA∗ is the unique
morphism from N1/N2 to Ñ1/Ñ2 in C(π,A∗).

In view of Theorem 5.1 and Proposition 3.1 we have

〈Hq(i)〉 = 〈Hq (̃i)〉, 〈Hq(p)〉 = 〈Hq(p̃)〉 and 〈∂̂q〉 = 〈 ˜̂
∂q〉, q ∈ Z.

Therefore the sequence (5.1) is indeed independent of the choice of an FM-index
triple and exact (by Proposition 3.2). This sequence is called the homology index
sequence of (π, S,A,A∗). Similarly, we see that sequence (5.2) is independent of
the choice of an FM-index triple and exact. This sequence is called the cohomol-
ogy index sequence of (π, S,A,A∗).

The rest of this section is devoted to the proof of Theorem 5.1. We need
some preliminary results.

Proposition 5.2. Let s ∈ ]0,∞[ and let (N1, N2, N3) be an FM-index triple
for (π, S,A,A∗) such that π does not explode in N1 \N3. Then (N1, N2 ∪N−s

3 ,
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N−s
3 ), where N−s

3 = N−s
3 (N1), is an FM-index triple for (π, S,A,A∗). Moreover,

the inclusion induced diagram of pointed spaces

N2/N3
//

��

N1/N3
//

��

N1/N2

��

(N2 ∪N−s
3 )/N−s

3
// N1/N

−s
3

// N1/(N2 ∪N−s
3 )

commutes.

Proof. The proof is a simple exercise, using Proposition 4.6. �

Lemma 5.3. Suppose that (N1, N2, N3) and (Ñ1, Ñ2, Ñ3) are FM-index tri-
ples for (π, S,A,A∗) with ClX(N1 \N3) and ClX(Ñ1 \ Ñ3) strongly π-admissible.
Then there exist a τ ∈ [0,∞[ and an FM-index triple (L1, L2, L3) for (π, S,A,A∗)
such that

(5.5) both (L1, L2, L3) ⊂ (N1, N2∪N−τ
3 , N−τ

3 ) and (L1, L2, L3) ⊂ (Ñ1, Ñ2∪
Ñ−τ

3 , Ñ−τ
3 ), where N−τ

3 = N−τ
3 (N1) and Ñ−τ

3 = Ñ−τ
3 (Ñ1).

Proof. If S = ∅, define L1 = L2 = L3 = ∅. Let us assume that S 6= ∅.
Define N := ClX(N1 \N3) ∩ ClX(Ñ1 \ Ñ3). Thus, N is a strongly π-admissible
isolating neighbourhood of S. Let δ0 ∈ ]0,∞[ and (Bδ)δ∈]0,δ0] be as in Propo-
sition 4.7 (with the present choice of the set N). Proceeding as the proof of
Lemma 4.8 we see that there are an s0 ∈ ]0,∞[ and a δ0 ∈ ]0, δ0] such that

(5.6) (Bδ)− ⊂ N−s
3 (N1) ∩ Ñ−s

3 (Ñ1) for all s ∈ [s0,∞[ and δ ∈ ]0, δ0].

Fix s1 ∈ [s0,∞[ and define N ′
1 := N1, N ′

2 := N2 ∪ N−s1
3 (N1), N ′

3 :=
N−s1

3 (N1), Ñ ′
1 := Ñ1, Ñ ′

2 := Ñ2 ∪ Ñ−s1
3 (Ñ1) and Ñ ′

3 := Ñ−s1
3 (Ñ1). It follows

from Proposition 5.2 that (N ′
1, N

′
2, N

′
3) and (Ñ ′

1, Ñ
′
2, Ñ

′
3) are FM-index triples

for (π, S,A,A∗). Moreover,

(5.7) (Bδ)− ⊂ N ′
3 ∩ Ñ ′

3 for all δ ∈ ]0, δ0].

We claim that

(5.8) there exists an s0 ∈ ]0,∞[ and a δ1 ∈ ]0, δ0] such that Bδ∩(N ′
3∪Ñ ′

3) ⊂
N ′

3
−s(N ′

1) ∩ Ñ ′
3

−s
(Ñ ′

1) for all s ∈ [s0,∞[ and δ ∈ ]0, δ1].

Suppose that (5.8) does not hold. Then there exist sequences (sn)n, (δn)n and
(xn)n such that sn → ∞ and δn → 0+ as n → ∞ and for each n ∈ N, xn ∈
(Bδn ∩ (N ′

3 ∪ Ñ ′
3)) \ (N ′

3
−sn(N ′

1) ∩ Ñ ′
3

−sn

(Ñ ′
1)).

Proposition 4.7 implies that there exists a subsequence of (xn)n, denoted
again by (xn)n, and an x ∈ Inv−π (N) such that xn → x. Hence

x ∈ Inv−π (ClX(N1 \N3)) ∩ Inv−π (ClX(Ñ1 \ Ñ3)).
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Since xn /∈ N ′
3
−sn(N ′

1)∩ Ñ ′
3

−sn

(Ñ ′
1) for all n ∈ N, it follows that for each n ∈ N,

xnπ [0, sn] ⊂ N ′
1 \ N ′

3 or xnπ [0, sn] ⊂ Ñ ′
1 \ Ñ ′

3. Since sn → ∞ as n → ∞, this
implies that x ∈ Inv+

π (ClX(N ′
1 \ N ′

3)) ∪ Inv+
π (ClX(Ñ ′

1 \ Ñ ′
3)) (cf. Theorem I.4.5

in [21]). Since N ′
1 = N1, N3 ⊂ N ′

3, Ñ
′
1 = Ñ1 and Ñ3 ⊂ Ñ ′

3, it follows that
x ∈ Inv+

π (ClX(N1 \ N3)) ∪ Inv+
π (ClX(Ñ1 \ Ñ3)) and so x ∈ S. We thus obtain

that x ∈ S ∩ (N ′
3 ∪ Ñ ′

3) = ∅ which is a contradiction and so our claim is proved.
Fix an s ∈ [s0,∞[ and a δ ∈ ]0, δ1]. Define

L1 := Bδ,

L2 := (Bδ ∩ (N ′
2 ∩ Ñ ′

2)) ∪ (Bδ ∩ (N ′
3 ∪ Ñ ′

3)),

L3 := Bδ ∩ (N ′
3 ∪ Ñ ′

3).

Since Bδ ⊂ N ⊂ N1 ∩ Ñ1 we obtain that

(5.9) L1 ⊂ N1 and L1 ⊂ Ñ1.

Inclusion (5.8) implies that L2 ⊂ N ′
2 ∪ N ′

3
−s(N ′

1), L2 ⊂ Ñ ′
2 ∪ Ñ ′

3

−s
(Ñ ′

1), L3 ⊂
N ′

3
−s(N ′

1) and L3 ⊂ Ñ ′
3

−s
(Ñ ′

1). Let x ∈ N ′
3
−s(N ′

1). Thus, there is an s′ ∈ [0, s]
such that xπs′ is defined, xπ [0, s′] ⊂ N ′

1 = N1 and xπs′ ∈ N ′
3. Since xπs′ ∈

N ′
3 = N−s1

3 (N1), it follows that there is an s′′ ∈ [0, s1] such that (xπs′)πs′′ is
defined, (xπs′)π [0, s′′] ⊂ N1 and (xπs′)πs′′ ∈ N3. Thus, xπ [0, s′′ + s′] ⊂ N1 and
xπ(s′′ + s′) ∈ N3 with 0 ≤ s′′ + s′ ≤ s+ s1. In other words, x ∈ N3

−(s+s1)(N1).
Therefore,

(5.10) L2 ⊂ N2 ∪N3
−s1(N1) ∪N3

−(s+s1)(N1) ⊂ N2 ∪N3
−τ (N1),

where τ := s+ s1. Moreover

(5.11) L3 ⊂ N ′
3
−s(N ′

1) ⊂ N3
−(s+s1)(N1) = N3

−τ (N1).

Analogously we obtain that

(5.12) L2 ⊂ Ñ2 ∪ Ñ−s1
3 (Ñ1) ∪ Ñ−(s+s1)

3 (Ñ1) ⊂ Ñ2 ∪ Ñ−τ
3 (Ñ1)

and

(5.13) L3 ⊂ Ñ ′
3

−s
(Ñ ′

1) ⊂ Ñ
−(s+s1)
3 (Ñ1) = Ñ−τ

3 (Ñ1).

Inclusions (5.9)–(5.13) imply the inclusions in (5.5).
To finish the proof we need to show that (L1, L2, L3) is an FM-index triple

for (π, S,A,A∗).
We claim that (L1, L3) is an FM-index pair for (π, S). Indeed, notice that

S ⊂ IntX(L1) and S ∩ (N ′
3 ∪ Ñ ′

3) = ∅. Thus, S ⊂ IntX(L1 \ L3) and so S ⊂
Invπ(ClX(L1 \L3)). On the other hand, L1 \L3 ⊂ N ′

1 \N ′
3 and this implies that

Invπ(ClX(L1 \ L3)) ⊂ Invπ(ClX(N ′
1 \N ′

3)) = S.
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Let x ∈ L3 and t ≥ 0 be such that xπ [0, t] ⊂ L1. Hence, x ∈ L1 ∩ (N ′
3 ∪ Ñ ′

3)
and so x ∈ N ′

3 ∪ Ñ ′
3. Since N ′

3 is N ′
1-positively invariant and Ñ ′

3 is Ñ ′
1-positively

invariant, it follows that xπ [0, t] ⊂ N ′
3 ∪ Ñ ′

3 so xπ [0, t] ⊂ L3 and so L3 is L1-
positively invariant.

Let x ∈ L1 be such that xπt /∈ L1 for some t > 0. Since (Bδ, B
−
δ ) is an

index pair in Bδ, there is a t′ ∈ [0, t[ such that xπ [0, t′] ⊂ L1 and xπt′ ∈ (Bδ)−.
Inclusion (5.7) implies that xπt′ ∈ N ′

3 ∩ Ñ ′
3 and so xπt′ ∈ L3. Thus L3 is an exit

ramp for L1. The proof of our claim is complete.

We now claim that (L2, L3) is an FM-index pair for (π,A). Note that A ⊂
IntX(N ′

2) ∩ IntX(Ñ ′
2), A ⊂ S ⊂ IntX(Bδ) and A ∩ (Bδ ∩ (N ′

3 ∪ Ñ ′
3)) = ∅ so

A ⊂ IntX(L2 \L3) and so A ⊂ Invπ(ClX(L2 \L3)). On the other hand, L2 \L3 ⊂
N ′

2 \ N ′
3 and this implies that Invπ(ClX(L2 \ L3)) ⊂ Invπ(ClX(N ′

2 \ N ′
3)) = A.

Let x ∈ L3 and t ≥ 0 be such that xπ [0, t] ⊂ L2. Thus x ∈ N ′
3 ∪ Ñ ′

3. Since
N ′

3 is N ′
2-positively invariant and Ñ ′

3 is Ñ ′
2-positively invariant, it follows that

xπ [0, t] ⊂ N ′
3 ∪ Ñ ′

3. Recall that L2 ⊂ Bδ. Thus, xπ [0, t] ⊂ L3 and so L3 is
L2-positively invariant. Let x ∈ L2 be such that xπt /∈ L2 for some t > 0. We
need to show that there exists a t′ ∈ [0, t[ such that xπ [0, t′] ⊂ L2 and xπt′ ∈ L3.
Since xπt /∈ L2, it follows that xπt /∈ Bδ ∩ (N ′

2 ∩ Ñ ′
2) and xπt /∈ Bδ ∩ (N ′

3 ∪ Ñ ′
3).

Suppose first x ∈ Bδ ∩ (N ′
2 ∩ Ñ ′

2). Set t′ := ρBδ∩(N ′
2∩ eN ′

2)
(x). By (2.1), xπr is

defined and xπr ∈ Bδ ∩ (N ′
2 ∩ Ñ ′

2) for all r ∈ [0, t′[. Therefore, we cannot have
t < t′ so t′ ∈ [0, t]. Moreover, xπ[0, t′] ⊂ Bδ ∩ (N ′

2 ∩ Ñ ′
2), since Bδ ∩ (N ′

2 ∩ Ñ ′
2)

is closed. By (2.2) we have that t′ = ρBδ
(x) or t′ = ρN ′

2
(x) or t′ = ρ

eN ′
2
(x). In

the first case it follows that xπt′ ∈ Bδ
− ⊂ Bδ ∩ (N ′

3 ∪ Ñ ′
3) = L3; in the second

case xπt′ ∈ N ′
3 so xπt′ ∈ Bδ ∩ (N ′

3 ∪ Ñ ′
3) = L3 and in the third case xπt′ ∈ Ñ ′

3

so xπt′ ∈ Bδ ∩ (N ′
3 ∪ Ñ ′

3) = L3.

Suppose now that x ∈ Bδ ∩ (N ′
3 ∪ Ñ ′

3). In this case, define t′ := 0. The proof
of the lemma is complete. �

Proof of Theorem 5.1. Let (N1, N2, N3) and (Ñ1, Ñ2, Ñ3) be two FM-
index triples for (π, S,A,A∗) with ClX(N1 \ N3) and ClX(Ñ1 \ Ñ3) strongly
π-admissible. Let s > 0 and (L1, L2, L3) be an FM-index triple for (π, S,A,A∗)
such that the conclusions of Lemma 5.3 holds. Proposition 4.5 and Proposi-
tion 5.2 imply that the inclusion induced diagram (5.14) of pointed spaces com-
mutes. Passing to homology in diagram (5.14) we obtain the commutative dia-
gram (5.15) (in which we set M2 := N2 ∪ N−s

3 and M̃2 := Ñ2 ∪ Ñ−s
3 ) made of

four long homology ladders. An application of Proposition 4.5 shows that the
vertical morphisms in diagram (5.15) are isomorphisms. Thus we can reverse
the vertical arrows in the second and fourth ladders. Composing the resulting
ladders, we obtain the commutative diagram (5.3), completing the proof in the
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singular homology case.

(5.14)

N2/N3
i //

��

N1/N3
p

//

��

N1/N2

��

(N2 ∪N−s
3 )/N−s

3
// N1/N

−s
3

// N1/(N2 ∪N−s
3 )

L2/L3
//

OO

��

L1/L3

OO

//

��

L1/L2

OO

��

(Ñ2 ∪ Ñ−s
3 )/Ñ−s

3
// Ñ1/Ñ

−s
3

// Ñ1/(Ñ2 ∪ Ñ−s
3 )

Ñ2/Ñ3
ei

//

OO

Ñ1/Ñ3
ep

//

OO

Ñ1/Ñ2

OO

(5.15)

// Hq(N2/N3)
Hq(i)

//

��

Hq(N1/N3)
Hq(p)

//

��

Hq(N1/N2)

��

b∂q
// Hq−1(N2/N3) //

��

// Hq(M2/N
−s
3 ) // Hq(N1/N

−s
3 ) // Hq(N1/M2) // Hq−1(M2/N

−s
3 ) //

// Hq(L2/L3) //

OO

��

Hq(L1/L3)

OO

//

��

Hq(L1/L2)

OO

��

// Hq−1(L2/L3) //

OO

��

// Hq(M̃2/Ñ
−s
3 ) // Hq(Ñ1/Ñ

−s
3 ) // Hq(Ñ1/M̃2) // Hq−1(M̃2/Ñ

−s
3 ) //

// Hq(Ñ2/Ñ3)
Hq(ei)

//

OO

Hq(Ñ1/Ñ3)Hq(ep)
//

OO

Hq(Ñ1/Ñ2)

OO

f

b∂q

// Hq−1(Ñ2/Ñ3) //

OO

The proof for the Alexander–Spanier cohomology is analogous. �

6. Morse decompositions and (co)homology index braids

Recall that a strict partial order on a set P is a relation ≺ ⊂ P × P which
is irreflexive and transitive. As usual, we write x ≺ y instead of (x, y) ∈ ≺. The
symbol < will be reserved for the less-than-relation on R.

For the rest of this paper, unless specified otherwise, let P be a fixed finite
set and ≺ be a fixed strict partial order on P .

A set I ⊂ P is called a ≺-interval if whenever i, j, k ∈ P , i, k ∈ I and
i ≺ j ≺ k, then j ∈ I. By I(≺) we denote the set of all ≺-intervals in P . A set
I is called a ≺-attracting interval if whenever i, j ∈ P , j ∈ I and i ≺ j, then
i ∈ I. By A(≺) we denote the set of all ≺-attracting intervals in P . Of course,
A(≺) ⊂ I(≺).

An adjacent n-tuple of ≺-intervals is a sequence (Ij)n
j=1 of pairwise disjoint

≺-intervals whose union is a ≺-interval and such that, whenever j < k, p ∈ Ij
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and p′ ∈ Ik, then p′ 6≺ p (i.e. p ≺ p′ or else p and p′ are not related by ≺). By
In(≺) we denote the set of all adjacent n-tuples of ≺-intervals.

Let S ⊂ X be a compact π-invariant set. A family (Mi)i∈P of subsets of S
is called a ≺-ordered Morse decomposition of S if the following properties hold:

(1) The sets Mi, i ∈ P , are closed, π-invariant and pairwise disjoint.
(2) For every full solution σ of π lying in S either σ(R) ⊂ Mk for some

k ∈ P or else there are k, l ∈ P with k ≺ l, α(σ) ⊂Ml and ω(σ) ⊂Mk.

Let S be a compact invariant set and (Mi)i∈P be a ≺-ordered Morse de-
composition of S. If A, B ⊂ X then the (π, S)-connection set CSπ,S(A,B) from
A to B is the set of all points x ∈ X for which there is a solution σ: R → S of π
with σ(0) = x, α(σ) ⊂ A and ω(σ) ⊂ B.

For an arbitrary ≺-interval I set

M(I) = Mπ,S(I) =
⋃

(i,j)∈I×I

CSπ,S(Mi,Mj).

An index filtration for (π, S, (Mp)p∈P ) is a familyN = (N(I))I∈A(≺) of closed
subsets of X such that

(1) for each I ∈ A(≺), the pair (N(I), N(∅)) is an FM-index pair for
(π,M(I)),

(2) for each I1, I2 ∈ A(≺), N(I1 ∩ I2) = N(I1) ∩ N(I2) and N(I1 ∪ I2) =
N(I1) ∪N(I2).

N is called strongly π-admissible if N(P ) is strongly π-admissible. An existence
result for such index filtrations was established in [12].

Let N be a strongly π-admissible index filtration for (π, S, (Mp)p∈P ). For
J ∈ I(≺) the set M(J) is an isolated invariant set and we write

Hq(J) = Hq(π, J) := Hq(π,M(J)), q ∈ Z.

If (I, J) ∈ I2(≺), then (M(I),M(J)) is an attractor-repeller pair in M(IJ),
where IJ := I ∪ J . Let B be the set of all p ∈ P \ (IJ) for which there
is a p′ ∈ IJ with p ≺ p′. It follows that B, BI, BIJ ∈ A(≺). Moreover,
(N(BIJ), N(BI), N(B)) is an FM-index triple for (π,M(IJ),M(I),M(J)) with
ClX(N(BIJ) \N(B)) strongly π-admissible. The inclusion induced sequence

N(BI)/N(B)
iI,J

// N(BIJ)/N(B)
pI,J

// N(BIJ)/N(BI)

induces the homology index sequence

−→ Hq(I)
〈Hq(iI,J )〉

// Hq(IJ)
〈Hq(pI,J )〉

// Hq(J)
〈b∂I,J,q〉

// Hq−1(I) −→

of (π,M(IJ),M(I),M(J)). Let (I, J,K) ∈ I3(≺) and define H := {p ∈ P |
there is a p′ ∈ IJK with p ≺ p′}. It follows that H ∈ A(≺) and (H, I, J,K) ∈
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I4(≺). Hence, HI, HIJ , HIJK ∈ A(≺). Define N1 := N(HIJK), N2 :=
N(HIJ), N3 := N(HI) and N4 := N(H). We obtain the following inclusion
induced diagram

(6.1)

N3/N4 i1
**UUUUUU

i4
��

N2/N4 p1
**UUUUUUi2

ttiiiiii

N1/N4 p4
**UUUUUU

p2

��

N2/N3

i3
ttiiiiii

N1/N3

p3
ttiiiiii

N1/N2

of pointed spaces. Applying Propositions 2.10 and 2.11 to diagram (6.1) and then
using the 〈 · 〉-operation together with Proposition 3.2 we obtain the commutative
diagram

(6.2)

�� 		,,XXXXXXXXXXX
ssggggggggggg

Hq(I) 〈Hq(i1)〉
**UUUUUUUU

〈Hq(i4)〉

��

Hq+1(K)〈b∂2,q〉
tthhhhhhhh

〈b∂3,q〉




Hq(IJ) 〈Hq(p1)〉
**VVVVVVVVV〈Hq(i2)〉

ttiiiiiii

Hq(IJK) 〈Hq(p4)〉
**UUUUUU

〈Hq(p2)〉

��

Hq(J)〈Hq(i3)〉
tthhhhhhhhh

〈b∂1,q〉




Hq(JK) 〈b∂4,q〉
**VVVVVVVV〈Hq(p3)〉

ttiiiiiii

Hq(K) 〈b∂2,q〉
**UUUUUUU

〈b∂3,q〉
��

Hq−1(I)〈Hq−1(i1)〉
tthhhhhhh

〈Hq−1(i4)〉





Hq−1(IJ) 〈Hq−1(i2)〉
**VVVVVV〈Hq−1(p1)〉

ttiiiiii

Hq−1(J)
++XXXXXXXXXX

��

Hq−1(IJK)
ssffffffffff

��

Since all morphisms in diagram (6.2) are in the long exact homology sequences
of the appropriate attractor-repeller pairs, it follows that diagram (6.2) is inde-
pendent of the choice of an admissible index filtration for (π, S, (Mp)p∈P ). The
following concept is thus well defined.

Definition 6.1 ([9], [12]). The collection of all the homology indices

Hq(π,M(J)), q ∈ Z, J ∈ I(≺),

and all the maps 〈Hq(iI,J)〉, 〈Hq(pI,J)〉 and 〈∂̂I,J,q〉, (I, J) ∈ I2(≺) is called the
homology index braid of (π, S, (Mp)p∈P ). We denote it by H(π, S, (Mp)p∈P ).
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For the rest of this section assume that, for i = 1, 2, πi is a local semiflow
on the metric space Xi, Si is an isolated invariant set and (Mp,i)p∈P is a ≺-
ordered Morse decomposition of Si, relative to πi. Write Mi(I) = Mπi,Si

(I),
Hi(I) = H(πi,Mi(I)) and Hi := H(πi, Si, (Mp,i)p∈P ), for i = 1, 2 and I ∈ I(≺).

Suppose θ := (θ(J))J∈I(≺) is a family θ(J):H1(J) → H2(J), J ∈ I(≺), of
Γ-module homomorphisms such that, for all (I, J) ∈ I2(≺), the diagram

(6.3)

// H1,q(I)
〈Hq(iI,J )〉

//

θq(I)

��

H1,q(IJ)
〈Hq(pI,J )〉

//

θq(IJ)

��

H1,q(J)
〈b∂I,J 〉

//

θq(J)

��

H1,q−1(I) //

θq−1(I)

��
// H2,q(I)〈Hq(iI,J )〉

// H2,q(IJ)
〈Hq(pI,J )〉

// H2,q(J)
〈b∂I,J 〉

// H2,q−1(I) //

commutes. Then we say that θ is a morphism from H1 to H2 and we write
θ:H1 → H2. If each θ(J) is an isomorphism, then we say that θ is an isomorphism
and that H1 and H2 are isomorphic homology index braids.

Remark 6.2. If H1 and H2 are isomorphic homology index braids, then, by
Proposition 1.5 in [10], H1 and H2 determine the same collection of connection
matrices and the same collection of C-connection matrices.

We will now introduce an important class of morphisms between homology
index braids. Let Ni = (Ni(I))I∈A(≺) be a strongly πi-admissible index filtration
for (πi, Si, (Mp,i)p∈P ), i = 1, 2. Assume the nesting property

N1(I) ⊂ N2(I), I ∈ A(≺).

For J ∈ I(≺) choose I, K ∈ A(≺) with (I, J) ∈ I2(≺) and K = IJ . Then, for
i = 1, 2, (Ni(K), Ni(I)) is an FM-index pair for Mi(J), relative to πi. The inclu-
sion induced map α:N1(K)/N1(I) → N2(K)/N2(I) induces a homomorphism

θ(J) = θN1,N2(J):H(π1,M1(J)) → H(π2,M2(J))

defined by

θq(J) := 〈Hq(α)〉, q ∈ Z.

Of course, this homomorphism depends on the choice of Ni, i = 1, 2, but we
claim that

(6.4) θq(J), q ∈ Z, is independent of the choice of I and K.

In fact, if I ′ and K ′ ∈ A(≺) are such that (I ′, J) ∈ I2(≺) and K ′ = I ′J then
property (2) of index filtrations implies that Ni(K) \ Ni(I) = Ni(K ′) \ Ni(I ′),
i = 1, 2, (see Proposition 3.5 in [9] and its proof, which is also valid in our case)
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so there is an inclusion induced, commutative, diagram of pointed spaces

N1(K)/N1(I)
α //

��

N2(K)/N2(I)

��

N1(K ′)/N1(I ′)
α′

// N2(K ′)/N2(I ′)

By Proposition 4.4, the (homotopy classes of the) vertical maps are morphisms
of C(πi,Mi(J)), i = 1, 2. Thus, passing to homology and using Proposition 3.2
we see that

〈Hq(α)〉 = 〈Hq(α′)〉, q ∈ Z,

which is exactly what we claim.
We write

θN1,N2 = (θN1,N2(J))J∈I(≺).

We also claim that θN1,N2 :H1 → H2. In fact, let (I, J) ∈ I2(≺) and let B
be the set of all p ∈ P \ (IJ) for which there is a p′ ∈ IJ with p ≺ p′. It
follows that B, BI, BIJ ∈ A(≺). Setting, for i = 1, 2, N1,i = Ni(BIJ),
N2,i = Ni(BI) and N3,i = Ni(B) we see that (N1,i, N2,i, N3,i) is an FM-index
triple for (πi,Mi(IJ),Mi(I),Mi(J)) with ClX(N1,i \N3,i), for i = 1, 2, strongly
πi-admissible. Moreover, by Propositions 2.10 and 2.11, the inclusion induced
diagram

N2,1/N3,1
i //

��

N1,1/N3,1
p

//

��

N1,1/N2,1

��

N2,2/N3,2
i

// N1,2/N3,2 p
// N1,2/N2,2

induces the commutative long homology ladder

(6.5)

// Hq(N2,1/N3,1)
Hq(i)

//

γ′q
��

Hq(N1,1/N3,1)
Hq(p)

//

γq

��

Hq(N1,1/N2,1)
b∂q

//

γ′′q
��

Hq−1(N2,1/N3,1) //

γ′q−1

��
// Hq(N2,2/N3,2)

Hq(i)
// Hq(N1,2/N3,2)

Hq(p)
// Hq(N1,2/N2,2)

b∂q

// Hq−1(N2,2/N3,2) //

Applying the 〈 · 〉-operation to (6.5) and noting that, for all q ∈ Z, θq(I) = 〈γ′q〉,
θq(IJ) = 〈γq〉 and θq(J) = 〈γ′′q 〉 (in view of (6.4)) we obtain from Proposition 3.2
a commutative diagram of the form (6.3). This proves our second claim.

We call θ := (θ(J))J∈I(≺) the inclusion induced morphism from H1 to H2.
We now obtain the following result:

Proposition 6.3. For i = 1, 2 let

Ni = (Ni(I))I∈A(≺) and Ñi = (Ñi(I))I∈A(≺)
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be strongly πi-admissible index filtrations for (πi, Si, (Mp,i)p∈P ). Assume the
nesting property

(6.6) N1(I) ⊂ N2(I) ⊂ Ñ1(I) ⊂ Ñ2(I), I ∈ A(≺).

Then the inclusion induced morphism θN1,N2 is an isomorphism.

Proof. Let J ∈ I(≺) be arbitrary, a := θN1,N2(J), b := θN2, eN1
(J) and

c := θ
eN1, eN2

(J). Then b ◦ a and c ◦ b are isomorphisms, being induced by maps
lying in the same connected simple system (the categorial Conley–Morse index
of (π1,M1(J)) and (π2,M2(J)), respectively). It follows that a, b and c are
isomorphisms. This proves the proposition. �

Remark 6.4. Analogous definitions and results hold for Alexander–Spanier
cohomology with the obvious modifications.

7. Regular continuation of (co)homology index braids

Let πn, n ∈ N0, be local semiflows on the metric space X. We say that the
sequence (πn)n∈N converges π0 and we write πn → π0 if whenever xn → x0 in X,
tn → t0 in [0,∞[ and x0π0t0 is defined, then xnπntn is defined for all n large
enough and xnπntn → x0π0t0 in X.

Given Y ⊂ X we say that Y is (πn)n-admissible if Y is closed and whenever
(xn)n and (tn)n are such that tn → ∞, xnπntn is defined and xnπn [0, tn] ⊂ Y

for all n ∈ N, then the sequence (xnπntn)n has a convergent subsequence.
The following continuation result for Morse decompositions was established

in [5].

Theorem 7.1 (cf. Corollaries 3.5 and 3.6 in [5]). Let πn, where n ∈ N0,
be local semiflows on X and Ñ be a closed subset of X which is strongly πn-
admissible for every n ∈ N0. Moreover, assume that

(7.1) πn → π0 and Ñ is (πnm
)m-admissible for every subsequence (πnm

)m

of (πn)n.

Suppose that S0 := Invπ0(Ñ) ⊂ IntX(Ñ) and (Mp,0)p∈P is a ≺-ordered Morse
decomposition of S0 relative to π0. For each p ∈ P , let Ξp ⊂ Ñ be closed in X

and such that Mp,0 = Invπ0(Ξp) ⊂ IntX(Ξp). (Such sets Ξp, p ∈ P , always
exist.) For n ∈ N and p ∈ P set Sn := Invπn(Ñ) and Mp,n := Invπn(Ξp). Then
there is an n ∈ N such that whenever n ≥ n and p ∈ P then Sn ⊂ IntX(Ñ),
Mp,n ⊂ IntX(Ξp) and the family (Mp,n)p∈P is a ≺-ordered Morse decomposition
of Sn relative to πn.

Remark 7.2. It follows from [5, Theorem 3.3 and the proof of Corollary 3.5]
that Theorem 7.1 remains valid if we replace assumption (7.1) by the following



Homology Index Braids 63

weaker assumption:

(7.2) Whenever (nm)m is a sequence in N with nm → ∞ and, for every
m ∈ N, um is a full solution of πnm lying in Ñ , then there is a
subsequence (umk

)k of (um)m and a full solution u0 of π0 such that
umk

(t) → u0(t) as k → ∞, uniformly for t lying in compact subset
of R.

However, we require the stronger assumption (7.1) in Theorem 7.3 below.

We can now state the nested index filtration theorem proved in [6]:

Theorem 7.3 (cf. Theorem 3.4 in [6]). Assume the hypotheses (and thus also
the conclusions) of Theorem 7.1 and let n be as in that theorem. Then there is
an n1 ≥ n such that for every n ∈ N0 with n = 0 or n ≥ n1 there exist strongly
πn-admissible index filtrations Nn = (Nn(I))I∈A(≺) and Ñn = (Ñn(I))I∈A(≺)

for (πn, Sn, (Mp,n)p∈P ) such that the following nesting property holds:

(7.3) Nn(I) ⊂ N0(I) ⊂ Ñn(I) ⊂ Ñ0(I) for all n ≥ n1 and I ∈ A(≺).

Theorem 7.3, Proposition 6.3 and Remark 6.2 immediately imply the follow-
ing continuation result for homology index braids and connection matrices.

Theorem 7.4 (cf. Theorem 3.5 in [6]). Under the hypotheses of Theorem 7.3
the homology index braids H(π0, S0, (Mp,0)p∈P ) and H(πn, Sn, (Mp,n)p∈P )), n ≥
n1, are isomorphic and determine the same collection of connection matrices and
the same collection of C-connection matrices.

Let us make the following definition.

Definition 7.5. Let Λ be a metric space. A family (πλ, Sλ, (Mp,λ)p∈P )λ∈Λ

is called S-continuous if for every λ0 ∈ Λ there is a neighbourhood Wλ0 of λ0

in Λ and there are closed subsets Nλ0 , Ξp,λ0 ⊂ Nλ0 , p ∈ P , of X such that
for every λ ∈ Wλ0 , πλ is a local semiflow on X, Sλ is a (compact) πλ-invariant
set, (Mp,λ)p∈P is a Morse decomposition of Sλ, relative to πλ, Nλ0 is a strongly
πλ-admissible isolating neighbourhood of Sλ and, for p ∈ P , Ξp,λ0 is an isolating
neighbourhood of Mp,λ, relative to πλ. Moreover, whenever λn → λ0 in Wλ0

then πλn
→ πλ0 and Nλ0 is (πλn

)n-admissible.

We can now state our second continuation result for homology index braids
and connection matrices proved in [6].

Theorem 7.6 (cf. Theorem 3.7 in [6]). Let Λ be a metric space and let
(πλ, Sλ, (Mp,λ)p∈P )λ∈Λ be an S-continuous family. Then for every λ ∈ Λ the
homology index braid Hλ := H(πλ, Sλ, (Mp,λ)p∈P ) is defined and for every λ0 ∈
Λ there is a neighbourhood W of λ0 in Λ such that Hλ is isomorphic to Hλ0 for
every λ ∈W . In particular, if Λ is connected, then Hλ1 and Hλ2 are isomorphic
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for all λ1, λ2 ∈ Λ and determine the same collection of connection matrices and
the same collection of C-connection matrices.

Remark 7.7. Both Definition 7.5 and Theorem 7.6 can be generalized to
topological spaces Λ satisfying the first countability axiom, because that is all
we use in the proof of Theorem 7.6.

Theorems 7.4 and 7.6 refine the corresponding homotopy invariance results
for the (infinite dimensional) Conley index established in [19] (or [21]). The con-
vergence and admissibility assumptions make these results applicable to various
classes of parameter dependent evolution equations (e.g. parabolic or damped
hyperbolic equations on bounded domains and even some parabolic equations
on unbounded domains, see the recent paper [17]).

In [6] we show that homology index braids for certain types of parabolic
equations are isomorphic to the corresponding homology index braids of their
(sufficiently high dimensional) Galerkin approximations. In the rest of this sec-
tion we will describe these results.

For the rest of this section let X be a real Hilbert space and A:D(A) ⊂
X → X be a positive selfadjoint operator with compact resolvent. Let (φν)ν∈N

be a complete X-orthonormal basis of X consisting of eigenfunctions of A. Let
Pn:X → X be the orthogonal projection of X onto the subspace spanned by the
first n eigenfunctions. Moreover, set Qn := I − Pn where I is the identity map
on X. Note that A is sectorial on X and so it generates a family (Xα)α∈[0,∞[

of fractional power spaces. Given α ∈ [0, 1[ and a locally Lipschitzian map
g:Xα → X we denote by πg the local semiflow on Xα generated by the abstract
parabolic equation (see [13])

u̇ = −Au+ g(u), u ∈ Xα.

The following result has been proved in [22] (see Theorem 4.3 and Proposition 4.4
in [22]).

Proposition 7.8. Let f :Xα → X be Lipschitzian on bounded subsets of Xα.
For n ∈ N and τ ∈ [0, 1] let fn,τ :Xα → X be defined by

fn,τ (u) = (1− τ)f(u) + τPnf(Pnu), u ∈ Xα.

Let N ⊂ Xα be bounded and closed. Furthermore, let (nm)m be a sequence in N
with nm →∞ and (τm)m be an arbitrary sequence in [0, 1]. For every m ∈ N let
um be a full solution of πfnm,τm

lying in N . Then there is a sequence (mk)k with
mk →∞ and there is a full solution u of πf lying in N such that umk

(t) → u(t)
in Xα, uniformly for t lying in compact subsets of R.

In [6] we prove the following continuation results for Morse decompositions
and homology index braids (see Corollaries 3.9 and 3.10 in [6]).
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Corollary 7.9. Let f :Xα → X and fn,τ , n ∈ N, τ ∈ [0, 1], be as in Propo-
sition 7.8. Let N be bounded and closed in Xα with S := Invπf

(N) ⊂ IntXα(N).
Moreover, let (Mp)p∈P be a ≺-ordered Morse decomposition of S, relative to
πf . For each p ∈ P let Ξp ⊂ N be closed in Xα such that Mp = Invπf

(Ξp) ⊂
IntXα(Ξp). For n ∈ N, τ ∈ [0, 1] and p ∈ P define Sn,τ = Invπfn,τ

(N) and
Mp,n,τ = Invπfn,τ

(Ξp). Then there is an n0 ∈ N so that whenever n ≥ n0 and
τ ∈ [0, 1], then Sn,τ ⊂ IntXα(N), Mp,n,τ ⊂ IntXα(Ξp), p ∈ P , and the family
(Mp,n,τ )p∈P is a Morse decomposition of Sn,τ , relative to πfn,τ .

Corollary 7.10. Let n0 be as in Corollary 7.9. Then for n ≥ n0 and
τ ∈ [0, 1] the homology index braid of (πfn,τ

, Sn,τ , (Mp,n,τ )p∈P ) is isomorphic to
the homology index braid of (πf , S, (Mp)p∈P ).

Given n ∈ N and f as in Proposition 7.8 we may consider the local semiflow
π′n = π′f,n generated on the finite dimensional space Yn := Pn(Xα) = Pn(X) by
the ordinary differential equation

(7.4) u̇ = −Au+ Pnf(Pnu), u ∈ Yn.

The local semiflow π′n is the n-Galerkin approximation of πf .
Moreover, let π′′n = π′′f,n be the semiflow generated on Zn := Qn(Xα) by the

evolution equation

(7.5) u̇ = −Au, u ∈ Zn.

If fn := fn,1 = Pn ◦ f ◦ Pn then, by Proposition 4.2 in [22] and its proof,
the space Yn is positively invariant relative to the local semiflow πfn

and every
bounded πfn

-invariant set is included in Yn and is π′n-invariant. Moreover, every
π′n-invariant set is πfn -invariant. Setting

Sn := Sn,1 and Mp,n := Mp,n,1, p ∈ P,

we thus see that, whenever n ≥ n0, then Sn is a compact π′n-invariant set and
(Mp,n)p∈P is a Morse decomposition of Sn, relative to π′n. Moreover,

Mπfn ,Sn
(I) = Mπ′n,Sn

(I) =: Mn(I), I ∈ I(≺).

Choose an arbitrary strongly π′n-admissible index filtration N ′
n = (N ′

n(I))I∈A(≺)

for (π′n, Sn, (Mp,n)p∈P ). (Strong π′n-admissibility means, in this finite-dimen-
sional case, simply that N ′(P ) is bounded in Yn.) Let B = Bn be the closed
unit ball in Zn. Since |uπ′′nt|Zn ≤ e−βnt|u|Zn for some βn ∈ ]0,∞[ and all u ∈ Zn

and t ∈ [0,∞[ it follows that, relative to π′′n, B is an isolating block for {0} with
empty exit set, so in particular, B is positively invariant.

We define Nn(I) := N ′
n(I) + B ∼= N ′

n(I) × B, I ∈ A(≺). It is now a
simple exercise to show that Nn = (Nn(I))I∈A(≺) is a strongly πfn-admissible
index filtration for (πfn

, Sn, (Mp,n)p∈P ). Since N ′
n(I) ⊂ Nn(I) for I ∈ A(≺)
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there is an inclusion induced morphism θN ′
n,Nn

= (θN ′
n,Nn

(J))J∈I(≺) from the
homology index braid H′

n of (π′n, Sn, (Mp,n)p∈P ) to the homology index braid Hn

of (πfn
, Sn, (Mp,n)p∈P ). We claim that θN ′

n,Nn
is an isomorphism. In fact, let J ∈

I(≺) be arbitrary. Choose I, K ∈ A(≺) with (I, J) ∈ I2(≺) and K = IJ . Let
φ:N ′

n(K)/N ′
n(I) → Nn(K)/Nn(I) be inclusion induced and ψ:Nn(K)/Nn(I) →

N ′
n(K)/N ′

n(I) be induced by the canonical projection y+z 7→ y of Xα = Yn⊕Zn

onto Yn. It follows that ψ ◦ φ is the identity on N ′
n(K)/N ′

n(I) while φ ◦ ψ is
homotopic to the identity on Nn(K)/Nn(I) via the homotopy Nn(K)/Nn(I) ×
[0, 1] → Nn(K)/Nn(I) induced by the homotopy Xα× [0, 1] → Xα, (y+ z, τ) 7→
y + (1− τ)z. The homotopy axiom for singular homology now implies that the
map

θN ′
n,Nn

(J):H(π′n,Mn(J)) → H(πfn
,Mn(J))

(which is induced by φ) is an isomorphism.
Using Corollary 7.10 we have established the following homology index braid

continuation for the problem (cf. Theorem 3.11 in [6]).

Theorem 7.11. If n0 ∈ N is as in Corollary 7.10, then, for all n ≥ n0,
the homology index braids of (πf , S, (Mp)p∈P ) and (π′n, Sn, (Mp,n)p∈P ) are iso-
morphic so their share the same connection matrices and the same C-connection
matrices.

8. Singular continuation of (co)homology index braids

In this section we will state the Singular nested index filtration theorem and
the Singular continuation principle for homology index braids and connection
matrices proved in [7].

Let (X0, d0) be a metric space. Let ε0 ∈ ]0,∞[ and for each ε ∈ ]0, ε0] let
(Yε, dε) be a metric space and θε ∈ Yε be a distinguished point of Yε. The open
ball in Yε of center in v and radius β > 0 is denoted by Bε(v, β). Analogously,
Bε[v, β] is the closed ball in Yε of center in v ∈ Yε and radius β > 0.

For each ε ∈ ]0, ε0] define the set Zε := X0 × Yε. Endow Zε with the metric

Γε((u, v), (u′, v′)) := max{ d0(u, u′), dε(v, v′)} for (u, v), (u′, v′) ∈ Zε.

Given a subset V of X0, β > 0 and ε ∈ ]0, ε0] define the ‘inflated’ subsets
[V ]ε,β of Zε as follows:

[V ]ε,β := {(u, v) ∈ Zε | u ∈ V and v ∈ ClYε(Bε(θε, β))}.

Let ε ∈ ]0, ε0], πε (resp. π0) be a local semiflow on Zε (resp. on X0), Sε

(resp. S0) be an isolated invariant set relative to πε (resp. π0) and (Mp,ε)p∈P

(resp. (Mp,0)p∈P ) be a Morse decomposition of Sε (resp. S0) relative to πε
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(resp. π0). Let Nε = (Nε(I))I∈A(≺) be a strongly πε-admissible index filtra-
tion for (πε, Sε, (Mp,ε)p∈P ) and N0 = (N0(I))I∈A(≺) be a strongly π0-admissible
index filtration for (π0, S0, (Mp,0)p∈P ).

Let η ∈ ]0,∞[ and suppose that the following singular nesting property holds:

Nε(I) ⊂ [N0(I)]ε,η for all I ∈ A(≺).

For J ∈ I(≺) choose I, K ∈ A(≺) with (I, J) ∈ I2(≺) and K = IJ . Then
(Nε(K), Nε(I)) is an FM-index pair forMε(J), relative to πε and (N0(K), N0(I))
is an FM-index pair for M0(J), relative to π0. The composition of the inclusion
induced map from Nε(K)/Nε(I) to [N0(K)]ε,η / [N0(I)]ε,η followed by the map
from [N0(K)]ε,η / [N0(I)]ε,η to N0(K)/N0(I) induced by the projection onto the
first factor induces, via the 〈 · 〉-operation, a homomorphism

[Θ]ε,η,Nε,N0(J):H(πε,Mε(J)) → H(π0,M0(J)).

Of course, this homomorphism depends on the choice of ε ∈ ]0, ε0], η ∈ ]0,∞[,
Nε and N0, but we claim that

(8.1) [Θ]ε,η,Nε,N0(J) is independent of the choice of I and K.

In fact, if I ′ and K ′ ∈ A(≺) are such that (I ′, J) ∈ I2(≺) and K ′ = I ′J then
property (2) of index filtrations implies that Nε(K) \ Nε(I) = Nε(K ′) \ Nε(I ′)
and N0(K) \N0(I) = N0(K ′) \N0(I ′) (see Proposition 3.5 in [9] and its proof,
which is also valid in our case). It follows that

[N0(K)]ε,η \ [N0(I)]ε,η = [N0(K ′)]ε,η \ [N0(I ′)]ε,η

and so there is an inclusion induced, commutative, diagram of pointed spaces

Nε(K)/Nε(I) //

��

[N0(K)]ε,η / [N0(I)]ε,η

��

Nε(K ′)/Nε(I ′) // [N0(K ′)]ε,η / [N0(I ′)]ε,η

Moreover, the diagram

[N0(K)]ε,η / [N0(I)]ε,η
//

��

N0(K)/N0(I)

��

[N0(K ′)]ε,η / [N0(I ′)]ε,η
// N0(K ′)/N0(I ′)

commutes, where the vertical maps are inclusion induced and the horizontal maps
are projection induced. Composing these two diagrams we obtain a commutative
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diagram

Nε(K)/Nε(I)
α //

��

N0(K)/N0(I)

��

Nε(K ′)/Nε(I ′)
α′

// N0(K ′)/N0(I ′)

where, by Proposition 4.4, the (homotopy classes of the) vertical maps are are
morphisms in C(πε,Mε(J)) (resp. in C(π0,M0(J))). Thus, passing to homology
and using Proposition 3.2 we see that

〈Hq(α)〉 = 〈Hq(α′)〉, q ∈ Z,

which is exactly what we claim. We write

[Θ]ε,η,Nε,N0 = ([Θ]ε,η,Nε,N0(J))J∈I(≺).

We also claim that [Θ]ε,η,Nε,N0 :Hε → H0. In fact, let (I, J) ∈ I2(≺) and let
B be the set of all p ∈ P \ (IJ) for which there is a p′ ∈ IJ with p ≺ p′. It
follows that B, BI, BIJ ∈ A(≺). Setting N1,ε = Nε(BIJ), N2,ε = Nε(BI) and
N3,ε = Nε(B) and N1,0 = N0(BIJ), N2,0 = N0(BI) and N3,0 = N0(B) we see
that (N1,ε, N2,ε, N3,ε) is an FM-index triple for (πε,Mε(IJ),Mε(I),Mε(J)) and
(N1,0, N2,0, N3,0) is an FM-index triple for (π0,M0(IJ),M0(I),M0(J)). More-
over, composing the inclusion induced commutative diagram

N2,ε/N3,ε
i //

��

N1,ε/N3,ε
p

//

��

N1,ε/N2,ε

��

[N2,0]ε,η / [N3,0]ε,η
i

// [N1,0]ε,η / [N3,0]ε,η p
// [N1,0]ε,η / [N2,0]ε,η

with the inclusion and projection induced commutative diagram

[N2,0]ε,η / [N3,0]ε,η
i //

��

[N1,0]ε,η / [N3,0]ε,η
p

//

��

[N1,0]ε,η / [N2,0]ε,η

��

N2,0/N3,0
i

// N1,0/N3,0 p
// N1,0/N2,0

yields a commutative diagram

N2,ε/N3,ε
i //

��

N1,ε/N3,ε
p

//

��

N1,ε/N2,ε

��

N2,0/N3,0
i

// N1,0/N3,0 p
// N1,0/N2,0
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which induces the following long homology ladder

(8.2)

// Hq(N2,ε/N3,ε)
Hq(i)

//

��

Hq(N1,ε/N3,ε)
Hq(p)

//

��

Hq(N1,ε/N2,ε)
b∂q

//

��

Hq−1(N2,ε/N3,ε) //

��
// Hq(N2,0/N3,0)

Hq(i)
// Hq(N1,0/N3,0)

Hq(p)
// Hq(N1,0/N2,0)

b∂q

// Hq−1(N2,0/N3,0) //

Applying the 〈 · 〉-operation to diagram (8.2) and using (8.1) together with Propo-
sition 3.2 we obtain a commutative diagram of the form (6.3). This proves our
second claim.

We call [Θ]ε,η,Nε,N0 a singular inclusion induced morphism from Hε to H0.
We now obtain the following analogue of Proposition 6.3.

Proposition 8.1. Let ε, (πε, Sε, (Mp,ε)p∈P ) and (π0, S0, (Mp,0)p∈P ) be as
above. Suppose that there are ρ̃, η̃ ∈ ]0,∞[ are such that ClYε

(Bε(θε, ρ̃)) and
ClYε

(Bε(θε, η̃)) are contractible to θε. Let N0 = (N0(I))I∈A(≺) and Ñ0 =
(Ñ0(I))I∈A(≺) be strongly π0-admissible index filtrations for (π0, S0, (Mp,0)p∈P ),
Nε = (Nε(I))I∈A(≺) and Ñε = (Ñε(I))I∈A(≺) be strongly πε-admissible index
filtrations for (πε, Sε, (Mp,ε)p∈P ) and such that the following singular nesting
property holds:

(8.3) Nε(I) ⊂ [N0(I)]ε,eρ ⊂ Ñε(I) ⊂ [Ñ0(I)]ε,eη for all I ∈ A(≺).

Then H(π0, S0, (Mp)p∈P ) and H(πε, Sε, (Mp,ε)p∈P )) are isomorphic.

In the next two definitions, introduced in [3], (πε)ε∈]0,ε0] is a family such
that, for every ε ∈ ]0, ε0], πε is a local semiflow on Zε. Moreover, π0 is a local
semiflow on X0.

Definition 8.2. With the notation introduced above, we say that the family
(πε)ε∈]0,ε0] converges singularly to π0 if whenever (εn)n and (tn)n are sequences
of positive numbers such that εn → 0, tn → t0 as n → ∞, for some t0 ∈ [0,∞[
and whenever u0 ∈ X0 and wn ∈ Zεn

are such that Γεn
(wn, (u0, θεn

)) → 0 as
n → ∞ and u0π0t0 is defined, then there exists an n0 ∈ N such that for all
n ≥ n0, wnπεntn is defined and Γεn (wnπεntn, (u0π0t0, θεn)) → 0 as n→∞.

Definition 8.3. Let β be a positive number and N be a closed subset of X0.
We say that N is a singularly strongly admissible set with respect to β and the
family (πε)ε∈[0,ε0] if the following conditions are satisfied:

(a) N is a strongly π0-admissible set;
(b) for each ε ∈ ]0, ε0] the set [N ]ε,β is strongly πε-admissible;
(c) whenever (εn)n and (tn)n are sequences of positive numbers such that

εn → 0, tn → ∞ as n → ∞ and whenever wn ∈ Zεn
is such that

wnπεn
[0, tn] ⊂ [N ]εn,β , then there exist a u0 ∈ N and a subsequence
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of the sequence (wnπεn
tn)n of endpoints, denoted again by (wnπεn

tn)n,
such that Γεn (wnπεntn, (u0, θεn)) → 0 as n→∞.

The following singular continuation result for Morse decompositions was es-
tablished in [5].

Theorem 8.4 (cf. Corollaries 4.14 and 4.15 in [5]). Assume (πε)ε∈]0,ε0] is
a family of local semiflows that converges singularly to the local semiflow π0,
β ∈ ]0,∞[ and Ñ is a singularly strongly admissible set with respect to β and
(πε)ε∈[0,ε0]. Moreover, suppose that S0 := Invπ0(Ñ) relative to π0 and (Mp,0)p∈P

is a ≺-ordered Morse decomposition of S0 relative to π0. For each p ∈ P , let
Ξp ⊂ Ñ be closed in X0 and such that Mp,0 = Invπ0(Ξp) ⊂ IntX0(Ξp). (Such
sets Ξp, p ∈ P , always exist.)

Let η ∈ ]0, β]. For ε ∈ ]0, ε0] and p ∈ P set Sε := Invπε
([Ñ ]ε,η) and

Mp,ε := Invπε
([Ξp]ε,η). Then there is an ε̃ ∈ ]0, ε0] such that for every ε ∈ ]0, ε̃]

and p ∈ P , Sε ⊂ IntZε([Ñ ]ε,η) and the family (Mp,ε)p∈P is a ≺-ordered Morse
decomposition of Sε relative to πε.

We can now state the singular nested index filtration principle established
in [7].

Theorem 8.5 (cf. Theorem 3.9 in [7]). Assume the hypotheses (and thus also
the conclusions) of Theorem 8.4 and let ε̃ > 0 be as in that theorem. Let β̃0 ∈
]0, β[ be fixed. Then there are ρ̃, η̃ ∈ ]0, β̃0] and an εc ∈ ]0, ε̃] such that for every
ε ∈ [0, εc] there exist strongly πε-admissible index filtrations Nε = (Nε(I))I∈A(≺)

and Ñε = (Ñε(I))I∈A(≺) for (πε, Sε, (Mp,ε)p∈P ) such that the following singular
nesting property holds:

(8.4) Nε(I) ⊂ [N0(I)]ε,eρ ⊂ Ñε(I) ⊂ [Ñ0(I)]ε,eη for all I ∈ A(≺) and
ε ∈ ]0, εc].

Theorem 8.5, Proposition 8.1 and Remark 6.2 immediately imply the fol-
lowing Singular continuation principle for homology index braids and connection
matrices.

Theorem 8.6 (cf. Theorem 3.10 in [7]). Assume the hypotheses of The-
orem 8.5. Suppose that there exists an β0 > 0 such that for all ε ∈ ]0, ε0]
and all η ∈ ]0, β0] the set ClYε(Bε(θε, η)) is contractible to θε. Then there ex-
ists an εc ∈ ]0, ε̃] such that the homology index braids H(π0, S0, (Mp)p∈P ) and
H(πε, Sε, (Mp,ε)p∈P )), ε ∈ ]0, εc], are isomorphic and determine the same collec-
tion of connection matrices and the same collection of C-connection matrices.

Theorem 8.6 refines the corresponding singular Conley index continuation
principle established in [3].
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We will now briefly illustrate Theorem 7.4 by applying it to the thin domain
problem considered in [18] and [1]. More extensive applications will appear in
a subsequent publication. We assume the reader’s familiarity with [18] and [1]
and only recall some of the relevant notations and definitions.

Let M and N be positive integers. Write (x, y) for a generic point of
RM ×RN . Let Ω be an arbitrary nonempty bounded domain in RM ×RN with
Lipschitz boundary and let ε > 0 be arbitrary. Define the symmetric bilinear
form aε:H1(Ω)×H1(Ω) → R by

aε(u, v) :=
∫

Ω

(
∇xu · ∇xv +

1
ε2
∇yu · ∇yv

)
dx dy

and let b be the scalar product 〈 · , · 〉L2(Ω). Let Aε:D(Aε) ⊂ H1(Ω) → L2(Ω) be
the linear operator generated by the pair (aε, b). We define on H1(Ω) the scalar
product

(u, v)ε := aε(u, v) + b(u, v), u, v ∈ H1(Ω)

and the corresponding norm

|u|ε := (aε(u, u) + |u|2L2(Ω))
1/2, u ∈ H1(Ω)

which is equivalent to the usual norm on H1(Ω).
We also define the “limit” space H1

s (Ω) by

H1
s (Ω) = {u ∈ H1(Ω) | ∇yu = 0}.

Note that H1
s (Ω) is a closed linear subspace of H1(Ω) so H1

s (Ω) is a Hilbert space
under the usual scalar product of H1(Ω).

Furthermore, define the space L2
s(Ω) to be the closure of the set H1

s (Ω) in
L2(Ω). It follows that L2

s(Ω) is a Hilbert space under the scalar product of L2(Ω).
Now let a0:H1

s (Ω)×H1
s (Ω) → R be the “limit” bilinear form defined by

a0(u, v) :=
∫

Ω

∇u · ∇v dx dy =
∫

Ω

∇xu · ∇xv dx dy.

Finally, let b0 be the restriction of the scalar product b to L2
s(Ω)×L2

s(Ω). Denote
by A0 the operator generated by the pair (a0, b0).

Now let ε0 ∈ ]0, 1] be arbitrary and (fε)ε∈[0,ε0] be a family satisfying hypoth-
esis (A1) introduced in Definition 2.6 in [1]. For ε ∈ ]0, ε0] let πε be the local
semiflow on H1(Ω) generated by the solutions of the evolution equation

u̇ = Aεu+ fε(u).

Moreover, let π0 be the local semiflow on H1
s (Ω) generated by the solutions of

the evolution equation
u̇ = A0u+ f0(u).

We will need the following singular convergence result proved in [1].
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Proposition 8.7 (cf. Corollary 2.15 in [1] and its proof). Let (εn)n be an
arbitrary sequence of positive numbers convergent to zero. Moreover let t ∈ [0,∞[
and (tn)n be a sequence in [0,∞[ converging to t. Finally, let u0 ∈ H1

s (Ω) and
(un)n be a sequence in H1(Ω) such that |un − u0|εn

→ 0 n → ∞. Assume that
u0π0t is defined. Then, for all n ∈ N large enough, unπεntn is defined and

|unπεntn − u0π0t|εn → 0 as n→∞.

For all ε ∈ ]0, ε0] set θε := 0 ∈ H1(Ω) and let Qε:H1(Ω) → H1(Ω) be
the orthogonal projector onto H1

s (Ω) with respect to the scalar product ( · , · )ε.
Let X0 := H1

s (Ω) be endowed with the usual norm of H1(Ω) and d0 be the
corresponding metric on X0. Moreover, let Yε := (I −Qε)(H1(Ω)) be endowed
with the norm | · |ε and let dε be the corresponding metric on Yε. Set Zε :=
X0 × Yε

∼= H1(Ω) and note that the norm

‖(u, v)‖ε := max{|u|H1(Ω), |v|ε}, (u, v) ∈ X0 × Yε,

is equivalent to the norm | · |ε on H1(Ω) with constants independent of ε ∈ ]0, ε0].
Let Γε be the metric on Zε generated by the norm ‖ · ‖ε.

The remarks just made imply that, for every ε ∈ ]0, ε0], πε is a local semiflow
on Zε and π0 is a local semiflow on X0, while Proposition 8.7 just says that
(πε)ε∈]0,ε0] singularly converges to π0.

Now an application of Lemma 2.21 in [1] shows that whenever β > 0 and N
is closed and bounded in X0 then N is singularly admissible with respect to β
and the family (πε)ε∈[0,ε0].

It is clear that for all ε ∈ ]0, ε0] and all β ∈ ]0,∞[ the set ClYε
(Bε(θε, β)) is

contractible to θε.
We thus obtain the following corollary of Theorems 8.4 and 8.5.

Theorem 8.8. Let β be a positive number and N ⊂ H1
s (Ω) be closed and

bounded. Suppose that (Mp)p∈P is a ≺-ordered Morse decomposition of S0 :=
Invπ0(N) relative to π0. For each p ∈ P , let Ξp ⊂ N be closed in X0 and such
that

Mp = Invπ0(Ξp) ⊂ IntX0(Ξp).

Moreover, for every I ∈ I(≺), let ΞI ⊂ N be closed in X0 and such that

Mπ0,S0(I) = Invπ0(ΞI) ⊂ IntX0(ΞI).

For ε ∈ ]0, ε0] and p ∈ P set Mp(ε) := Invπε([Ξp]ε,β). Then there is an ε̃ ∈
]0, ε0] such that for every ε ∈ ]0, ε̃] the family (Mp(ε))p∈P is a ≺-ordered Morse
decomposition of Sε := Invπε

([N ]ε,β) relative to πε. Moreover,

MI(ε) := Mπε,Sε
= Invπε

([ΞI ]ε,β) ⊂ IntZε
([ΞI ]ε,β), I ∈ I(≺).
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Finally, the homology index braids H(π0, S0, (Mp)p∈P ) and H(πε, Sε, (Mp,ε)p∈P ))
are isomorphic and determine the same collection of connection matrices and the
same collection of C-connection matrices.
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Universitätsplatz 1

18055 Rostock, GERMANY

E-mail address: krzysztof.rybakowski@mathematik.uni-rostock.de

TMNA : Volume 26 – 2005 – No 1


