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WEAK SOLUTIONS TO 3-D CAHN–HILLIARD SYSTEM
IN ELASTIC SOLIDS

Irena Pawłow — Wojciech M. Zajączkowski

Abstract. In this paper we prove the existence and some time regular-

ity of weak solutions to a three-dimensional (3-D) Cahn–Hilliard system

coupled with nonstationary elasticity. Such nonlinear parabolic-hyperbolic
system arises as a model of phase separation in deformable alloys. The

regularity result is based on the analysis of time differentiated problem by

means of the Faedo–Galerkin method. The obtained regularity provides
a first step to the proof of strong solvability of the problem to be presented

in a forthcoming paper [22].

1. Introduction

The present paper is concerned with the existence and regularity of weak so-
lutions to a three-dimensional (3-D) Cahn–Hilliard system coupled with nonsta-
tionary elasticity. Such system arises as a model of phase separation in a binary
deformable alloy quenched below a critical temperature. The problem under
consideration has the following form:

(1.1)

utt −∇ ·W,ε(ε(u), χ) = b in ΩT = Ω× (0, T ),
u|t=0 = u0, ut|t=0 = u1 in Ω,

u = 0 in ST = S × (0, T ),
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(1.2)

χt −∇ ·M∇µ = 0 in ΩT ,
χ|t=0 = χ0 in Ω,

n ·M∇µ = 0 on ST ,

(1.3)
µ = −∇ · Γ∇χ+ ψ′(χ) +W,χ(ε(u), χ) in ΩT ,
n · Γ∇χ = 0 on ST .

Here Ω ⊂ R3 is a bounded domain with a smooth boundary S, occupied by
a body in a reference configuration with constant mass density % = 1; n is the
unit outward normal to S, and T > 0 is an arbitrary fixed time. The body is
a binary a− b alloy.
The unknowns are the fields u, χ and µ, where u: ΩT → R3 is the displace-

ment vector, χ: ΩT → R is the order parameter (phase ratio) and µ: ΩT → R is
the chemical potential difference between the components, shortly referred to as
the chemical potential.
The second order tensor

ε = ε(u) =
1
2
(∇u+ (∇u)T )

denotes the linearized strain tensor.
In case of a binary a−b alloy the order parameter is related to the volumetric

fraction of one of the two phases, characterized by different crystalline structures
of the components, e.g. χ = −1 is identified with the phase a and χ = 1 with
the phase b.
The function W (ε(u), χ) denotes the elastic energy defined by

(1.4) W (ε(u), χ) =
1
2
(ε(u)− ε(χ)) ·A(ε(u)− ε(χ)).

The corresponding derivatives

W,ε(ε(u), χ) = A(ε(u)− ε(χ)),
W,χ(ε(u), χ) = −ε′(χ) ·A(ε(u)− ε(χ))

represent respectively the stress tensor and the elastic part of the chemical po-
tential.
The fourth order tensor A = (Aijkl) denotes a constant elasticity tensor

given by

(1.5) ε(u) 7→ Aε(u) = λtrε(u)I+ 2µε(u),

where I = (δij) is the identity tensor, and λ, µ are the Lamé constants with
values within the elasticity range (see Section 2). The form (1.5) refers to the
isotropic, homogeneous medium with the same elastic properties of the phases.
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The second order tensor ε(χ) denotes the eigenstrain, i.e. the stress free strain
corresponding to the phase ratio χ, defined by

(1.6) ε(χ) = (1− z(χ))εa + z(χ)εb,

with εa, εb denoting constant eigenstrains of the phases a, b, and z:R → [0, 1]
being a sufficiently smooth interpolation function (called shape function) satis-
fying

(1.7) z(χ) = 0 for χ ≤ −1 and z(χ) = 1 for χ ≥ 1.

Furthermore, the function ψ:R → R denotes the chemical energy of the
system at zero stress. This function depends on temperature and is convex
above a critical temperature and a nonconvex for temperatures less than the
critical one. Here we assume it in the simplest double-well form

(1.8) ψ(χ) =
1
4
(1− χ2)2

with two minima at χ = −1 and χ = 1.
The second order tensors M = (Mij) and Γ = (Γij) represent respectively

the mobility matrix and the interfacial energy matrix. For simplicity, we shall
confine ourselves to the isotropic, homogeneous situation assuming that

(1.9) M =MI, Γ = ΓI, M = Γ = 1,

with positive constants M , Γ normalized to unity.
System (1.1)–(1.3) represents respectively the linear momentum balance, the

mass balance and a generalized equation for the chemical potential. In a thermo-
dynamical theory due to Gurtin [10] equation (1.3) is identified with a microforce
balance. The free energy density underlying system (1.1)–(1.3) has the Landau–
Ginzburg–Cahn–Hilliard form

(1.10) f(ε(u), χ,∇χ) =W (ε(u), χ) + ψ(χ) + 1
2
∇χ · Γ∇χ,

with the three terms on the right-hand side representing respectively the elastic,
chemical and interfacial energy.
The remaining quantities in (1.1)–(1.3) have the following meaning: b: ΩT →

R3 represents the external body force, and u0,u1: Ω → R3, χ0: Ω → R are the
initial conditions respectively for the displacement, the velocity and the order
parameter.
The homogeneous boundary conditions in (1.1)–(1.3) are chosen for the sake

of simplicity. The condition (1.1)3 means that the body is fixed at the bound-
ary S, (1.2)3 reflects the mass isolation at S, and (1.3)2 is the natural boundary
condition for (1.10).
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Before discussing the results of the paper let us place our study in the present
theory of Cahn–Hilliard systems in elastic solids. In recent years such systems
have been the subject of many different modelling, mathematical and numeri-
cal studies, we refer e.g. to [18], [19], [1], [21] for up to date references. It is
known from the materials science literature that the elastic effects have a pro-
nounced effect on the microstructure evolution of the phase separation process
and consequently on the resulting material properties.

The most general setting of the Cahn–Hilliard system coupled with elastic-
ity, accounting for additional anisotropic, heterogeneous and kinetic effects, was
derived by Gurtin [10] within the frame of his thermodynamical theory of phase
transitions based on a microforce balance. System (1.1)–(1.3) represents a sim-
plified version of Gurtin’s model with neglected anisotropic, heteregeneous and
kinetic effects; for more details see [1] where the full Gurtin’s model was studied.

In view of the fact that the mechanical equilibrium is usually attained on
a much faster time scale than diffusion in most of the studies a quasi-stationary
approximation of (1.1)1, obtained by neglecting the inertial term utt, was as-
sumed. Various variants of the Cahn–Hilliard system with quasi-stationary elas-
ticity were analyzed by Garcke [7]–[9], Bonetti et al. [2], Carrive et al. [4]
and [5], Miranville [14]–[17]. We stress on the fact that the results of [7], [8], [2]
included mathematically difficult case of nonhomogeneous elasticity with tensor
A = A(χ) depending on the order parameter.

The Cahn–Hilliard system with nonstationary elasticity was studied in [15]
and [1] where the existence and properties of weak solutions were examined, and
in [21] where the classical solvability was proved in 1-D case. It is clear that
with the quasi-stationary hypothesis the hyperbolic elasticity system is replaced
by the elliptic one and thereby the mathematical analysis becomes qualitatively
different.

We point out that the study of the Cahn–Hilliard problem with nonstationary
elasticity — apart from the mathematical interest on its own — is of special
importance for the initial stages of phase separation at which the formation of
the microstructure is on a very fast time scale.

The goal of the present paper is to prove the existence and some regularity of
weak solutions to system (1.1)–(1.3). Our ultimate aim is to obtain the existence
and uniqueness of a strong solution to (1.1)–(1.3), i.e. such a solution that its all
derivatives appearing in the equations are at least in L2. The strong solvability
theory will be presented separately in [22]. It is based on the regularity results
proved in the present paper together with some additional time regularity. More
precisely, having sufficiently high time regularity we shall apply the standard
elliptic regularity theory to conclude further space regularity, and consequently
the strong solvability.



Weak Solutions to 3-D Cahn–Hilliard System 351

The main results of the present paper were outlined in [23].
As was already mentioned, the strong solvability of system (1.1)–(1.3) in

1-D case was proved in [21]. The strong solvability of the single Cahn–Hilliard
equation in 1-D and 3-D cases was analyzed first by Elliott and Zheng [6].
We point out that in three space dimensions the coupled system (1.1)–(1.3)

shows features that make its analysis much more difficult than in one-dimensional
setting. The arguments used by the authors in the single space dimension in [21],
based on the space regularity of the wave equation, do not extend to the 3-D
case.
The key idea of the regularity theory presented here and in the forthcoming

paper [22] consists in the analysis of time-differentiated versions of problem (1.1)–
(1.3) which yield solutions with sufficiently high time derivatives. The analysis
is performed with the help of the Faedo–Galerkin approximation. The procedure
is straightforward except for some difficulties of technical nature due to many
nonlinear terms that appear in the system after differentiation with respect to
time variable.
For further analysis it is convenient to introduce a simplified formulation of

problem (1.1)–(1.3) which results on account of particular constitutive equations
(1.4)–(1.6) and (1.9). Let Q be the linear elasticity operator defined by

(1.11) u 7→ Qu = ∇ ·Aε(u) = µ∆u+ (λ+ µ)∇(∇ · u).

Moreover, let us denote

(1.12) B = −A(εb − εa), D = −B · (εb − εa), E = −B · εa,

where B = (Bij) is a symmetric second order tensor, and D, E are two scalars.
With such a notation we have

(1.13) ∇·W,ε(ε(u), χ) = ∇·Aε(u)−∇·A(εa+z(χ)(εb−εa)) = Qu+z′(χ)B∇χ,

and

W,χ(ε(u), χ) = z′(χ)(B · ε(u) +Dz(χ) + E),

so that (1.1)–(1.3) simplifies to

(1.14)

utt −Qu = z′(χ)B∇χ+ b in ΩT ,

u|t=0 = u0, ut|t=0 = u1 in Ω,

u = 0 on ST ,

(1.15)

χt −∆µ = 0 in ΩT ,
χ|t=0 = χ0 in Ω,

n · ∇µ = 0 on ST ,
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(1.16)
µ = −∆χ+ ψ′(χ) +W,χ(ε(u), χ) in ΩT ,
n · ∇χ = 0 on ST ,

with W,χ(ε(u), χ) given by (1.13)2.
Let us note that the combined systems (1.15) and (1.16) yield the following

Cahn–Hilliard problem

(1.17)

χt +∆2χ = ∆[ψ′(χ) + z′(χ)(B · ε(u) +Dz(χ) + E)] in ΩT ,
χ|t=0 = χ0 in Ω,

n · ∇χ = 0 on ST ,

n · ∇∆χ = z′(χ)n · ∇(B · ε(u)) on ST ,

coupled with the elasticity system (1.14). It is seen that the problems are coupled
not only through the right-hand sides but also through the boundary conditions.
Moreover, by definition (1.7) of the shape function z, the problems decouple for
χ ≤ −1 and χ ≥ 1. We point out that the boundary coupling is characteristic
for the multidimensional problem and does not appear in its one-dimensional
setting. In fact, in 1-D case assuming that b = 0 on ST , it follows from (1.14)1,
(1.14)3 and (1.17)3 that uxx = 0 on ST , and consequently condition (1.17)4
yields χxxx = 0 on ST . This fact was used in [21] in the analysis of the 1-D
version of problem (1.1)–(1.3).
The plan of the paper is as follows: In Section 2 we present our main as-

sumptions and results stated in Theorems 2.1 and 2.2. Theorem 2.1 asserts
the existence of a weak solution to problem (1.1)–(1.3). Theorem 2.2 provides
a time-regularity result obtained by differentiating (1.1)–(1.3) with respect to
time variable. In Section 3 we introduce a Faedo–Galerkin approximation of
(1.1)–(1.3). We derive primary energy estimates with constants independent of
approximation and time, and investigate their implications. In Section 4 we
consider a time-differentiated version of the approximate problem and establish
the first regularity estimates with constants uniform in approximation but de-
pending on time. The subsequent sections 5 and 6 provide the existence proofs
of Theorems 2.1 and 2.2 respectively. The proofs are based on the previously
established uniform a priori estimates which, by standard arguments, allow us
to pass to the limit in the corresponding versions of the approximate problems.
We remark that having in mind a future examination of the long time be-

haviour of solutions we record time-dependence of various constants. The ob-
tained regularity estimates turn out to depend exponentially on time, thus in
the present form are not useful for the long time analysis. We point out that
in long-time analysis the crucial point is to show property that if χ(0) ∈ [−1, 1]
then χ(t) ∈ [−1, 1] for all t > 0, in other words that the order parameter at-
tains physically meaningful values for all times. This question is left open in the
present paper.
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We use the following notation:

x = (xi)i=1,2,3 ∈ Ω ⊂ R3 the material point,

f,i =
∂f

∂xi
, ft =

df

dt
the material space and time derivatives,

ε = (εij)i,j=1,2,3, W,ε(ε, χ) =
(
∂W (ε, χ)
∂εij

)
i,j=1,2,3

,

W,χ(ε, χ) =
∂W (ε, χ)

∂χ
, ψ′(χ) =

dψ(χ)
dχ

.

For simplicity, whenever there is no danger of confusion, we omit the arguments
(ε, χ). The specification of tensor indices is omitted as well.
Vector- and tensor-valued mappings are denoted by bold letters.
The summation convention over repeated indices is used, as well as the no-

tation: for vectors a = (ai), ã = (ai) and tensors B = (Bij), B̃ = (B̃ij),
A = (Aijkl), we write

a · ã = aiãi, B · B̃ = BijB̃ij ,
AB = (AijklBkl), BA = (BijAijkl),

|a| = (aiai)1/2, |B| = (BijBij)1/2.

The symbols ∇ and ∇· denote the gradient and the divergence operators with
respect to the material point x. For the divergence of a tensor field we use the
convention of the contraction over the last index, e.g. ∇ · ε(x) = (εij,j(x)).
We use the standard Sobolev spaces notation Hm(Ω) = Wm2 (Ω) for m ∈ N.

Besides,

H10 (Ω) = {v ∈ H1(Ω) : v = 0 on S}, H2N (Ω) = {v ∈ H2(Ω) : n ·∇v = 0 on S},

where n is the outward unit normal to S = ∂Ω, denote the subspaces respectively
of H1(Ω) and H2(Ω), with the standard norms of H1(Ω) and H2(Ω).
We denote by bold face letters the spaces of vector- or tensor-valued func-

tions, e.g.

L2(Ω) = (L2(Ω))n, H1(Ω) = (H1(Ω))n, n ∈ N;

if there is no confusion we do not specify dimension n.
Moreover, we write

‖a‖L2(Ω) = ‖ |a| ‖L2(Ω), ‖a‖H1(Ω) = ‖ |a| ‖L2(Ω) + ‖ |∇a| ‖L2(Ω)

for the corresponding norms of a vector-valued function a(x) = (ai(x)); similarly
for tensor-valued functions.
As common, the symbol ( · , · ) denotes the scalar product in L2(Ω). For sim-

plicity, we use the same symbol to denote scalar products in L2(Ω) = (L2(Ω))n,
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e.g. we write

(a, ã) =
∫
Ω
a(x)ã(x) dx, (a, ã) =

∫
Ω
ai(x)ãi(x) dx,

(B, B̃) =
∫
Ω
Bij(x)B̃ij(x) dx.

The dual of the space V is denoted by V ′, and 〈 · , · 〉V ′,V stands for the duality
pairing between V ′ and V .
By c and c(T ) we denote generic positive constants different in various in-

stances, depending on the data of the problem and domain Ω; whenever it is of
interest their dependence on parameters is specified. The argument T indicates
the time horizon dependence. Moreover, δ denotes a generic, sufficiently small
positive constant.

2. Assumptions and main results

System (1.1)–(1.3) (in simplified form (1.14)–(1.16)) is studied under the
following assumptions:

(A1) Ω ⊂ R3 is a bounded domain with the boundary S of class at least C2;
T > 0 is an arbitrary final time.

(A2) The coefficients of the elasticity operator Q, defined by (1.11), satisfy

(2.1) µ > 0, 3λ+ 2µ > 0 (elasticity range).

These two conditions assure the following:

(i) Coercivity and boundedness of the operator A

(2.2) c|ε|2 ≤ ε ·Aε ≤ c|ε|2 for all ε ∈ S2,

where S2 denotes the set of symmetric second order tensors in R3, and

c = min{3λ+ 2µ, 2µ}, c = max{3λ+ 2µ, 2µ};

(ii) Strong ellipticity of the operatorQ (property holding true under weaker
assumption µ > 0, λ + 2µ > 0, see [24, Section 7]). Thanks to this
property the following estimate holds true (see [20, Lemma 3.2]):

(2.3) c‖u‖H2(Ω) ≤ ‖Qu‖L2(Ω) for u ∈H2(Ω) ∩H10(Ω)

with constant c depending on Ω.

Hence, since clearly ‖Qu‖L2(Ω)≤c‖u‖H2(Ω), it follows that the norms ‖Qu‖L2(Ω)
and ‖u‖H2(Ω) are equivalent on H2(Ω) ∩H10(Ω).
The next two assumptions concern the ingredients of the free energy (see

(1.10) with Γ = I)

(2.4) f(ε(u), χ,∇χ) =W (ε(u), χ) + ψ(χ) + 1
2
|∇χ|2.
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(A3) The elastic energyW (ε(u), χ) is given by (1.4)–(1.6). The interpolation
function z:R → [0, 1] in definition (1.6) of ε(χ) is at least of class C1

with the property (1.7). Hence,

(2.5) 0 ≤ z(χ) ≤ 1 and |z′(χ)| ≤ c for all χ ∈ R.

(A4) The chemical energy ψ(χ) has the form of the standard double-well
potential (1.8), so

(2.6) ψ′(χ) = χ3 − χ, ψ′′(χ) = 3χ2 − 1, ψ′′′(χ) = 6χ.

Moreover, for simplicity it is assumed that

(A5) The mobility tensor M and the interfacial tensor Γ are the identity
matricesM = I, Γ = I.

The second order symmetric tensor B and the scalars D, E are defined
in (1.12).
We note that assumptions (A3) and (A4) imply the following bounds for all

ε ∈ S2 and χ ∈ R:

(2.7)

|ε(χ)| ≤ |εa|+ |εb| ≤ c,
|ε′(χ)| = |z′(χ)(εb − εa)| ≤ c,

|W (ε, χ)| ≤ 1
2
c|ε− ε(χ)|2 ≤ c(|ε|2 + 1),

|W,ε(ε, χ)| + |W,χ(ε, χ)| ≤ c(|ε|+ 1),
|ψ(χ)| ≤ c(χ4 + 1), |ψ′(χ)| ≤ c(|χ|3 + 1)

with some positive constant c. Moreover, by the Young inequality, we have

(2.8) W (ε, χ) ≥ 1
2
c|ε− ε(χ)|2 ≥ 1

4
c|ε|2 − 1

2
c|ε(χ)|2 ≥ 1

4
c|ε|2 − c(|εa|2 + |εb|2),

and
ψ(χ) ≥ 1

8
χ4 − 1

4
.

This shows that free energy (2.4) satisfies the following structure condition

f(ε, χ,∇χ) ≥ 1
4
c|ε|2 + 1

8
χ4 +

1
2
|∇χ|2 − c(|εa|2 + |εb|2)−

1
4

(2.9)

≥ cf (|ε|2 + χ4 + |∇χ|2)− c′f

with constants cf > 0 and c′f given by

cf = min
{
1
4
c,
1
8

}
, c′f = c(|εa|2 + |εb|2)−

1
4
.

This bound plays the key role in the derivation of energy estimates for problem
(1.1)–(1.3) (see Section 4).
For further purposes we recall here the following two additional properties of

the operator Q:
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(2.10) Q is selfadjoint on H2(Ω) ∩H10(Ω), i.e.

(Qu,v) = −µ(∇u,∇v)− (λ+ µ)(∇ · u,∇ · v) = (u,Qv)

for u,v ∈H2(Ω) ∩H10(Ω),

(2.11) −Q is positive on H2(Ω) ∩H10(Ω), i.e.

(−Qu,u) = µ‖∇u‖2L2(Ω) + (λ+ µ)‖∇ · u‖
2
L2(Ω) ≥ 0

for u ∈H2(Ω) ∩H10(Ω).

We state now the main results of the paper.

Theorem 2.1 (Weak solutions). Let assumptions (A1)–(A5) hold true. Mo-
reover, let the data satisfy

(2.12) b ∈ L2(ΩT ), u0 ∈H10(Ω), u1 ∈ L2(Ω), χ0 ∈ H1(Ω).

Then there exist functions (u, χ, µ) such that

(2.13)

u ∈ L∞(0, T ;H10(Ω)), ut ∈ L∞(0, T ;L2(Ω)),
utt ∈ L2(0, T ; (H10(Ω))′),

χ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2N (Ω)), χt ∈ L2(0, T ; (H1(Ω))′),
µ ∈ L2(0, T ;H1(Ω)),

u(0) = u0, ut(0) = u1, χ(0) = χ0,

which satisfy problem (1.14)–(1.16) in the following weak sense∫ T
0
〈utt,η〉(H10(Ω))′,H10(Ω) dt+

∫ T
0
(Aε(u), ε(η)) dt =

∫ T
0
(z′(χ)B∇χ+ b,η) dt

for all η ∈ L2(0, T ;H10(Ω)),

(2.14)
∫ T
0
〈χt, ξ〉(H1(Ω))′,H1(Ω) dt+

∫ T
0
(∇µ,∇ξ) dt = 0

for all ξ ∈ L2(0, T ;H1(Ω)),

∫ T
0
(µ, ζ) dt = −

∫ T
0
(∆χ, ζ) dt+

∫ T
0
(ψ′(χ) +W,χ(ε(u), χ), ζ) dt

for all ζ ∈ L2(0, T ;L2(Ω)).

Moreover, (u, χ, µ) satisfy a priori estimates:

(2.15) ‖ut‖L∞(0,T ;L2(Ω)) + ‖ε(u)‖L∞(0,T ;L2(Ω)) + ‖χ‖L∞(0,T ;L4(Ω))
+ ‖∇χ‖L∞(0,T ;L2(Ω)) + ‖∇µ‖L2(ΩT ) + ‖χt‖L2(0,T ;(H1(Ω))′) ≤ c0,



Weak Solutions to 3-D Cahn–Hilliard System 357

‖u‖L∞(0,T ;H10(Ω)) + ‖χ‖L∞(0,T ;H1(Ω)) ≤ c1,(2.16)

‖χ‖L2(0,T ;H2N (Ω)) + ‖µ‖L2(0,T ;H1(Ω)) ≤ c2(T ),(2.17)

‖utt‖L2(0,T ;(H10(Ω))′) ≤ c3(T ),(2.18)

with positive constants

c0 = c(‖u0‖H1(Ω), ‖u1‖L2(Ω), ‖χ0‖H1(Ω), ‖b‖L1(0,T ;L2(Ω)), cf , c
′
f ),

c1 = c(c0,Ω), c2(T ) = c(c1)T 1/2, c3(T ) = c(c0, ‖b‖L2(ΩT ))T
1/2.

The second theorem states a time-regularity result which is concluded from
a time-differentiated version of problem (1.14)–(1.16).
In compatibility with equations (1.14)1, (1.15)1 and (1.16)1, we define the

following initial conditions corresponding respectively to utt(0), χt(0) and µ(0):

(2.19)

u2 := Qu0 + z′(χ0)B∇χ0 + b(0),

χ1 := ∆µ0,

µ0 := −∆χ0 + ψ′(χ0) + z′(χ0)(B · ε(u0) +Dz(χ0) + E).

Theorem 2.2 (Time regularity). Let (A1)–(A5) hold, the boundary S of
domain Ω be of class C4, and

(2.20) z:R→ [0, 1] be of class C2 with |z′(χ)|+ |z′′(χ)| ≤ c for all χ ∈ R.

Moreover, let the data satisfy

(2.21)

b ∈ H1(0, T ;L2(Ω)),
u0 ∈H3(Ω) ∩H10(Ω), u1 ∈H10(Ω), χ0 ∈ H4(Ω) ∩H2N (Ω),

u2 ∈ L2(Ω), χ1 ∈ L2(Ω), µ0 ∈ H2N (Ω).

Then there exist functions (u, χ, µ) such that

(2.22)

u ∈ L∞(0, T ;H2(Ω) ∩H10(Ω)), ut ∈ L∞(0, T ;H10(Ω)),
utt ∈ L∞(0, T ;L2(Ω)), uttt ∈ L2(0, T ; (H10(Ω))′),

χ ∈ C1/2([0, T ];H2N (Ω)), χt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H2N (Ω)),
χtt ∈ L2(0, T ; (H2N (Ω))′),

µ ∈ L∞(0, T ;H2N (Ω)), µt ∈ L2(ΩT ),
u(0) = u0, ut(0) = u1, utt(0) = u2,

χ(0) = χ0, χt(0) = χ1, µ(0) = µ0,

which satisfy problem (1.14)–(1.16) in the sense of the identities:

(2.23)
∫ T
0
〈uttt,η〉(H1

0(Ω))′,H
1
0(Ω)

dt+
∫ T
0
(Aε(ut), ε(η)) dt

=
∫ T
0
([z′(χ)B∇χ],t + bt,η) dt for all η ∈ H1(0, T ;H10(Ω)), η(T ) = 0,



358 I. Pawłow — W. M. Zajączkowski

(2.24)
∫ T
0
〈χtt, ξ〉(H2N (Ω))′,H2N (Ω) dt =

∫ T
0
(µt,∆ξ) dt

for all ξ ∈ H1(0, T ;H2N (Ω)), ξ(T ) = 0,

(2.25)
∫ T
0
(µt, ζ) dt = −

∫ T
0
(∆χt, ζ) dt+

∫ T
0
([ψ′(χ) +W,χ(ε(u), χ)],t, ζ) dt

for all ζ ∈ H1(0, T ;L2(Ω)), ζ(T ) = 0,

where

(2.26)

[z′(χ)B∇χ],t = z′′(χ)χtB∇χ+ z′(χ)B∇χt,
[ψ′(χ) +W,χ(ε(u), χ)],t =ψ′′(χ)χt + z′′(χ)χt(B · ε(u) +Dz(χ) + E)

+ z′(χ)(B · ε(ut) +Dz′(χ)χt).

In addition, (u, χ, µ) satisfy estimates (2.15)–(2.18) and

(2.27)

‖u‖L∞(0,T ;H2(Ω)) + ‖ut‖L∞(0,T ;H1(Ω)) + ‖utt‖L∞(0,T ;L2(Ω)) ≤ c5(T ),
‖χ‖C1/2([0,T ];H2N (Ω)) + ‖χt‖L∞(0,T ;L2(Ω))
+‖χt‖L2(0,T ;H2N (Ω)) + ‖µ‖L∞(0,T ;H2N (Ω)) ≤ c4(T ),

‖uttt‖L2(0,T ;(H10(Ω))′) + ‖χtt‖L2(0,T ;(H2N (Ω))′) + ‖µt‖L2(ΩT ) ≤ T
1/2c5(T ),

with constants

c4(T ) = c(T 1/2E1(T ) + ‖χ1‖L2(Ω))[exp a(T )]
1/2, c5(T ) = T 1/2c4(T ),

where

E1(T ) = T 1/2‖bt‖L2(ΩT ) + ‖u2‖L2(Ω) + ‖ε(u1)‖L2(Ω), a(T ) = c(c0)T 8 exp(cT ).

Remark 2.3. Integrating by parts with respect to time in identities (2.23)–
(2.25) and using compatibility conditions (2.19) we obtain the standard weak
formulation of (1.14)–(1.16).

3. The Faedo–Galerkin approximation

In this section we introduce a Faedo–Galerkin approximation of problem
(1.1)–(1.3) (in simplified form (1.14)–(1.16)) and derive basic energy estimates.
These estimates are used to prove the existence of weak solutions in Theorem 2.1.
Throughout this section we assume that the domain Ω has the boundary S at
least of class C2.

3.1. Approximation. Let us consider the following two eigenvalue prob-
lems

(3.1) −Qvj = λjvj in Ω, vj = 0 on S, j ∈ N,
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where Q is the elliptic operator defined by (1.11), and

(3.2) −∆wj = λ′jwj in Ω, n · ∇wj = 0 on S, j ∈ N.

We recall that, by virtue of the elliptic regularity theory, if the domain Ω has
the boundary of class Cl, l ∈ N, then the solutions of (3.1) and (3.2) satisfy

vj ∈Hl(Ω), wj ∈ H l(Ω).

We take the family {vj}j∈N as a basis of the space H10(Ω) and the family
{wj}j∈N as a basis of the space H2N (Ω) = {w ∈ H2(Ω) : n · ∇w = 0 on S}.
Such choice is possible thanks to the following properties of (3.1) and (3.2). On
account of (2.10) we have

(3.3) λi(vi,vj) = (−Qvi,vj) = µ(∇vi,∇vj) + (λ+ µ)(∇ · vi,∇ · vj)
= (vi,−Qvj) = λj(vi,vj)

for i, j ∈ N. Identities (3.3) show, by the Poincaré–Friedrichs inequality, that
the family {vj}j∈N is orthogonal in H1(Ω) and L2(Ω) scalar products.
We shall assume that vj are normalized so that (vi,vi) = 1. Thereby the

basis {vj}j∈N becomes orthonormal in L2(Ω) and orthogonal in H1(Ω) scalar
products.
Similarly, the family {wj}j∈N satisfies

λi(wi, wj) = (−∆wi, wj) = (∇wi,∇wj) = (wi,−∆wj) = λj(wi, wj),(3.4)

λiλj(wi, wj) = (∆wi,∆wj) for i, j ∈ N.

Hence, by the Poincaré inequality, it follows that the family {wj}j∈N is orthog-
onal in H2(Ω), H1(Ω) and L2(Ω) scalar products. We normalize wj so that
(wi, wi) = 1. Then the basis {wj}j∈N becomes orthonormal in L2(Ω) and or-
thogonal in H1(Ω) and H2(Ω) scalar products. Furthermore, we assume without
loss of generality that w1 = 1.
For m ∈ N we denote by V0m = span{v1, . . . ,vm}, Vm = span{w1, . . . , wm}

the finite dimensional subspaces, respectively of H10(Ω) and H
2
N (Ω), spanned by

{v1, . . . ,vm} and {w1, . . . , wm}.
Now, let us introduce the following approximation of problem (1.14)–(1.16):

For any m ∈ N find a triple of functions (um, χm, µm) of the form

(3.5)

um(x, t) =
m∑
i=1

emi (t)vi(x),

χm(x, t) =
m∑
i=1

cmi (t)wi(x),

µm(x, t) =
m∑
i=1

dmi (t)wi(x),
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with emi (t), c
m
i (t), d

m
i (t) being determined so that

(3.6)

(umtt ,vj) + (Aε(u
m), ε(vj)) = (z′(χm)B∇χm + b,vj),

(χmt , wj) + (∇µm,∇wj) = 0,
(µm, wj) = −(∆χm, wj) + (ψ′(χm) +W,χ(ε(um), χm), wj),

for j = 1, . . . ,m,

um(0) = um0 , umt (0) = um1 , χm(0) = χm0 ,

where um0 ,u
m
1 ∈ V0m and χm0 ∈ Vm are the projections of u0,u1 respectively,

and χ0 satisfying for m→∞

(3.7)

um0 → u0 strongly in H10(Ω),

um1 → u1 strongly in L2(Ω),

χm0 → χ0 strongly in H1(Ω).

Clearly, (3.6) can be expressed as a system of first order ordinary differential
equations for the coefficients (em1 , . . . , e

m
m), (e

m
1,t, . . . , e

m
m,t), (c

m
1 , . . . , c

m
m), with the

right-hand sides being by assumptions continuous functions of their arguments.
Thus (3.6) has a local in time solution on an interval [0, Tm], Tm > 0. The
uniform in m a priori estimates proved in lemmas below show that Tm = T , i.e.
(3.6) has a solution on the interval [0, T ].

3.2. Energy estimates.

Lemma 3.1. Let (A1)–(A5) hold and the data satisfy

(3.8) u0 ∈H10(Ω), u1 ∈ L2(Ω), χ0 ∈ H1(Ω), b ∈ L1(0, T ;L2(Ω)).

Then a solution (um, χm, µm) to problem (3.6) satisfies the following uniform
estimate

(3.9) ‖umt ‖L∞(0,T ;L2(Ω)) + ‖ε(u
m)‖L∞(0,T ;L2(Ω)) + ‖χ

m‖L∞(0,T ;L4(Ω))
+ ‖∇χm‖L∞(0,T ;L2(Ω)) + ‖∇µ

m‖L2(ΩT ) ≤ c0,

with the constant

c0 = c0(‖u0‖H1(Ω), ‖u1‖L2(Ω), ‖χ0‖H1(Ω), ‖b‖L1(0,T ;L2(Ω)), cf , c
′
f ).

Proof. We derive the energy identity for system (3.6). First, let us note
that, according to (1.13),

z′(χ)B∇χ = −∇ ·A(εa + z(χ)(εb − εa)),

thus an equivalent form of (3.6)1 is

(3.10) (umtt ,vj) + (W,ε(ε(u
m), χm), ε(vj)) = (b,vj).
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Testing (3.10) by umt (t) (i.e. multiplying by e
m
j (t) and summing over j from

j = 1 to j = m) gives

(3.11)
1
2
d

dt
‖umt ‖2L2(Ω) + (W,ε(ε(u

m), χm), ε(umt )) = (b,u
m
t ).

Further, testing (3.6)2 by µm yields

(3.12) (χmt , µ
m) + ‖∇µm‖2L2(Ω) = 0.

Finally, testing (3.6)3 by −χmt (t) and integrating by parts, leads to

(3.13) −(µm, χmt ) +
1
2
d

dt
‖∇χm‖2L2(Ω) + (ψ

′(χm) +W,χ(ε(um), χm), χmt ) = 0.

Summing up (3.11)–(3.13) we arrive at the following energy identity

(3.14)
1
2
d

dt

∫
Ω
|umt |2 dx+

d

dt

∫
Ω

[
W (ε(um), χm) + ψ(χm) +

1
2
|∇χm|2

]
dx

+
∫
Ω
|∇µm|2 dx =

∫
Ω

b · umt dx.

Integration of (3.14) over (0, t) gives

(3.15)
1
2

∫
Ω
|umt |2 dx+

∫
Ω
f(ε(um), χm,∇χm) dx+

∫
Ωt
|∇µm|2 dx dt′

=
1
2

∫
Ω
|um1 |2 dx+

∫
Ω
f(ε(um0 ), χ

m
0 ,∇χm0 ) dx+

∫
Ωt

b · umt′ dx dt′,

with f(ε, χ,∇χ) defined by (2.4). Now, bearing in mind that f(ε, χ,∇χ) satisfies
the structure condition (2.9), we can estimate the left-hand side of (3.15) from
below by

1
2
‖umt ‖2L2(Ω)+cf (‖ε(u

m)‖2L2(Ω)+‖χ
m‖4L4(Ω)+‖∇χ

m‖2L2(Ω))+‖∇µ
m‖2L2(Ωt)−c

′
f .

Further, in view of growth conditions (2.7) and the convergences (3.7), we have∫
Ω
f(ε(um0 ), χ

m
0 ,∇χm0 ) dx ≤ c(‖ε(u0)‖2L2(Ω) + ‖χ0‖

4
L4(Ω) + ‖∇χ0‖

2
L2(Ω) + 1).

Thus the sum of the first two terms on the right-hand side of (3.15) is bounded
from above by a constant depending on ‖χ0‖H1(Ω), ‖u0‖H1(Ω) and ‖u1‖L2(Ω).
Finally, estimating the third term on the right-hand side of (3.15) by∣∣∣∣ ∫

Ωt
b · umt′ dx dt′

∣∣∣∣ ≤ ‖umt′ ‖L∞(0,t;L2(Ω)‖b‖L1(0,t;L2(Ω))
≤ 1
4
‖umt′ ‖2L∞(0,t;L2(Ω)) + ‖b‖

2
L1(0,t;L2(Ω)),

we arrive at the following uniform in m estimate

(3.16)
1
4
‖umt ‖2L2(Ω) + cf (‖ε(u

m)‖2L2(Ω) + ‖χ
m‖4L4(Ω) + ‖∇χ

m‖2L2(Ω))

+ ‖∇µm‖2L2(Ωt) ≤ c
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for t∈(0, T ], with constant c depending only on ‖u0‖H1(Ω),‖u1‖L2(Ω),‖χ0‖H1(Ω),
‖b‖L1(0,t;L2(Ω)) and c′f . This proves the assertion. �

3.3. Further estimates. Clearly, (3.9) implies that

(3.17) ‖χm‖L∞(0,T ;H1(Ω)) ≤ c1

with constant c1 = c(c0,Ω). Hence, by the Sobolev imbedding,

(3.18) ‖χm‖L∞(0,T ;L6(Ω)) ≤ c1.

Further, since um = 0 on ST , it follows from (3.9) by Korn’s inequality that

(3.19) ‖um‖L∞(0,T ;H1(Ω)) ≤ c1.

We note that setting wj = 1 in (3.6)2 (admissible by assumption) yields

(3.20)
d

dt

∫
Ω
χm dx = 0,

which shows that the mean value of χm is preserved∫
Ω
χm(t) dx =

∫
Ω
χm0 dx for t ∈ [0, T ].

This property will be used in later analysis. We remark also that thanks to
(3.20) the structure condition (2.9) on f(ε, χ,∇χ) could be in fact replaced by
a weaker one

f(ε, χ,∇χ) ≥ cf (|ε|2 + |∇χ|2)− c′f .
In such a case, by the Poincaré inequality, estimate ‖∇χ‖L∞(0,T ;L2(Ω)) ≤ c0
would still guarantee bounds (3.17) and (3.18) with a constant

c = c
(
c0,Ω,

∫
Ω
χ0 dx

)
.

On the basis of (3.9) and (3.18) we derive an additional estimate on µm.

Lemma 3.2. Let assumptions of Lemma 3.1 be satisfied. Then, for t ∈ (0, T ],

(3.21) ‖µm‖L2(0,t;H1(Ω)) ≤ c2(t)

with constant c2(t) = c(c1)t1/2.

Proof. Setting wj = 1 in (3.6)3 (admissible by assumption) it follows that∫
Ω
µm dx =

∫
Ω
[ψ′(χm) +W,χ(ε(um), χm)] dx.

Hence, using growth conditions (2.7) and estimates (3.9), (3.18) we obtain

(3.22)
∣∣∣∣ ∫
Ω
µm dx

∣∣∣∣ ≤ c∫
Ω
(|χ|3 + |ε(u)|+ 1) dx ≤ c(c1)
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for almost all t ∈ (0, T ]. Consequently, by the Poincaré inequality, estimates
(3.9) and (3.22) imply that

‖µm‖L2(Ωt) ≤ c‖∇µ
m‖L2(Ωt) + c

[ ∫ t
0

(∫
Ω
µm dx

)2
dt′
]1/2

≤ cc0 + c(c1)t1/2 ≤ c2(t).

This shows (3.21). �

By virtue of Lemma 3.2 we can deduce further estimates on χm.

Lemma 3.3. Let assumptions of Lemma 3.1 hold. Then, for t ∈ (0, T ],

(3.23) ‖χm‖L2(0,t;H2N (Ω)) ≤ c2(t).

Proof. In view of (3.2), identity (3.6)3 implies that

(µm,∆wj) = (−∆χm,∆wj) + (ψ′(χm) +W,χ(ε(um), χm),∆wj).

Testing the above equality by χm(t) and integrating with respect to t yields∫ t
0

∫
Ω
(∆χm)2 dx dt′ = −

∫ t
0

∫
Ω
µm∆χm dx dt′

+
∫ t
0

∫
Ω
[ψ′(χm) +W,χ(ε(um), χm)]∆χm dx dt′.

Now, using the Cauchy–Schwarz inequality, and then growth conditions (2.7)
and estimates (3.9), (3.18), (3.21), we obtain

‖∆χm‖L2(Ωt) ≤‖µ
m‖L2(Ωt) + ‖ψ

′(χm)‖L2(Ωt)(3.24)

+ ‖W,χ(ε(um), χm)‖L2(Ωt)
≤‖µm‖L2(Ωt) + ct

1/2(‖χm‖3L∞(0,t;L6(Ω))
+ ‖ε(um)‖L∞(0,t;L2(Ω)) + 1) ≤ c2(t).

On account of the ellipticity property of the Laplace operator (see e.g. [11, Chap-
ter III.8] we have

(3.25) ‖χm‖H2(Ω) ≤ c
(
‖∆χm‖L2(Ω) +

∣∣∣∣ ∫
Ω
χm dx

∣∣∣∣).
Hence, by (3.24), (3.20) and the convergences (3.7)3, we conclude (3.23). �

Using standard duality arguments we shall estimate also time derivatives umtt
and χmt .
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Lemma 3.4. Let assumptions of Lemma 3.1 hold, and b ∈ L2(ΩT ). Then,
for t ∈ (0, T ],

(3.26) ‖umt′t′‖L2(0,t;(H10(Ω))′) ≤ c3(t), ‖χ
m
t′ ‖L2(0,t;(H1(Ω))′) ≤ c0,

where c3(t) = c(c0, ‖b‖L2(Ωt))t1/2.

Proof. For η ∈ L2(0, T ;H10(Ω)), we test (3.6)1 by ηm = Pmη, where Pm

denotes the projection defined by

(3.27) Pmη =
m∑
i=1

(η,vi)vi.

Then, using the Cauchy–Schwarz inequality, and recalling estimate (3.9), we
obtain∣∣∣∣ ∫ t
0
(umt′t′ ,η) dt

′
∣∣∣∣ = ∣∣∣∣ ∫ t

0
(umt′t′ ,P

mη) dt′
∣∣∣∣

=
∣∣∣∣ ∫ t
0
[−(Aε(um), ε(Pmη)) + (z′(χm)B∇χm + b,Pmη)] dt′

∣∣∣∣
≤ c[‖ε(um)‖L2(Ωt)‖∇Pmη‖L2(Ωt) + (‖∇χ

m‖L2(Ωt) + ‖b‖L2(Ωt))‖P
mη‖L2(Ωt)]

≤ c(c0t1/2 + ‖b‖L2(Ωt))‖P
mη‖L2(0,t;H1(Ω)) ≤ c3(t)‖η‖L2(0,t;H1(Ω))

for all η∈L2(0, t;H10(Ω)). This shows (3.26)1. Similarly, for ξ∈L2(0, T ;H1(Ω)),
we test (3.6)2 by

(3.28) ξm = Pmξ =
m∑
i=1

(ξ, wi)wi,

to obtain∣∣∣∣ ∫ t
0
(χmt′ , ξ) dt

′
∣∣∣∣ = ∣∣∣∣ ∫ t

0
(χmt′ , P

mξ) dt′
∣∣∣∣ = ∣∣∣∣ ∫ t

0
(∇µm,∇Pmξ) dt′

∣∣∣∣
≤ ‖∇µm‖L2(Ωt)‖∇P

mξ‖L2(Ωt) ≤ c0‖ξ‖L2(0,t;H1(Ω)),

where in the last inequality we used (3.9). This implies (3.26)2 and completes
the proof. �

4. Time regularity estimates

In this section we derive uniform in m time-regularity estimates for solutions
of approximate system (3.6). These estimates result from time-differentiated
version of (3.6) and lead to the existence result of Theorem 2.2. Throughout
this section we assume that the domain Ω has the boundary S of class C4.
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Let us differentiate system (3.6)1–(3.6)3 with respect to t and rewrite it in
the following form:

(4.1)

(umttt,vj) + (A(ε(u
m
t ), ε(vj)) = ([z

′(χm)B∇χm],t + bt,vj),

(χmtt , wj)− (µmt ,∆wj) = 0,
(µmt , wj) = −(∆χmt , wj) + ([ψ′(χm) +W,χ(ε(um), χm)],t, wj),

for j = 1, . . . ,m, where the explicit expressions for [z′(χ)B∇χ],t and [ψ′(χ) +
W,χ(ε(u), χ)],t are given in (2.26). The above system is considered with the
initial conditions

(4.2)
um(0) = um0 , umt (0) = um1 , χm(0) = χ0,

umtt (0) = um2 , χmt (0) = χ
m
1 , µm(0) = µm0 ,

where um2 ∈ V0m and χm1 , µ
m
0 ∈ Vm are the projections of the data u2, χ1 and

µ0, respectively defined in (2.19).
We assume that the following convergences in the strong sense are satisfied:

(4.3)

um0 → u0 in H3(Ω) ∩H10(Ω), um1 → u1 in H10(Ω),

χm0 → χ0 in H4(Ω) ∩H2N (Ω), um2 → u2 in L2(Ω),

χm1 → χ1 in L2(Ω), µm0 → µ0 in H2N (Ω).

4.1. The basic estimate.

Lemma 4.1. Let (A1)–(A5) hold, the boundary of the domain Ω be of class
C4, the function z:R → [0, 1] be of class C2 with property (2.20) and the data
satisfy (2.21). Then a solution (um, χm, µm) of approximate problem (3.6) satis-
fies system (4.1) with the initial conditions (4.2). Moreover, (um, χm, µm) satisfy
the estimates in Lemmas 3.1–3.4, and

(4.4)
‖umt′t′‖L∞(0,t;L2(Ω)) + ‖u

m
t′ ‖L∞(0,t;H1(Ω)) ≤ c5(t),

‖χmt′ ‖L∞(0,t;L2(Ω)) + ‖χ
m
t′ ‖L2(0,t;H2N (Ω)) ≤ c4(t)

for t ∈ (0, T ], with constants c4(t), c5(t) (independent of m) given by

c4(t) = c(t1/2E1(t) + ‖χ1‖L2(Ω))[exp a(t)]
1/2, c5(t) = t1/2c4(t),

where

E1(t) = t1/2‖bt′‖L2(Ωt) + ‖u2‖L2(Ω) + ‖ε(u1)‖L2(Ω),
a(t) = c(c0)t8 exp(ct).

Proof. In the first step we estimate umt in terms of the L2(0, t;H
2(Ω))-

norm of χmt . Testing (4.1)1 by umtt (t), we obtain

1
2
d

dt

∫
Ω
(|umtt |2 + ε(umt ) ·Aε(umt )) dx =

∫
Ω
([z′(χm)B∇χm],t + bt) · umtt dx.
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Hence, by the Cauchy–Schwarz inequality,

1
2
d

dt

[(∫
Ω
(|umtt |2 + ε(umt ) ·Aε(umt )) dx

)1/2]2
≤ c
(∫
Ω
((χmt )

2|∇χm|2 + |∇χmt |2 + |bt|2) dx
)1/2

·
(∫
Ω
(|umtt |2 + ε(umt ) ·Aε(umt )) dx

)1/2
,

so

(4.5)
d

dt

(∫
Ω
(|umtt |2 + ε(umt ) ·Aε(umt )) dx

)1/2
≤ c
(∫
Ω
((χmt )

2|∇χm|2 + |∇χmt |2 + |bt|2) dx
)1/2

.

Integrating (4.5) with respect to t and using the coercivity of A (see (2.2)), it
follows that∫

Ω
(|umtt |2 + |ε(umt )|2) dx(4.6)

≤ c
[ ∫ t
0

(∫
Ω
((χmt′ )

2|∇χm|2 + |∇χmt′ |2 + |bt′ |2) dx
)1/2

dt′
]2

+
∫
Ω
(|umtt (0)|2 + |ε(umt (0))|2) dx

≤ ct
∫
Ωt
((χmt′ )

2|∇χm|2 + |∇χmt′ |2) dx dt′ + c(Em1 (t))2,

where Em1 (t) := t1/2‖bt‖L2(Ωt) + ‖um2 ‖L2(Ω) + ‖ε(um1 )‖L2(Ω). Clearly, due to
convergences (4.3), Em1 (t) ≤ cE1(t).
We shall estimate the first two terms on the right-hand side of (4.6). On

account of Lemma 3.1, we obtain

(4.7)
∫
Ωt
(χmt′ )

2|∇χm|2 dx dt′ ≤ sup
t′

∫
Ω
|∇χm|2 dx

∫ t
0
‖χmt′ ‖2L∞(Ω) dt

′

≤ c0
∫ t
0
‖χmt′ ‖2L∞(Ω) dt

′ = I1.

Now, applying the interpolation inequality (see e.g. [3, Chapter III, Section 10])

‖χmt ‖L∞(Ω) ≤ ε
1−κ1‖∇2χmt ‖L2(Ω) + cε

−κ1‖χmt ‖L2(Ω)

with κ1 = 3/4, ε > 0, and setting δ1 = ε1/4, yields

(4.8) I1 ≤ δ1
∫ t
0
‖∇2χmt′ ‖2L2(Ω) dt

′ + c(c1)δ−31

∫ t
0
‖χmt′ ‖2L2(Ω) dt

′.
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Similarly,

(4.9)
∫
Ωt
|∇χmt′ |2 dx dt′ ≤ δ2

∫ t
0
‖∇2χmt′ ‖2L2(Ω) dt

′ + cδ−12

∫ t
0
‖χmt′ ‖2L2(Ω) dt

′,

where the interpolation inequality

‖∇χmt ‖L2(Ω) ≤ ε
1−κ2‖∇2χmt ‖L2(Ω) + cε

−κ2‖χmt ‖L2(Ω)

with κ2 = 1/2, ε > 0 and δ2 = ε1/2, was applied. Using (4.7)–(4.9) in (4.6)
yields∫

Ω
(|umtt |2 + |ε(umt )|2) dx ≤ ct(δ1 + δ2)

∫ t
0
‖∇2χmt′ ‖2L2(Ω) dt

′

+ c(c0)t(δ−31 + δ
−1
2 )
∫ t
0
‖χmt′ ‖2L2(Ω) dt

′ + c(E1(t))2.

Hence, assuming δ1 = δ2 and choosing δ = ctδ1 we arrive at the estimate

(4.10) ‖umtt ‖2L2(Ω) + ‖ε(u
m
t )‖2L2(Ω)

≤ δ
∫ t
0
‖∇2χmt′ ‖2L2(Ω) dt

′ + c(1/δ, c0, t)
∫ t
0
‖χmt′ ‖2L2(Ω) dt

′ + c(E1(t))2

for t ∈ (0, T ], where c(1/δ, c0, t) = c(c0)δ−3t4, δ > 0 (arbitrary).
In the second step we consider system (4.1)2, (4.1)3 which on account of (3.2)

can be rewritten in the form of the following equation:

(4.11) (χmtt , wj) = −(∆χmt ,∆wj) + ([ψ′(χm) +W,χ(ε(um), χm)],t,∆wj).

Testing (4.11) by χmt (t) gives

1
2
d

dt

∫
Ω
(χmt )

2 dx+
∫
Ω
(∆χmt )

2 dx =
∫
Ω
[ψ′(χm) +W,χ(ε(um), χm)],t∆χmt dx.

Hence, by the Young inequality, it follows that

(4.12)
d

dt

∫
Ω
(χmt )

2 dx+
∫
Ω
(∆χmt )

2 dx ≤
∫
Ω
[ψ′(χm) +W,χ(ε(um), χm)]2,t dx

≤ c
∫
Ω
[(χm)4(χmt )

2 + (χmt )
2|ε(um)|2 + (χmt )2 + |ε(umt )|2] dx,

where in the last inequality we used identity (2.26)2 and the assumptions on ψ
and z.
Let us examine the first two terms on the right-hand side of (4.12). Using

the Hölder inequality and then recalling estimate (3.18), we obtain

(4.13)
∫
Ω
(χm)4(χmt )

2 dx ≤ sup
t
‖χm‖4L6(Ω)‖χ

m
t ‖2L6(Ω)

≤ c1‖χmt ‖2L6(Ω) ≤ δ3‖∇
2χmt ‖2L2(Ω) + c(1/δ3)‖χ

m
t ‖2L2(Ω),

for δ3 > 0, where in the last line the interpolation inequality was used.
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Similarly, an application of the Hölder inequality, estimate (3.9) and the
interpolation inequality to the second term on the right-hand side of (4.12) yields

(4.14)
∫
Ω
(χmt )

2|ε(um)|2 dx ≤ sup
t
‖ε(um)‖2L2(Ω)‖χ

m
t ‖2L∞(Ω)

≤ c0‖χmt ‖2L∞(Ω) ≤ δ4‖∇
2χmt ‖2L2(Ω) + c(1/δ4)‖χ

m
t ‖2L2(Ω),

for δ4 > 0. Now, using the inequality

(4.15) ‖χmt ‖H2N (Ω) ≤ c‖∆χ
m
t ‖L2(Ω),

which holds true because
∫
Ω χ
m
t dx = 0 (see (3.20)), applying (4.13) and (4.14)

in (4.12), and choosing δ3, δ4 sufficiently small, we conclude that

(4.16)
d

dt
‖χmt ‖2L2(Ω) + ‖χ

m
t ‖2H2N (Ω) ≤ c(‖χ

m
t ‖2L2(Ω) + ‖ε(u

m
t ‖2L2(Ω)).

At this point we apply estimate (4.10) to the second term on the right-hand side
of (4.16). This leads to

(4.17)
d

dt
‖χmt ‖2L2(Ω) + ‖χ

m
t ‖2H2N (Ω) ≤ c‖χ

m
t ‖2L2(Ω) + δ

∫ t
0
‖∇2χmt′ ‖2L2(Ω) dt

′

+ c(c0)δ−3t4
∫ t
0
‖χmt′ ‖2L2(Ω) dt

′ + c(E1(t))2

for t ∈ (0, T ]. Multiplying (4.17) by e−ct, integrating with respect to t, and using
that, on account of (4.3), ‖χm1 ‖L2(Ω) ≤ c‖χ1‖L2(Ω), we arrive at

e−ct‖χmt (t)‖2L2(Ω) +
∫ t
0
e−ct

′
‖χmt′ (t′)‖2H2N (Ω) dt

′

≤ δ
∫ t
0
e−ct

′
∫ t′
0
‖∇2χmt′′(t′′)‖2L2(Ω) dt

′′ dt′

+ c(c0)δ−3
∫ t
0
(t′)4e−ct

′
∫ t′
0
‖χmt′′(t′′)‖2L2(Ω) dt

′′ dt′

+ c
∫ t
0
e−ct

′
(E1(t′))2 dt′ + ‖χ1‖2L2(Ω).

Hence,

(4.18) ‖χmt (t)‖2L2(Ω) +
∫ t
0
‖χmt′ (t′)‖2H2N (Ω) dt

′ ≤ δtect
∫ t
0
‖χmt′ (t′)‖2H2N (Ω) dt

′

+ c(c0)δ−3t5ect
∫ t
0
‖χmt′ (t′)‖2L2(Ω) dt

′ + ctect(E1(t))2 + ect‖χ1‖2L2(Ω).
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Choosing δ = t−1e−ct/2, we obtain

‖χmt (t)‖2L2(Ω) +
∫ t
0
‖χmt′ (t′)‖2H2N (Ω) dt

′

≤ c(c0)t8ect
∫ t
0
‖χmt′ (t′)‖2L2(Ω) dt

′ + ctect(E1(t))2 + ect‖χ1‖2L2(Ω).

Now, the application of the Gronwall lemma yields

(4.19) ‖χmt (t)‖2L2(Ω) +
∫ t
0
‖χmt′ (t′)‖2H2N (Ω) dt

′

≤ c(t(E1(t))2 + ‖χ1‖L2(Ω)) exp(ct+ c(c0)t
8 exp(ct)) ≤ c24(t)

for almost all t ∈ (0, T ]. This proves estimate (4.4)2. Applying (4.19) in (4.10)
and setting there δ = t we conclude, by virtue of Korn’s inequality, estimate
(4.4)1. Thereby the proof is completed. �

4.2. Further estimates. Firstly, we note that in view of the inequality

|χxx(t)− χxx(t′)| ≤ |t− t′|1/2
(∫ t
t′
χ2t′′xx dt

′′
)1/2

,

estimate (4.4)2 implies that χm ∈ C1/2([0, T ];H2N (Ω)), and

(4.20) ‖χm‖C1/2([0,t];H2N (Ω)) ≤ c4(t).

Next, we prove the following

Lemma 4.2. Let assumptions of Lemma 4.1 hold. Then, for t ∈ (0, T ],

(4.21) ‖um‖L∞(0,t;H2(Ω)) ≤ c5(t).

Proof. Using (3.1) we rewrite (3.6)1 in the form

(umtt ,Qvj)− (Qum,Qvj) = (z′(χm)B∇χm + b,Qvj).

Testing this equality by um(t) gives

‖Qum‖2L2(Ω) = (u
m
tt − z′(χm)B∇χm + b,Qum) for a.a. t ∈ (0, T ].

Hence, using the Cauchy–Schwarz inequality and then recalling estimates (3.9)
and (4.4)1, we obtain

‖Qum‖L∞(0,t;L2(Ω))
≤ c(‖umt′t′‖L∞(0,t;L2(Ω)) + ‖∇χ

m‖L∞(0,t;L2(Ω)) + ‖b‖L∞(0,t;L2(Ω)))
≤ c(c5(t) + c0 + 1) ≤ c5(t).

This, by the ellipticity property of Q (see (2.3)), implies (4.21). �

The next result provides an additional regularity estimate for µm.
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Lemma 4.3. Under assumptions of Lemma 4.1,

(4.22) ‖µm‖L∞(0,t;H2N (Ω)) ≤ c4(t), ‖µ
m
t′ ‖L2(Ωt) ≤ t

1/2c5(t), t ∈ (0, T ].

Proof. Using (3.2) we rewrite identity (3.6)2 in the form

(χmt ,∆wj) = (∆µ
m,∆wj).

Testing this equality by µm(t) and using the Cauchy–Schwarz inequality yields

‖∆µm‖L2(Ω) ≤ ‖χ
m
t ‖L2(Ω) for a.a. t ∈ (0, T ].

Consequently, due to estimate (4.4)2,

(4.23) ‖∆µm‖L∞(0,t;L2(Ω)) ≤ ‖χ
m
t′ ‖L∞(0,t;L2(Ω)) ≤ c4(t).

Thus, recalling bound (3.22) on the mean value of µm, estimate (4.22)1 follows
from (4.23) on account of the ellipticity property of the Laplace operator.
To show (4.22)2 we test identity (4.1)3 by µmt (t). Then, with the help of the

Cauchy–Schwarz inequality, it follows that

(4.24) ‖µmt ‖L2(Ω) ≤ ‖∆χ
m
t ‖L2(Ω) + ‖[ψ

′(χm) +W,χ(ε(um), χm)],t‖L2(Ω).

The second term on the right-hand side of (4.24) can be estimated with the
help of bounds (4.12)–(4.14) (with δ3 = δ4 = 1) in the proof of Lemma 4.1.
Consequently, we obtain

‖µmt ‖L2(Ωt) ≤ c(‖∆χ
m
t ‖L2(Ωt)+ ‖∇

2χmt ‖L2(Ωt)+ ‖χ
m
t ‖L2(Ωt)+ ‖ε(u

m
t )‖L2(Ωt))

≤ c(c4(t) + t1/2c5(t)) ≤ t1/2c5(t),

where in the last line Lemma 4.1 was used. This completes the proof. �

Finally, we estimate time derivatives umttt and χ
m
tt .

Lemma 4.4. Under assumptions of Lemma 4.1,

(4.25)
‖umt′t′t′‖L2(0,t;(H10(Ω))′) ≤ t

1/2c5(t),

‖χmt′t′‖L2(0,t;(H2N (Ω))′) ≤ t
1/2c5(t), t ∈ (0, T ].

Proof. We proceed similarly as in Lemma 3.4. For η ∈ L2(0, T ;H10(Ω)) we
test (4.1)1 by ηm = Pmη, where the projectin Pm is defined by (3.27). Then∣∣∣∣ ∫ t

0
(umt′t′t′ ,η) dt

′
∣∣∣∣

=
∣∣∣∣ ∫ t
0
{−(Aε(umt′ ), ε(P

mη)) + ([z′(χm)B∇χm + b],t′ ,P
mη)} dt′

∣∣∣∣
≤ c[‖ε(umt′ )‖L2(Ωt)‖∇Pmη‖L2(Ωt)
+ (‖χmt′∇χm‖L2(Ωt) + ‖∇χ

m
t′ ‖L2(Ωt) + ‖bt′‖L2(Ωt))‖P

mη‖L2(Ωt)].
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Hence, recalling Lemmas 3.1, 4.1, and the estimate

‖χmt′∇χm‖L2(Ωt) ≤ ‖χ
m
t′ ‖L2(0,t;L∞(Ω))‖∇χ

m‖L∞(0,t;L2(Ω)) ≤ c0c4(t),

it follows that∣∣∣∣ ∫ t
0
(umt′t′t′ ,η) dt

′
∣∣∣∣ ≤ c(t1/2c5(t) + c4(t) + ‖bt′‖L2(Ωt))‖Pmη‖L2(0,t;H1(Ω))

≤ t1/2c5(t)‖η‖L2(0,t;H1(Ω))

for all η ∈ L2(0, t;H10(Ω)). This shows (4.25)1.
Similarly, for any ξ ∈ L2(0, T ;H2N (Ω)), testing (4.1)2 by ξm = Pmξ, where

the projection Pm is defined by (3.28), we obtain

∣∣∣∣ ∫ t
0
(χmt′t′ , ξ) dt

′
∣∣∣∣ = ∣∣∣∣ ∫ t

0
(µmt′ ,∆P

mξ) dt′
∣∣∣∣

≤ ‖µmt′ ‖L2(Ωt)‖∆P
mξ‖L2(Ωt) ≤ t

1/2c5(t)‖ξ‖L2(0,t;H2N (Ω)),

where in the last inequality Lemma 4.3 was applied. This shows (4.25)2. �

5. Proof of Theorem 2.1

From Lemmas 3.2–3.4 it follows that there exists a triple (u, χ, µ) with

u ∈ L∞(0, T ;H10(Ω)), ut ∈ L∞(0, T ;L2(Ω)), utt ∈ L2(0, T ; (H10(Ω))′),
χ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2N (Ω)), χt ∈ L2(0, T ; (H1(Ω))′),(5.1)

µ ∈ L2(0, T ;H1(Ω)),

and a subsequence of solutions (um, χm, µm) to problem (3.6) (which we still
denote by the same indices) such that as m→∞:

(5.2)

um → u weakly-∗ in L∞(0, T ;H
1
0(Ω)),

umt → ut weakly-∗ in L∞(0, T ;L2(Ω)),

umtt → utt weakly in L2(0, T ; (H
1
0(Ω))

′),

χm → χ weakly-∗ in L∞(0, T ;H1(Ω)) and

weakly in L2(0, T ;H2N (Ω)),

χmt → χt weakly in L2(0, T ; (H1(Ω))′),

µm → µ weakly in L2(0, T ;H1(Ω)).
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Using the compactness results (see e.g. Lions [12], Simon [25, Section 8]) it follows
that for a subsequence (still denoted by the same indices)

(5.3)

um → u strongly in L2(0, T ;Lq(Ω)) ∩ C([0, T ];Lq(Ω)), q < 6,

and a.e. in ΩT ,

umt → ut strongly in C([0, T ]; (H
1
0(Ω))

′),

χm → χ strongly in L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω))
and a.e. in ΩT .

Hence,

um(0) = um0 → u(0) strongly in Lq(Ω), q < 6,

umt (0) = um1 → ut(0) strongly in (H
1
0(Ω))

′,

χm(0) = χm0 → χ(0) strongly in L2(Ω),

what together with convergences (3.7) implies that

(5.4) u(0) = u0, ut(0) = u1, χ(0) = χ0.

The relations (5.1) and (5.4) imply assertion (2.13) of the theorem.

Now, let us introduce the following weak formulation of (3.6):

(5.5)
∫ T
0
〈umtt ,η〉(H10(Ω))′,H10(Ω) dt+

∫ T
0
(Aε(um), ε(η)) dt

=
∫ T
0
(z′(χm)B∇χm + b,η) dt for all η ∈ L2(0, T ;V0m),

(5.6)
∫ T
0
〈χmt , ξ〉(H1(Ω))′,H1(Ω) dt+

∫ T
0
(∇µm,∇ξ) dt = 0

for all ξ ∈ L2(0, T ;Vm),

(5.7)
∫ T
0
(µm, ζ) dt = −

∫ T
0
(∆χm, ζ) dt+

∫ T
0
(ψ′(χm) +W,χ(ε(um), χm), ζ) dt

for all ζ ∈ L2(0, T ;Vm).

To pass to the limit m → ∞ in identities (5.5)–(5.7) we follow the standard
procedure (see e.g. Lions–Magenes [13]). Namely, we fix m = m0 ∈ N in the
spaces of test functions η, ξ, ζ and take subsequences (5.2) withm ≥ m0. Clearly,
by virtue of the weak convergences (5.2), the linear terms in (5.5)–(5.7) converge
to the corresponding limits. Thus, it remains to examine the convergence of the
nonlinear terms z′(χm)B∇χm and ψ′(χm) +W,χ(ε(um), χm).
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Recalling the growth conditions (2.7), and using the energy bounds (3.9),
(3.18), it follows that

‖z′(χm)B∇χm‖L∞(0,T ;L2(Ω)) ≤ c‖∇χ
m‖L∞(0,T ;L2(Ω)) ≤ cc0,

‖ψ′(χm)‖L∞(0,T ;L2(Ω)) ≤ c(‖χ
m‖3L∞(0,T ;L6(Ω) + 1) ≤ c(c1),

‖W,χ(ε(um), χm)‖L∞(0,T ;L2(Ω)) ≤ c(‖ε(u
m)‖L∞(0,T ;L2(Ω)) + 1) ≤ c(c0).

Thanks to these uniform in m estimates and the pointwise convergences (5.3) we
can apply the standard nonlinear convergence lemma (see Lions [12, Chapter 1,
Lemma 1.3]) to conclude that

z′(χm)B∇χm → z(χ)B∇χ weakly-∗ in L∞(0, T ;L2(Ω)),

ψ′(χm) = (χm)3 − χm → χ3 − χ = ψ(χ) weakly-∗ in L∞(0, T ;L2(Ω)),

W,χ(ε(um), χm) = z′(χm)(B · ε(um) +Dz(χm) + E)→
z′(χ)(B · ε(u) +Dz(χ) + E) =W,χ(ε(u), χ)

weakly-∗ in L∞(0, T ;L2(Ω)).

Consequently, passing to the limit in (5.5)–(5.7) for a subsequencem0 ≤ m→∞,
we conclude that the identities in Theorem 2.1 are satisfied for all test functions
η ∈ L2(0, T ;V0m0), ξ ∈ L2(0, T ;Vm0) and ζ ∈ L2(0, T ;Vm0). Next, passing to
the limit m0 →∞, we arrive by density arguments at identities (2.14). Clearly,
a priori estimates (2.15)–(2.18) are the consequences of the uniform estimates in
Lemmas 3.1–3.4 and the weak convergences (5.2). This proves the theorem. �

6. Proof of Theorem 2.2

From Lemmas 3.1–3.4 and 4.1–4.4 it follows that there exists a triple (u, χ, µ)
with

(6.1)
u ∈ L∞(0, T ;H2(Ω) ∩H10(Ω)), ut ∈ L∞(0, T ;H1(Ω)),

utt ∈ L∞(0, T ;L2(Ω)), uttt ∈ L2(0, T ; (H10(Ω))′),

(6.2)

χ ∈ C1/2([0, T ];H2N (Ω)), χt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H2N (Ω)),
χtt ∈ L2(0, T ; (H2N (Ω))′),

µ ∈ L∞(0, T ;H2N (Ω)), µt ∈ L2(ΩT ),

and a subsequence of solutions (um, χm, µm) to problem (3.6) (which we still
denote by the same indices) such that as m→∞:
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(6.3)

um → u weakly-∗ in L∞(0, T ;H
2(Ω)),

umt → ut weakly-∗ in L∞(0, T ;H
1(Ω)),

umtt → utt weakly-∗ in L∞(0, T ;L2(Ω)),

umttt → uttt weakly in L2(0, T ; (H
1
0(Ω))

′),

χm → χ weakly-∗ in L∞(0, T ;H2N (Ω)),

χmt → χt weakly-∗ in L∞(0, T ;L2(Ω)) and

weakly in L2(0, T ;H2N (Ω)),

χmtt → χtt weakly in L2(0, T ; (H2N (Ω))
′),

µm → µ weakly-∗ in L∞(0, T ;H2N (Ω)),

µmt → µt weakly in L2(Ω).

Using the compactness results [25] it follows that for a subsequence (still denoted
by the same indices)

(6.4)

um → u strongly in L2(0, T ;H
1
0(Ω)) ∩ C([0, T [;L2(Ω))

and a.e. in ΩT ,

umt → ut strongly in L2(ΩT ) ∩ C([0, T ];L2(Ω))
and a.e. in ΩT ,

umtt → utt strongly in C([0, T ]; (H
1
0(Ω))

′),

χm → χ strongly in L2(0, T ;H1(Ω)) ∩ C([0, T ];H1(Ω))
and a.e. in ΩT ,

χmt → χt strongly in L2(0, T ;H1(Ω)) ∩ C([0, T ]; (H2N (Ω))′)
and a.e. in ΩT ,

µm → µ strongly in L2(0, T ;H1(Ω)) ∩ C([0, T ];H1(Ω))
and a.e. in ΩT .

Hence,

um(0) = um0 → u(0) strongly in H10(Ω),

umt (0) = um1 → ut(0) strongly in L2(Ω),

umtt (0) = um2 → utt(0) strongly in (H
1
0(Ω))

′,

χm(0) = χm0 → χ(0) strongly in H1(Ω),

χmt (0) = χ
m
1 → χt(0) strongly in (H2N (Ω))

′,

µm(0) = µm0 → µ(0) strongly in H1(Ω),

what together with convergences (4.3) implies that

(6.5)
u(0) = u0, ut(0) = u1, utt(0) = u2,

χ(0) = χ0, χt(0) = χ1, µ(0) = µ0.
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The relations (6.1)–(6.2) and (6.5) imply assertion (2.22) of the theorem.
We introduce now the following weak formulation of system (4.1):∫ T
0
〈umttt,η〉(H1

0(Ω))′,H
1
0(Ω)

dt+
∫ T
0
(Aε(umt ), ε(η)) dt

=
∫ T
0
([z′(χm)B∇χm],t + bt,η) dt for all η ∈ H1(0, T ;V0m), η(T ) = 0,

(6.6)
∫ T
0
〈χmtt , ξ〉(H2N (Ω))′,H2N (Ω) =

∫ T
0
(µt,∆ξ) dt

for all ξ ∈ H1(0, T ;Vm), ξ(T ) = 0,∫ T
0
(µmt , ζ) dt = −

∫ T
0
(∆χmt , ζ) dt+

∫ T
0
([ψ′(χm) +W,χ(ε(um), χm)],t, ζ) dt

for all ζ ∈ H1(0, T ;Vm), ζ(T ) = 0.

We pass to the limit m→∞ in a similar fashion as in the proof of Theorem 2.1.
Clearly, due to the weak convergences (6.3), all linear terms in identities (6.6)
converge to the corresponding limits. It remains to examine the convergence
of the nonlinear terms [z′(χm)B∇χm],t and [ψ′(χm) +W,χ(ε(um), χm)],t whose
explicit expressions are given in (2.26).
Recalling assumptions on z, ψ and using Lemmas 3.1, 4.1 we obtain the

following bounds (these bounds can be also directly concluded from the proofs
of Lemmas 4.3, 4.4):

‖[z′(χm)B∇χm],t‖L2(ΩT ) ≤ c(‖χ
m
t ∇χm‖L2(ΩT ) + ‖∇χ

m
t ‖L2(ΩT ))

≤ c(‖χmt ‖L2(0,T ;L∞(Ω))‖∇χ
m‖L∞(0,T ;L2(Ω)) + ‖∇χ

m
t ‖L2(ΩT ))

≤ c(c0 + 1)c4(T ),
‖[ψ′(χm)],t‖L2(ΩT ) ≤ c‖((χ

m)2 + 1)χmt ‖L2(ΩT )
≤ c(‖χm‖2L∞(0,T ;L4(Ω))‖χ

m
t ‖L2(0,T ;L∞(Ω) + ‖χ

m
t ‖L2(ΩT ))

≤ c(c21 + 1)c4(T ),
‖[W,χ(ε(um), χm)],t‖L2(ΩT )
≤ c(‖χmt ε(um)‖L2(ΩT ) + ‖χ

m
t ‖L2(ΩT ) + ‖ε(u

m
t )‖L2(ΩT ))

≤ c(‖χmt ‖L2(0,T ;L∞(Ω))‖ε(u
m)‖L∞(0,T ;L2(Ω)) + ‖χ

m
t ‖L2(ΩT )

+ ‖ε(umt )‖L2(ΩT )) ≤ c(c0 + 1)c4(T ) + c5(T ).

Thanks to these uniform in m bounds and the pointwise convergences (6.4) we
can apply the nonlinear convergence lemma (see [12, Chapter 1, Lemma 1.3]) to
conclude that

(6.7) [z′(χm)B∇χm],t = z′′(χm)χmt B∇χm + z′(χm)B∇χmt
→ z′′(χ)χtB∇χ+ z′(χ)B∇χt = [z′(χ)B∇χ],t weakly in L2(ΩT ),
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(6.8) [ψ′(χm)],t = (3(χm)2 − 1)χmt → (3χ2 − 1)χt = [ψ′(χ)],t
weakly in L2(ΩT ),

(6.9) [W,χ(ε(um), χm)],t

= z′′(χm)χmt (B · ε(um) +Dz(χm) + E) + z′(χm)(B · ε(umt ) +Dz′(χm)χmt )
→ z′′(χ)χt(B · ε(u) +Dz(χ) + E) + z′(χ)(B · ε(ut) +Dz′(χ)χt)

= [W,χ(ε(u), χ],t weakly in L2(ΩT ).

In view of (6.7)–(6.9), passing to the limit m→∞ in identities (6.6) we conclude
(2.23)–(2.25). We also note that a priori estimates (2.27) result immediately from
the estimates in Lemmas 3.1–4.3, 4.1–4.4 and the weak convergences (6.3). This
completes the proof of the theorem. �
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caré Anal. Non Linéaire 22 (2005), 165–185.

[10] M. E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on
a microforce balance, Physica D 92 (1996), 178–192.

[11] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of
Elliptic type, Nauka, Moscow, 1973. (in Russian)
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