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PARAMETER DEPENDENT PULL-BACK
OF CLOSED DIFFERENTIAL FORMS
AND INVARIANT INTEGRALS

JEAN MAWHIN

Dedicated to the memory of Olga Ladyzhenskaya

ABSTRACT. We prove, given a closed differential k-form w in an arbitrary
open set D C R™, and a parameter dependent smooth map F(-,\) from
an arbitrary open set G C R™ into D, that the derivative with respect to
A of the pull-back F(-,\)*w is exact in G. We give applications to various
theorems in topology, dynamics and hydrodynamics.

1. Introduction

It is well known that a closed differential form (cocycle) on a set D C R"
needs not be exact (coboundary) on D [8], [15]. The converse of Poincaré’s
lemma implies that it is the case if D is simply connected. In recent papers
[9], [10], it has been shown that given a differential n-form w on D C R™, which
necessarily is a cocycle, the derivative with respect to A of its pull-back F'(-, A)*w
by a C? parameter dependent mapping F(-,)\):G C R® — D C R" is always a
coboundary. This result allows a simple and complete proof of a lemma on the
invariance of an integral stated and proved in a special case by Tartar [16] and
reproduced in [2]. This lemma was used in [9] to obtain the homotopy invariance
of Brouwer degree, and in [10] to give elementary proofs of various existence and
fixed point theorems.
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18 J. MAWHIN

In this paper, we want to show that the above mentioned property holds
indeed for any k-cocycle on D C R™ and any C? parameter dependent mapping
F(-,0):G CR™ — D C R" (Theorem 61). The given proof is a lengthy and
tedious computation, which is substantially shorter only for £ = 1 and for k£ = n.
For the readers uniquely interested in those situations, we have explicited the
proof for k = 1 (Theorem 4.1) and reproduced, for the sake of completeness, the
proof for k = n given in [10] (Theorem 5.1).

For k = 1, we give as direct applications simple proofs of the n-dimensional
generalization of a theorem on the invariance of the circulation of a perfect
fluid due to Lord Kelvin [17] (see also [6]), and of Cauchy integral theorem
for holomorphic functions. For k£ = n — 1, Theorem 61 generalizes a result of
Hatziafratis and Tsarpalias [3] obtained for the (n — 1) solid angle form occuring
in the definition of Kronecker’s index. For k = n, we complete the applications
given in [10] by an elementary proof of a Poincaré—Krasnosel’skil bifurcation
theorem in finite dimension.

In some physical situations, the family of pull-back transformations is pa-
rametrized by time and is given by the flow associated to an evolution equa-
tion. We show in two classical examples, Liouville’s theorem in dynamics [7]
and Helmholtz theorem in hydrodynamics [4] (see also [14]), how those clas-
sical results follow from the same type of reasonings (Theorems 7.1 and 8.2).
Those results belong of course to Poincaré’s theory of integral invariants (see
[12] and [13]), which also can be related to the considerations developed here.

2. Parameter dependent differential forms

We first recall a few elementary facts and results on differential forms [8], [15].

If D C R™is open and 0 < k < n is an integer, we consider the differential
k-form of class C' in D (I > 0)

w = Z Wiy .. iy, d(Eil /\/\dxlk,

1<iy<...<ip<n

where the real functions w;,. ;, are of class C' on D. If G C R™ is open and
T:G — D is of class C*, the pull-back T*w is the differential k-form in G defined
by
T w = > (Wipq, 0T)dT;, A AT,
1<ir<...<ir<n
where dT; is the differential 1-form on G defined by dT; = Z;n:1 0;T;dy;. If wis
of class C*, the exterior differential dw of w is the differential (k + 1)-form in D
defined by
dw = Z dw;, i, Ndxi, Ao AN dxg,,

1<iy<...<ig<n
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n o . .
where dw;,  ;, = ijl 0jw;, .4, dxj. Explicitely, with
1 < ila cee 7ik7j17 cee 7jk+17j < n,

we have

k+1
o= ¥ |00, 5| o e Ada,

J1<.<Jr41 - l=1

where the symbol ~ means that the corresponding term is missing. When w is
of class C', w is closed or is a k-cocycle if dw = 0, which, by the computation
above, is equivalent to the set of conditions

k+1
(2.1) Z(—l)lflajleln_ﬁmm =0 (1<j1<jo<...<jug1<mn).
=1

Consider now a parameter dependent differential k-form in D C R”

p(A) = Z My iy (o A) dxgy AL Adag,

1<i1<..<ip<n
whose coefficients
My s D X [a,b] = R, (2, A) = my, 4, (2, N)
are of class C! on D x [a, b].

DEFINITION 2.1. The partial derivative Oxp of p(A) with respect to A is the
differential k-form in D

p(N) = Z Omi, (- A dzg, Ao A da,.

1<ii<..<ig<n

It follows easily from this definition that if f: D x [a,b] — R and

V()\) = Z njlmjl(-,)\)dmjl /\.../\dle,

1<j1<...<ii<n

are of class C! on D x [a,b], then

(2.2) N NuN)] = Onf (- MpA) + f(-5 A)Iau(X),
(2.3) N [(X) AvA)] = Oap(A) Av(A) + p(X) Adav(N),

and if p()) is of class C2, then

(2.4) N[dp(N)] = d[orp(N)]-
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3. Parameter dependent pullback of a differential form

If D C R™is open and 0 < k < n is an integer, let us consider the differential
k-form in D
w= Z Wiy ATiy Ao N dxy, .
1<i<...<ip<n
If G C R™ is open and if F:G x [a,b] — D is of class C?, we consider for each
A € [a,b] the pull-back F(-,A)*w of w by F(-,)\)

(3.1) F(- N'w:= > (wi,_ioF)(-,\)dF;, A...NdF;,,
1< <...<ix<n

where we write
m

dF; = dF;( Z OF;(+, \) dy.
Notice that, by formula (2.4), we have
(32) OA(dF};) = d(OrF).
LEMMA 3.1. If the differential k-form w is of class C* on D, and F:G x
[a,b] — D is of class C?, then, with 1 <iy,...,ix < n,
(33) OAF(-N'wl = > > (9w i, 0 F)OrF;dF;, A...AdF;,
1< .. <ig j=1

+ Y (wiy..q0F) Z 1)!=Yd[0F;, dF, A ... NdF;, A ... N dF;,].
=1

i1 <. <l

PROOF. Using formulas (2.2) and (3.2), we get, if w is of class C' in D, and
1<iy, oo, ip <y 1< g1, 000 kg1 <1y

aA[F(-,A)*w]zaA[ > (wiy 0 FYdF;, A NdF;,

11 <...<tg

= Y Oa(wi 0 F)dF, A...AdF,

ik

11 <...<1Up
k
+ > (i 0 F) Y dF;, AL Ad(OAFy) A ... NdF;,
i1 <. <l =1
- Y Yo OB AR, A ndE,

i1 <...<ip j=1
k —_—
+ Y (Wi 0 F) Y (=1)TONE, dFy, A ANdF, AL AdF,] D

i1 <...<Up =1



PARAMETER DEPENDENT DIFFERENTIAL FORMS 21

4. The case of 1-cocycle

Let the differential 1-form
n
(4.1) w= ij dz;
j=1

be of class C! on D. By formula (2.1), w is a 1-cocycle if and only if
(42) 8iwj = 8jwi (1 <i<j< ’I”L)
Let G C R™ be open and F: G x [a,b] — D, (y,\) — F(y, \) be of class C2.

THEOREM 4.1. Ifw is a 1-cocycle of class C* on D, then

n n

MNF(- A —9{2 o F) dF} :d[Z(wjoF)aAFj}

=1 j=1

PrOOF. We have, using formulas (3.3) and (4.2),

(kaj o F)8AF;€ dFj + Z(w] o F) d(a)\Fj)
1 j=1

(@wk o F) Iy dFj + Z(wk o F) d(a)\Fk)
1 k=1

S
=
=
£

I
NE
NE

k

<.
Il
Ja

[
M-
NE

<
Il
i
Eol
Il

d(wy, 0 F)O\Fy, + > _(wy, o F) d(0xF)
1 k=1

I
M=

E

|
U
|
<

(wj o F)(%\F]} . ]

Jj=1

We now show how Theorem 4.1 imply some classical conservation theorems.
The first result for n = 3 is due to Lord Kelvin [17], in the context of
hydrodynamics of perfect fluids. Recall that the circulation of the differential
1-form w along the 1-simplex ¢: [0, 7] — D of class C! is defined by the integral

(4.4) [e=] "= / ) [iw(s»wz(s) ds|.

v is called a 1-cycle if (0) = o(T).

COROLLARY 4.2. [fw= Z?:l w; dxj is a 1-cocycle of class C' on D, and
for each \ € [a,b], F(-,)\):[0,T] — D is a 1-cycle of class C* in D, then the
circulation of w along F (-, \)

T n
(4.5 L= D039 F) 0 ) 05 )
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is independent of X on [a,b].
ProOOF. Using Leibniz’ rule and Theorem 4.1, we obtain

W[l [ o= [

(’U)j OF)a,\FJ:| = 07
J

1
as F(-,)) is a 1-cycle. O

REMARK 4.3. If n =3 and if (w1, w2, w3) denotes the field of velocities of
the irrotational motion of a perfect fluid, if A denotes the time and if F([a,b], \)
denotes the time evolution of a closed curve under the motion of the fluid, Corol-
lary 4.2 expresses the constancy of the circulation of the velocity around the
closed curve.

A second consequence of Theorem 4.1 is a version of Cauchy’s theorem in
complex functions theory [8]. Let D C C be open, f: D — C holomorphic and
let

Fj:[OaT]X[aﬂb]*)Da (ya/\)}_)rj(%)‘)a (1§]§m)
be of class C? and such that

T;(T,\) =T;41(0,)), (G=1,...,m—1), Tp(T,A)=T1(0,)), XE€ [a,b].

So, when A varies, the family of the I'; (-, A) represents a continuous deformation
of a piecewise-C? 1-cycle in D.

COROLLARY 4.4. The expression
DY NIELE
j=17Li(-A)

is independent of A on [a,b].

Proor. We have, using Leibniz rule and Theorem 4.1,

m

6A<;/Fj(wf(2)dz) Zji:;/oTaA[F;('a)\)(f(Z)dz)]
=3 [Laerc nar

m

D I(f o TH)(T, X) T5(T, A) — (f 0 T1)(0, ) OaL;(0, M)

(f o Tm)(T, NN (T, A) = (f e T1)(0,A)0xI'1(0,A) = 0. [
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5. The case of a differential n-form
Let the differential n-form
w=wdri A... \Ndx,,

be of class C'!' in D. Notice that w is always a n-cocycle in D, as dw is a differential
(n+1)-form in R". Let G C R™ be open and F': G x [a,b] — D, (y,A) — G(y, \)
be of class C2.

THEOREM 5.1. If w is a differential n-form of class C! in D, then

(5.1) OWF*(-, AMw] :=0W[(wo F)dFy A ... NdF,)

= d[(woF)(Z(—l)jlaAFj dF, A...AJEA...Aanﬂ.
j=1
PrOOF. We have, using formula (3.3)
MF(-,\)w] = [Z(ajw oF) 5‘>\Fj] dFy N ... NdF,

Jj=1
n

+(woF) {Z(njld(a@- AFy A .. NdFjA ... A an)}
j=1

Z 1)1 (8w o F)dF; NO\F;dFy A ... ANdF; A ... NdF,

<.
[

4 (woF) {Z(—nﬂ'—ld(a@- AFy A ... NdFjA ... A an)}
j=1

S o ryan]

j=1 k=1
Aa)\Fde1/\.../\dFj/\...Aan

n

+(woF) {Z(—njld(a@- AFy A .. NdFjA ... A an)}
=1

J
woF/\(Z 1)/ 9y F; dFy A .AJE—A...Aan>

J

- 117

+(woF d(Z )= 18>\Fde1/\.../\57}?j/\.../\an>
j=1

n

:d[(woF)<Z(—l)j_18>\Fde1/\.../\LTZ*'\’]-/\.../\anﬂ. O
j=1

Like in the previous section, one deduces from Theorem 5.1 the following

invariance result.
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COROLLARY 5.2. Letw =wdxi A... Ndx, be a differential n-form of class
C!' in the open set D C R", G C R™ be open and bounded and F:G x [a,b] — D
be of class C2. If, for each \ € [a,b], one has

(5.2) suppw N F(-,A)(0G) = 0,

then the integral

(5.3) /GF(~7A)*w=L[wOF(y, A)] Jac F(y, ) dy
is independent of A on [a,D].

As an application of Corollary 5.2, let us give an elementary proof of a funda-
mental bifurcation result which can be traced to Poincaré [11] and Krasnosel’skii
[5]. Let f:R™ xR — R"™ be continuous and such that f(0, ) = 0 for each A € R,
and consider the family of equations

(5.4) flxz,A)=0.
DEFINITION 5.3. (0, ) is a bifurcation point for (5.4) if
(5.5) (Vr>0)3(x,\) € (B[0,r]\ {0}) x [Ao =7, Ao +7]) : f(z, ) =0.

THEOREM 5.4. Let A:R — L(R™,R") be continuous and R:R™ x R — R
be continuous and such that

(5.6) lim TN

a—=0 || ’

uniformly on compact intervals of R. Assume that there exists a < b such that
(5.7) det A(a) det A(b) < 0.

Then (5.4) with
fz,A) := ANz + R(z, A)

has a bifurcation point in {0} x [a,b].

PRrOOF. Notice first that if (0, Ag) is not a bifurcation point for (5.4), then
there exists r = r(Ag) > 0 such that f(x,\) # 0 for all z € B[0,r]\ {0} and all
A € [Ao — 1, Ao + 7r]. Hence, an easy compactness argument implies that if (5.4)
has no bifurcation point in {0} x [a, b], then

(5.8) (Fr>0)(VzxeB[0;r]\ {0}V A€ la,b]): f(z,A) #0.
Now, by assumptions, there exists a > 0 such that, for all x € R",

|A(a)z|| > allzl|, [A®)z] > o],
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and there exists r; €]0,7] such that, for all € B[0,r1] and all A € [a,b], one
has
o'
1Rz, V]l < ll]]-

Consequently, for all z € 9B(0,71), and all u € [0,1], one has
a
(5.9) lge(z, Wl = [[Ale)x + uR(z,¢)| =2 51 := a1, c=ab.

Now, it follows from relation (5.8) that there exists as > 0 such that, for all
x € 0B(0,7r1) and all \ € [a,b], one has

1f (2, M = aa.

Let a3 := min{ay,as} and w € C1(R™",R;) be such that suppw C B(0,a3)
and

(5.11) / w(z)de = 1.

A first application of Corollary 5.2 to the family of pull-backs f(-,\), A € [a,b]
implies that

(5.12) /B o o D @) (. 0) dy = / (wo £)(y,b) Jac f(y,b) dy.

B(0,r)
A second application of Corollary 5.2 to the families of pull-backs g,(-,u),
gv(+, ), 1 € [0,1] implies that

U o 00 () e f(0.0) dy
:/ (woga)(y,1) Jacga(-,1)dy
B(0,r)
= / (wo ga)(y,0)Jacg.(-,0)dy
B(0,r)
= / (wo A(a))(y) det A(a) dy = signdet A(a),
B(0,r)
ey o o DD S b) dy
:/ (wo gb)(y, 1) Jac gy( -, 1) dy
B(0,r)
= / (wo gp)(y,0) Jacgy(-,0) dy
B(0,r)

= / (wo A(D))(y) det A(b) dy = signdet A(b).
B(0,r)

where we have used the change of variables rule in a multiple integral and condi-
tion (5.11). The contradiction follows from relations (5.12)—(5.14) and assump-
tion (5.7). O
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6. The case of a k-cocycle

Let the differential k-form
w = Z Wiy .4y d.i?il VANPAN dxik
1<i1 <. < <n

be of class C'! in an open set D C R™. Recall that w is a k-cocycle if and only if
relations (2.1) hold. Let G C R™ be open and let F: G X [a,b], (y,A) — F(y,\)
be of class C2.

THEOREM 6.1. Ifw is a k-cocycle in D, then, with 1 <iq,... i, <n,

(6.1) W[F(-,\)*w] ::a{ > (wil,,,ikoF)dFil/\.../\dFik]

11 <...<1p
:d[ Z

11 <...<tg

k
’UJZ1 ,kOFZ ‘7 18>\FZJdF“/\/\dF,J/\/\dFZk:|
j=1

PRrOOF. To simplify some heavy notations in this proof, we write
S Y Y Y
I 1<iy <...<ip<n J 1<ji1<...<jr4+1<n

and, for 1 <4dy,...,4,...,ig <nand 1 <j1,... 01, ,Jktr1 < N, We set
[dF,) = dF,, A...ANdF,, A...NdF,,, [dF;]=dF;, A...NdF;, A ...\ dF

Jk+1"

We have, using formula (3.1),
k
(6.2) aA[F(.,A)*w]:d{z (Wi, © F) Y (1) ONF;, | dFZ,]}
I =1

+ Z Z(ﬁjwiln_ik o F)@AFJ- dFil VANPAN szk

I j=1

- ; d(wi,..iy, o F {

M?r

VLo, | dF“]} .
=1

Now

n

ZZ@w“ i O FYONF; dFy, A ... NdF;,
I

Jj=1

=" 3" jwi..ip 0 F)ONEFj dF;, M. AdF,

I j<iy
+ Z(@ilwil_“ik o F)a,\F,»l th VANAN szk
I

+ Z Z (8]'101'1“_% o F)@AF]» dFil A A szk

I i1<j<i2
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+ 3 (Oiwi,..i, 0 F)ONFi, dF;, AL AdF;, + ...

+Z Z ((%U/“Zk OF)a)\Fj dFi1 /\~~'/\dFik

I ip_1<j<ig

+ 3 (Oiwiy. iy © F)OAF;, dFy, A ... AdF;,
I

I ix<jg
Grouping the terms of similar nature and renaming the multi-indices, we obtain
(6.3) D> (9jwi,. i, 0 F)OAF;dF;, A ... NdF;,
I j=1
k+1

Z Wiy Fiedinga F)a/\F]'z [dFjL}
J

1

+

~

+ Z Z 6”1111'1,,_% ] F)a)\F“ dFil AN szk
I

=1

On the other hand, we have

Yt ) 2 [, )

=1
k
= > (0jwi,...i, o F) dFj A [Z VLN, | dFil]}
I 7 =1
k
222(—1)1‘1<Z+ oo+t ) )(ajwn...ikOF)aan [dF,]
I I=1 7<i1 i1 <j<iz 1 —1<J<1;
k
+ 33 (=) By wi, iy © F)ONF, [dF]
I I=1
k
153> SEE (I DERSHED D [T TN A !
I i=1 <j<ii+1 i <j

Renaming the indices, we obtain

Y o F) A [Scan, )

=1

k
- Z Z )~ Z 01 W5 gy iyr © F) ONEijis [dFJm]

J2<...<Jr+1 =1 J1<Jj2

+ Z Z(fl)lil Z (aj2wj1j213~--jk+1oF)

J1<j3<...<jr41 l=1 J1<Jj2<Js
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’ 8>\F]‘z+1 (* ) [dFJLJrl]

+ Z Z(il)lil Z (ajle1~--ﬁ-~~jk+1 OF)

1< <1< <Gy =1 Ji—1<j1<ji+1

'8>\sz+1( )l 1[dFJl+1]
k
I =1
k
1—

o 20T Y Gy, e o B
1< <Gig1 <o =1 <iry1<jit2

- O\ jz+1< )l 1[dFJz+1]
+ Z Z(_l)l_l Z (ajz+1wj1mjk )aA Jl+1( )k 1[dF]L+1
J1<...<jk 1=1 Ik <Jk+1
k l

:Z(_l)zflzz( 1)%~ 1(515“)]1.4.]5...]“1 F)@Aij[dle]
=1 J s=1
k

+ )Y (Oswi, iy 0 F)OAF;, dF;, A ... NdF,

I I=1

k k+1
+ l 12 Z ]‘ G1eeseedhtl F)(?)\Fjl+1[dFJL+1]

l:l J s=l+2

k
_122 35 J1edse ]k+1 )8)‘ 3k+1[dF-7k+1]
J s=1

(ailwil...ik o F)@AF“ dEl A...NdF;

1k

+
-]
M-

=1
k+1 .
S, o F)ONE, [F,]
J s=2
k k+1
l 1
+Z Z Wiy Fadin F)aAFjHl[dFﬂHl]
=1 J s= 1
k—1
2l 1
Z * .]l+1wj1 Girteedigr O )8/\ ]l+1[dF]l+1}
=1 J

Using relations (2.1), this implies that

k
Zd('wil‘..ik o F) A {Z(—l)l_laAFn [d/F\“]}

=1
= k ! Z ]k+1wj1---jk ° F)aijde [dF]k+1]
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k
+ Zz(ﬁllw““ﬂ o F)@,\Fil dP’i1 A...NdF;

I =1
+ Z(ajle2~~~jk+l °© F)a)\Fjl [dFJI]
J

k—1
+ Z Z(aj”rlwjln-]TJr\lOF)-uijrl6>‘Fjl+1 [dEj,.]-
=1 J

Regrouping the terms, we find

k

(04) Y dlwns, 0 F) A | Y100, [0F)
I =1
k+1 -
= ZZ(aj,wjl__ﬁmml o F)O\Fj, [dF},]
J =1

k
+ Z Z(@ilwilmik o F)(?AFZ', dFi1 VAN dFik'
I i=1

Comparing formulas (6.3) and (6.4) finishes the proof. O

An interesting consequence of Theorem 6.1 is the following result on the
invariance of an integral. For the differential k-form

1<i1<..<ix<n

define the support of w by

supp w = U swpwi i
1<i1<...<ip<n

COROLLARY 6.2. Let w be a differential k-cocycle of class C* in the open
set D C R", G C R* be open and bounded and F: G x [a,b] — D be of class C2.
If, for each X\ € [a,b], one has
(6.5) suppw N F(-,N\)(0G) = 0,

then the integral

(6.6) /G F(- 0w

is independent of A on [a,].
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PRrOOF. Using Leibniz rule, Theorem 6.1 and Stokes theorem, we get, with

k
o = Z (w“zk OF) Z(—l)j_l&\Fi] dF“ /\/\szJ /\-~-/\dFik7

11 <...<ig j=1

8A[/C:F(~,)\)*w} :/GaA[F(.,A)*w]:/Gda:/ma:o. O

7. Liouville theorem

Let v: R™ — R" be of class C! and, for each y € R", let 2: [0, 7] x R™ — R",
(t,y) — xz(t,y) be the unique solution of the Cauchy problem

dx

(7.1) i o(t,z), x(0)=y,

so that, for each (¢,y) € [0,T] x R™, we have

(7.2) Opx(t,y) = v[t, z(t,y)].

If w=dy; A...Ady, is the volume n-form, then, for each ¢ € [0, T,

(7.3)  Jx(t, ) 'w=dxi(t, - )N... ANdxn(t, ) = Jacz(t, - )(y)dyr A ... A dyn,
where, for each fixed ¢t € [0,7T], Jacz(t, -) is the Jacobian of z(t, -). For each

fixed ¢, divo(t, -) = 2?21 0;v;(t,z). The following result can be traced to
Liouville [7] (see also [1]).

THEOREM 7.1. For each t € [0,T], we have
(7.4) O{[z(t, )] w} = [x(t, )]*[dive(t, - ) dyr A ... A dyy]
or equivalently
(7.5) Oldzi(t, ) A ... Adxy(t, -)] = divolt, xz(t, )] dzi(t, ) A... Adaa(t, ),
or equivalently

(7.6) O Jacz(t,y) = divolt, z(t, y)] Jac x(t, y).
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ProOF. Using formulas (3.2) and (7.2), we get
O {[x(t, )*w} = dy[dar(t, ) A ... Adan(t, -)]

=Y day(t, )AL AdOr(t, )AL A dag(t, )

= Zdacl(t7 NNt x(t, )] A LA dag (2 )

= del(t, DALLA [Z@kvj[t,xj(t, Ndzr(t, )| AL Aday(t, )
j=1 k=1

= {Zn:ajvj[t’xj(t, -)]] dai(t, ) A Adzy(t, -)

=[z(t, )" [dive(t, - ) dyr A ... A dyy]
=divolt,z(t, - )] dz1(t, - )AL  Adzp(t, -)
=divolt,z(t, - )] Jacz(t, - ) dyi A ... A dyn.

and the three formulas easily follow. O

8. Helmholtz theorem

We present here a n-dimensional version of Helmholtz theorem in hydrody-
namics [4], [6], [11]. Let

(8.1) z:[0,T] x R* = R",  (t,y) — x(t,y)

be of class C2. For n = 3, in the hydrodynamics setting, it represents the position
at time ¢ of a particule located at y for t = 0 (Lagrange’s notations). Let

(8.2) w: [0, 7] x R® = R", (t,z) — u(t,x)

be of class C!. For n = 3, in the hydrodynamics setting, it represents the velocity
of a point of the fluid located in x at time ¢ (Euler’s notations). Consequently,
we have, for all (¢,y) € [0,7] x R™,

(8.3) ult, x(t, y)] = Owx(t, y),
Assume that there exists a function v: [0, T] x R™ — R of class C! such that, for
all (¢t,y) € [0,T] x R™, one has
d
(8.4 S ult ot )} = Varlt, 2(t,)]

For n = 3, in the hydrodynamics setting, those are the equations of motion of
the fluid, under the assumption that the external forces depend upon a potential
and that the density depends only of the pressure.



32 J. MAWHIN

LEMMA 8.1. For each t € [0,T], one has

5 o [ w]) - at[zw s |

PRrROOF. Using formulations (3.2), (8.3) and (8.4), we get

Zujtz )] da; (¢, .)}

Oy

Z[dt{uﬂx W dos(t, ) + gttt )] Olday e, )]

1

BN
Il

I

[05[t, (¢, )] d; (L, ) +ujlt, x(t, -)] d{dpa;(t, -)}]

~
I
—

+Zujtx ) dujlt, z(t, -)]

. 52“?[““’ 1) 0

Il
S
| — |
<
~

Let ~v: [a,b] — R™ be a 1-cycle of class C? (i.e. v(0) = (1)), so that, for each
fixed t € [0,7T], z(t,(-)) is the 1-cycle of class C? which is the image of ([a, b])
at time ¢ under the motion of the fluid. Let us consider now the circulation of
the velocity field along z(¢,~(-)),

(3.6) c() / ) Zug dy;.

THEOREM 8.2. The integral (8.6) is constant on [0,T)].

PROOF. We have, from Leibniz’ rule and formula (8.5),

- [ "o, [; wltalt. ()] das 615

/OTd[w[t,’Y(S)]JFZWM] ~0, O
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