
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 32, 2008, 227–245

EXISTENCE OF SOLUTIONS
ON COMPACT AND NON-COMPACT INTERVALS

FOR SEMILINEAR IMPULSIVE
DIFFERENTIAL INCLUSIONS WITH DELAY

Irene Benedetti — Paola Rubbioni

Abstract. In this paper we deal with impulsive Cauchy problems in Ba-
nach spaces governed by a delay semilinear differential inclusion y′ ∈ A(t)y

+F (t, yt). The family {A(t)}t∈[0,b] of linear operators is supposed to gen-
erate an evolution operator and F is a upper Carathèodory type multi-

function. We first provide the existence of mild solutions on a compact

interval and the compactness of the solution set. Then we apply this result
to obtain the existence of mild solutions for the impulsive Cauchy problem

on non-compact intervals.

1. Introduction

Impulsive differential equations and inclusions find wide applicability in sev-
eral fields of applied science as Biology, Economics, Physics, since they are an ap-
propriate model for describing phenomena where systems instantaneously change
their state.

For a bibliography on the theory of impulsive differential equations one can
see, for instance, the monographs [1], [2], [19]. About theory and applications of
impulsive differential equations or inclusions, see e.g. [6], [7], [14], [16], [20], [21].
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In particular, as recent works on impulsive differential equations or inclusions
in presence of delay, we refer to [3], [4], [8], [10], [11], [15], [22].

In the present paper we consider the impulsive Cauchy problem governed
by a delay semilinear differential inclusion both for compact and non-compact
intervals.

For a fixed τ > 0 and a given piece-wise continuous function x: [−τ, 0] → E,
where E is a Banach space, in the first case the problem we deal with is

(P)


y′(t) ∈ A(t)y(t) + F (t, yt) a.e. t ∈ [0, b], t 6= tk, k = 1, . . . , N,

y(t) = x(t) for t ∈ [−τ, 0],

y(t+k ) = y(tk) + Ik(ytk
) for k = 1, . . . , N

where {A(t)}t∈[0,b] is a family of linear operators (not necessarily bounded) in E
generating an evolution operator; F is a upper Carathèodory type multifunction;
yt(θ) = y(t+ θ), θ ∈ [−τ, 0]; 0 = t0 < t1 < . . . < tN < tN+1 = b; Ik are impulse
functions, k = 1, . . . , N , and y(t+) = lims→t+ y(s).

In Section 3 we state and prove the existence of mild solutions for problem
(P) and the compactness of the solution set (see Theorem 3.7).

We note that our Theorem 3.7 contains the analogous result due to Benedetti
([4, Theorem 3.4]).

Then, in Section 4 we treat the case on non-compact domains. First we yield
the existence of mild solutions for problem

(P)∞


y′(t) ∈ A(t)y(t) + F (t, yt) a.e. t ∈ [0,∞[, t 6= tk, k ∈ N,

y(t) = x(t) for t ∈ [−τ, 0],

y(t+k ) = y(tk) + Ik(ytk
) for k ∈ N+,

where this time (tk)k∈N is an increasing sequence of given points in [0,∞[, with-
out accumulation points.

This result is achieved by applying Theorem 3.7 jointly with a diagonal pro-
cess. Then, we note that the method of proof carried over in the case of un-
bounded domains provides also the existence of mild solutions for the impulsive
Cauchy problem defined on a non-closed interval [0, b[, 0 < b < ∞, just by
suitable adaptation of the assumptions.

The results of Section 4 are new even in the non-impulsive case.

2. Preliminaries

Let X, Y , be two topological vector spaces. We denote by P(Y ) the family
of all non-empty subsets of Y and put

K(Y ) = {C ∈ P(Y ), compact}, Kv(Y ) = {D ∈ P(Y ), compact and convex}.
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A multivalued map F :X → P(Y ) is said to be:

• upper semicontinuous (for shortness u.s.c.) if F−1(V ) = {x ∈ X : F (x)
⊂ V } is an open subset of X for every open V ⊆ Y ;

• closed if its graph GF = {(x, y) ∈ X × Y : y ∈ F (x)} is a closed subset
of X × Y .

For u.s.c. multimaps the following result holds (see, e.g. [9]).

Proposition 2.1. Let F :X → K(Y ) be an u.s.c. multimap. If C ⊂ X is
a compact set then its image F (C) is a compact subset of Y .

Let E be a real Banach space. If (N,≥) is a partially ordered set, we recall
that a map β:P(E) → N is said to be a measure of non compactness (MNC)
in E if β(co Ω) = β(Ω) for every Ω ∈ P(E) (see, e.g. [12] for details).

A measure of non compactness β is called:

• monotone if Ω0,Ω1 ∈ P(E), Ω0 ⊆ Ω1 imply β(Ω1) ≥ β(Ω0);
• nonsingular if β({c} ∪ Ω) = β(Ω) for every c ∈ E, Ω ∈ P(E);
• real if N = [0,∞] with the natural ordering and β(Ω) < ∞ for every

bounded Ω;
• regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

A well known example of measure of non compactness satisfying all of the
above properties is the Hausdorff MNC

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}.

If X is a subset of E and Λ a space of parameters, a multimap F :X → K(E),
or a family of multimaps G: Λ × X → K(E), is called condensing relative to
a MNC β, or β-condensing, if for every Ω ⊆ X that is not relatively compact we
have, respectively β(F (Ω)) � β(Ω) or β(G(Λ× Ω)) � β(Ω).

The following property of the fixed points set of F will be useful in the sequel.

Proposition 2.2 ([12, Proposition 3.5.1]). Let M be a closed subset of E,
F :M → K(E) a closed multimap β-condensing on every bounded subset of M ,
β a monotone MNC defined on E. If FixF = {x ∈ M : x ∈ F (x)} is bounded,
then it is compact.

Let [a, b] be an interval of the real line. By the symbol L1([a, b];E) we denote
the space of all Bochner summable functions and, for simplicity of notations, we
write L1

+([a, b]) instead of L1([a, b]; R+).
We denote by C([a, b];E) the space of all piece-wise continuous functions

c: [a, b] → E with a finite number of discontinuity points {t∗} such that t∗ 6= b

and all values
c(t+∗ ) = lim

h→0+
c(t∗ + h)
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are finite. Of course, the space C([a, b];E) is a normed space with the norm:

‖c‖C = sup
a≤t≤b

‖c(t)‖.

A multifunction G: [a, b] → K(E) is said to be

• integrable if it has a summable selection g ∈ L1([a, b];E);
• integrably bounded if there exists a summable function ω( · ) ∈ L1

+([a, b])
such that

‖G(t)‖ := sup{‖g‖ : g ∈ G(t)} ≤ ω(t), a.e. t ∈ [a, b].

Finally, a countable set {fn}∞n=1 ⊂ L1([a, b];E) is said to be semicompact if:

• it is integrably bounded: ‖fn(t)‖ ≤ ω(t) for a.e. t ∈ [a, b] and every
n ≥ 1, where ω( · ) ∈ L1

+([a, b]);
• the set {fn(t)}∞n=1 is relatively compact for a.e. t ∈ [a, b].

3. Existence of solutions on compact intervals

Let [0, b] be a fixed interval of the real line. Put ∆ = {(t, s) ∈ [0, b]×[0, b] : 0 ≤
s ≤ t ≤ b}, we recall (see, e.g. [18]) that a two parameter family {T (t, s)}(t,s)∈∆,
T (t, s):E → E bounded linear operator, (t, s) ∈ ∆, is called an evolution system
if the following conditions are satisfied:

• T (s, s) = I, 0 ≤ s ≤ b; T (t, r)T (r, s) = T (t, s), 0 ≤ s ≤ r ≤ t ≤ b;
• (t, s) 7→ T (t, s) is strongly continuous on ∆ (see, e.g. [13]).

For every evolution system, we can consider the correspondent evolution operator
T :∆ → L(E), where L(E) is the space of all bounded linear operators in E.

We observe that, since the evolution operator T is strongly continuous on
the compact set ∆, there exists a constant D = D∆ > 0 such that

(3.1) ‖T (t, s)‖L(E) ≤ D, (t, s) ∈ ∆.

In this section we consider the impulsive Cauchy problem (P).
On the linear part of the differential inclusion we assume the following hy-

pothesis:

(A) {A(t)}t∈[0,b] is a family of linear not necessarily bounded operators
(A(t):D(A) ⊂ E → E, t ∈ [0, b], D(A) a dense subset of E not de-
pending on t) generating an evolution operator T :∆ → L(E).

On the multimap F : [0, b] × C([−τ, 0];E) → Kv(E) we consider the following
upper Carathèodory type hypotheses:

(F1) the multimap F ( · , c): [0, b] → Kv(E) has a strongly measurable selec-
tion for every c ∈ C([−τ, 0];E), i.e. there exists a strongly measurable
function f : [0, b] → E such that f(t) ∈ F (t, c) for almost every t ∈ [0, b];
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(F2) the multimap F (t, · ): C([−τ, 0];E) → Kv(E) is u.s.c. for almost every
t ∈ [0, b].

Moreover, we require on F also the following assumptions

(F3) there exists a function α ∈ L1
+([0, b]) such that for every c ∈ C([−τ, 0];E)

is
‖F (t, c)‖ ≤ α(t)(1 + ‖c‖C), a.e. t ∈ [0, b];

(F4) there exists a function µ ∈ L1
+([0, b]) such that, for every bounded

D ⊂ C([−τ, 0];E),

χ(F (t,D)) ≤ µ(t) sup
−τ≤θ≤0

χ(D(θ)), a.e. t ∈ [0, b],

where χ is the Hausdorff MNC in E.

Definition 3.1. A function y ∈ C([−τ, b];E) is a mild solution for the
impulsive Cauchy problem (P) if

(a) y(t)=T (t, 0)x(0)+
∑

0<tk<t T (t, tk)Ik(ytk
)+

∫ t

0
T (t, s)f(s) ds, t ∈ [0, b],

where f ∈ L1([0, b];E), f(s) ∈ F (s, ys) for almost every s ∈ [0, b]
(b) y(t) = x(t), t ∈ [−τ, 0],
(c) y(t+k ) = y(tk) + Ik(ytk

), k = 1, . . . , N .

Let k ∈ {1, . . . , N} be fixed. First of all, in order to obtain the main result of
this section, we consider the generalized Cauchy operator Gk:L1([tk−1, tk];E) →
C([tk−1, tk];E) defined by

Gkf(t) =
∫ t

tk−1

T (t, s)f(s) ds, t ∈ [tk−1, tk]

(see [5, Definition 1]). We recall that for Gk the following result holds.

Proposition 3.2 ([5, Theorem 2]). The generalized Cauchy operator Gk

satisfies the properties:

(G1) there exists ζk ≥ 0 such that

‖Gkf(t)−Gkg(t)‖ ≤ ζk

∫ t

tk−1

‖f(s)− g(s)‖ ds, t ∈ [tk−1, tk]

for every f, g ∈ L1([tk−1, tk];E);
(G2) for any compact K ⊂ E and sequence (fn)∞n=1, fn ∈ L1([tk−1, tk];E),

such that {fn(t)}∞n=1 ⊂ K for almost every t ∈ [tk−1, tk], the weak
convergence fn ⇀ f0 implies the convergence Gkfn → Gkf0.

Remark 3.3. Let us note that we may assume ζk = D, where D is from
equation (3.1).

Furthermore, we also need the following properties of operators satisfying
conditions (G1) and (G2).
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Proposition 3.4 (cf. [12, Theorem 5.1.1]). Let operator S:L1([tk−1, tk];E)
→ C([tk−1, tk];E) satisfy condition (G2) and the Lipschitz condition (weaker
than (G1))

(G1’) ‖Sf − Sg‖C ≤ D‖f − g‖L1([tk−1,tk];E) (where ‖ · ‖C is the usual sup-
norm).

Then for every semicompact set {fn}∞n=1 ⊂ L1([tk−1, tk];E) the set {Sfn}∞n=1 is
relatively compact in C([tk−1, tk];E) and, moreover, if fn ⇀ f0 then Sfn → Sf0.

Proposition 3.5 (cf. [12, Theorem 4.2.2]). Let the operator S satisfy con-
ditions (G1) and (G2) and let the set {fn}∞n=1 be integrably bounded with the
property χ({fn(t)}∞n=1) ≤ η(t) for almost every t ∈ [tk−1, tk] where η( · ) ∈
L1

+([tk−1, tk]) and χ is the Hausdorff MNC. Then

χ({Sfn(t)}∞n=1) ≤ 2D
∫ t

tk−1

η(s) ds, t ∈ [tk−1, tk]

where D ≥ 0 is from (3.1) (see also Remark 3.3).

Moreover, we consider the multivalued superposition operator

P k,ξ
F :C([tk−1, tk];E) → P(L1([tk−1, tk];E))

defined as

P k,ξ
F (z) = {f ∈ L1([tk−1, tk];E) : f(s) ∈ F (s, z[ξ]s) a.e. s ∈ [tk−1, tk]},

where

(3.2) z[ξ](t) =

{
ξ(t) for t ∈ [−τ, tk−1[,

z(t) for t ∈ [tk−1, tk],

and ξ ∈ C([−τ, tk−1];E) is a fixed function.
In the next theorem we will use the following

Lemma 3.6 ([12, Lemma 5.1.1]). Assume that multimap the F satisfies hy-
potheses (F1)–(F3). If the sequences

{xn}∞n=1 ⊂ C([tk−1, tk];E), {fn}∞n=1 ⊂ L1([tk−1, tk];E)

fn ∈ P k,ξ
F (xn), n ≥ 1, are such that xn → x0, fn ⇀ f0, then f0 ∈ P k,ξ

F (x0).

Now we state and prove the main result of this section. In order to prove the
first part of the following theorem, we need the existence of global mild solutions
for an associated non-impulsive Cauchy problem. In a slight different setting,
this existence has been obtained by Obukhovskĭı in [17]; here, we provide the
result by following another proof’s outline.
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Theorem 3.7. Under assumptions (A) and (F1)–(F4) the problem (P) has
at least one mild solution on [−τ, b]. Moreover, if the impulse functions

Ik: C([−τ, 0];E) → E, k = 1, . . . , N

are continuous, then the solutions set is a compact subset of C([−τ, b];E).

Proof. We divide the proof in several steps.
Step 1. Given the non impulsive Cauchy problem

(P)1

{
y′(t) ∈ A(t)y(t) + F (t, yt) a.e. t ∈ [0, t1],

y(t) = x(t) for t ∈ [−τ, 0],

we search for the existence of a mild solution, i.e. a function y ∈ C([−τ, t1];E)
such that

(a) y(t) = T (t, 0)x(0)+
∫ t

0
T (t, s)f(s) ds, t ∈ [0, t1], where f ∈ L1([0, t1];E),

f(s) ∈ F (s, ys) for almost every s ∈ [0, t1],
(b) y(t) = x(t), t ∈ [−τ, 0].

To this aim, we first consider the integral multioperator Γ1:C([0, t1];E) →
P(C([0, t1];E)) defined as:

Γ1(z) =
{
y ∈ C([0, t1];E) : y(t) = T (t, 0)x(0) +

∫ t

0

T (t, s)f(s) ds

f ∈ L1([0, t1];E), f(s) ∈ F (s, z[x]s) a.e. s
}
.

It is clear that if z ∈ Fix Γ1 then z[x], where z[x] is from (3.2), is a mild solution
of (P)1 on the interval [−τ, t1].

The multioperator Γ1 is a closed multioperator with compact, convex values.
Let {yn}∞n=1, {zn}∞n=1 ⊂ C([0, t1];E) with zn → z0, yn ∈ Γ1(zn), n ≥ 1 and

yn → y0. Take a sequence {fn}∞n=1 ⊂ L1([0, t1];E) such that fn ∈ P 1,x
F (zn), n ≥

1. From assumption (F3) it follows that the sequence {fn}∞n=1 is integrably
bounded. Moreover, hypothesis (F4) implies that:

χ({fn(t)}∞n=1) ≤ µ(t) sup
−τ≤t≤0

χ({(zn[x])t}∞n=1) ≤ µ(t) sup
0≤σ≤t

χ({zn(σ)}∞n=1) = 0,

for almost every t ∈ [0, t1], so the set {fn(t)}∞n=1 is relatively compact for almost
every t ∈ [0, t1]. Hence the set {fn}∞n=1 is semicompact and then it is also weakly
compact in L1([0, t1];E) (cf. [12, Proposition 4.2.1]). So we can assume, without
loss of generality, that fn ⇀ f0 in L1([0, t1];E).

Applying Proposition 3.4 and the uniqueness of the limit algorithm, we con-
clude that yn = G1fn → G1f0 = y0, where for f ∈ L1([0, t1];E),

G1(f) = T (t, 0)x(0) +
∫ t

0

T (t, s)f(s) ds.
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Moreover, by Lemma 3.6, we have f0 ∈ P 1,x
F (z0), therefore y0 ∈ G1 ◦ P 1,x

F (z0) =
Γ1(z0), demonstrating that the multioperator Γ1 is closed.

Let us prove now that Γ1 has compact values. To this aim, we consider an
arbitrary z ∈ C([0, t1];E). Then, every sequence {fn}∞n=1 ∈ P 1,x

F (z) is semi-
compact. Therefore, with the same arguments as above, the set {Gfn}∞n=1 is
relatively compact. So the compactness of Γ1(z) follows from its closeness.

Further, the convexity of Γ1(z) is the consequence of the convexity of values
of the multimap F and the linearity of G.

Consider now the function ν defined on bounded sets Ω ⊂ C([0, t1];E) with
values in (R2,≥) as:

ν(Ω) = max
D∈D(Ω)

(γ(D), δ(D))

where D(Ω) is the collection of all denumerable subsets of Ω and, for a given
constant L > 0,

γ(D) = sup
0≤t≤t1

e−Ltχ(D(t)), δ(D) = modC(D).

Example 2.1.4 in [12] shows that ν is a monotone, non singular, regular MNC.
Let us prove that the multioperator Γ1 is condensing on bounded subsets of

C([0, t1];E) with respect to the MNC ν.
Let Ω ⊂ C([0, t1];E) be a bounded set such that

(3.3) ν(Γ1(Ω)) ≥ ν(Ω).

Let the maximum of ν(Γ1(Ω)) be achieved for the countable set D′ = {gn}∞n=1,
where gn = G1(fn), fn ∈ P 1,x

F (zn), n ≥ 1 and {zn}∞n=1 ⊂ Ω. From (3.3) we have:

(3.4) γ({gn}∞n=1) ≥ γ({zn}∞n=1).

From (F4) we have for s ∈ [0, t1]:

χ({fn(s)}∞n=1) ≤µ(s) sup
0≤σ≤s

χ({zn(σ)}∞n=1) = eLsµ(s)e−Ls sup
0≤σ≤s

χ({zn(σ)}∞n=1)

≤ eLsµ(s) sup
0≤σ≤t1

e−Lσχ({zn(σ)}∞n=1) = eLsµ(s)γ({zn}∞n=1).

Moreover, from properties of MNC χ we have for t ∈ [0, t1]:

χ({gn(t)}∞n=1) =χ

(
T (t, 0)x(0) +

∫ t

0

T (t, s){fn(s)}∞n=1 ds

)
≤χ(T (t, 0)x(0)) + χ

( ∫ t

0

T (t, s){fn(s)}∞n=1 ds

)
=χ

( ∫ t

0

T (t, s){fn(s)}∞n=1 ds

)
.
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Applying Proposition 3.5 we have

e−Ltχ({gn(t)}∞n=1) ≤ e−Lt2D
∫ t

0

eLsµ(s) ds γ({zn}∞n=1)

≤ 2D sup
t∈[0,t1]

e−Lt

∫ t

0

eLsµ(s) dsγ({zn}∞n=1),

where D > 0 is from (3.1). Then

γ({gn}∞n=1) ≤ sup
t∈[0,t1]

e−Lt2D
∫ t

0

eLsµ(s) dsγ({zn}∞n=1)

= 2Dγ({zn}∞n=1) sup
t∈[0,t1]

∫ t

0

e−L(t−s)µ(s) ds.

We can choose the constant L > 0 so that

sup
t∈[0,t1]

[
2D

∫ t

0

e−L(t−s)µ(s) ds
]
< 1,

so

(3.5) γ({gn}∞n=1) < γ({zn}∞n=1).

Then from (3.4) and (3.5) we have γ({gn}∞n=1) = γ({zn}∞n=1) = 0 and hence
χ({zn(t)}∞n=1) = 0, for all t ∈ (0, t1].

With the same arguments used before we obtain that {gn}∞n=1 is a relatively
compact sequence, therefore δ({gn}∞n=1) = 0, i.e. ν(Γ1(Ω)) = (0, 0) and from
(3.3) ν(Ω) = (0, 0), then Ω is a relatively compact set.

Let the function ỹ0 ∈ C([0, t1];E) be defined by ỹ0(t) ≡ T (t, 0)x(0), t ∈
[0, t1]. Consider the following family of multimaps Φ:C([0, t1];E) × [0, 1] →
Kv(C([0, t1];E)) given by:

(3.6) Φ(z, λ) =
{
ỹ0(t) + λ

∫ t

0

T (t, s)f(s) ds, t ∈ [0, t1], f ∈ P 1,x
F (z)

}
.

We will show that the set of fixed points of Φ, i.e. FixΦ = {z ∈ Φ(z, λ) for some
λ ∈ [0, 1]}, is a priori bounded.

Let z ∈ FixΦ. Then there exists f ∈ P 1,x
F (z) such that, by using (3.1) and

(F3), for any t ∈ [0, t1] we have:

‖z(t)‖ =
∥∥∥∥T (t, 0)x(0) + λ

∫ t

0

T (t, s)f(s) ds
∥∥∥∥ ≤ D‖x(0)‖+D

∫ t

0

‖f(s)‖ ds

≤D‖x(0)‖+D

∫ t

0

α(s)(1 + ‖z[x]s‖C) ds

≤D‖x(0)‖+D‖α‖L1
+[0,t1]

+D

∫ t

0

α(s)
(

sup
−τ≤σ≤0

‖x(σ)‖+ sup
0<σ≤s

‖z(σ)‖
)
ds
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≤D‖x(0)‖+D‖α‖L1
+[0,t1] +D‖α‖L1

+[0,t1] sup
−τ≤σ≤0

‖x(σ)‖

+D

∫ t

0

α(s) sup
0<σ≤s

‖z(σ)‖ ds

≤D‖x(0)‖+D‖α‖L1
+[0,t1](1 +N) +D

∫ t

0

α(s) sup
0<σ≤s

‖z(σ)‖ ds

where N = sup−τ≤t≤0 ‖x(t)‖. The right hand side is an increasing function in t,
so we have the same estimate for all 0 < r ≤ t, i.e.

sup
0<r≤t

‖z(r)‖ ≤ R+D

∫ t

0

α(s) sup
0<σ≤s

‖z(σ)‖ ds,

where R = D‖x(0)‖+D‖α‖L1
+[0,t1](1 +N). Since z is continuous on [0, t1], the

function ψ(t) = sup
0<r≤t

‖z(r)‖ is also continuous, so

ψ(t) ≤ R+D

∫ t

0

α(s)ψ(s) ds

by Gronwall–Bellmann inequality:

ψ(t) ≤ R exp
{
D

∫ t

0

α(s) ds
}
≤ R exp{D ‖α‖L1

+[0,t1]} := H.

Using the same arguments as before we may verify that the family Φ defined
in (3.6) is ν-condensing on every bounded set Ω ⊂ C([0, t1];E).

Now we take an open ball U ⊂ C([0, t1];E) of radius greater than H and with
center ỹ0 (then containing the set Fix Φ). The family Φ is fixed point free on
the boundary ∂U and hence it determines an homotopy between the multifield
i − Γ1 and the multifield i − ỹ0. In this framework it is possible to apply the
relative topological degree theory for condensing multifields developed in [12].
In this case we evaluate the degree with respect to the whole space E. Taking
into account that ỹ0 ∈ U and using the homotopy and normalization properties
of the degree, we obtain that deg(i− Γ1, U) = deg(i− ỹ0, U) = 1 and therefore
(see [12, Theorem 3.3.1])

∅ 6= FixΓ1 ⊂ U.

Then also the set Σ1
x of all mild solutions of problem (P)1 is nonempty.

Now, we prove that it is compact. First of all, by applying Proposition 2.2
we can claim that the fixed points set of Γ1 is compact. Let us take the function
κ1:C([0, t1];E) → C([−τ, t1];E) defined by

κ1(z) = z[x]

where z[x] is from (3.2). Since κ1 is a continuous map, then the set κ1(Fix Γ1)
is compact. The equality κ1(Fix Γ1) = Σ1

x concludes the proof of the step.
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Step 2. Let us fix z1 ∈ Σ1
x and let us consider the non impulsive Cauchy

problem:

(P)2;z1


y′(t) ∈ A(t)y(t) + F (t, yt) a.e. t ∈ [t1, t2],

y(t) = z1(t) for t ∈ [−τ, t1],
y(t1) = z1(t1) + I1(z1

t1).

Of course, for this problem a mild solution is a function y ∈ C([−τ, t2];E) such
that

(a’) y(t) = T (t, t1)[z1(t1) + I1(z1
t1)] +

∫ t

t1
T (t, s)f(s) ds, t ∈ [t1, t2] where f ∈

L1([t1, t2];E), f(s) ∈ F (s, ys) for almost every s ∈ [t1, t2]
(b’) y(t) = z1(t), t ∈ [−τ, t1].

To provide such a solution for problem (P)2;z1 , in analogy with the previous
step we consider the integral multioperator Γ2:C([t1, t2];E) → P(C([t1, t2];E))
defined as:

Γ2(z) =
{
y ∈ C([t1, t2];E) : y(t) = T (t, t1)[z1(t1)+I1(z1

t1)]+
∫ t

t1

T (t, s)f(s) ds,

f ∈ L1([t1, t2];E), f(s) ∈ F (s, z[z1]s) a.e. s
}

where z[z1] is defined by (3.2).
Also here, if z ∈ FixΓ2 then z[z1] is a mild solution of (P)2;z1 on the interval

[−τ, t2].
Moreover, by proceeding in the same way as in Step 1, we can claim that

this problem has at least one mild solution and the solution set is a compact set,
say Σ2

z1 .
Of course, we can iterate this process till a problem (P)N ;z1,... ,zN−1 and obtain

that also this problem has solutions and that these solutions form a compact set
ΣN

z1,... ,zN−1 .
Now, every solution of (P)N ;z1,... ,zN−1 is a solution of (P) and the first part

of the theorem is proved.

Step 3. It remains to prove that the set of all solutions of (P), i.e.

(3.7) Σ =
⋃
{ΣN

z1,... ,zN−1 : z1 ∈ Σ1
x; . . . ; zN−1 ∈ ΣN−1

z1,... ,zN−2}

is compact.
To this aim, from now on we assume that the impulse functions Ik are con-

tinuous. First of all, we define the multifunction H1: Σ1
x → P(C([−τ, t2];E))

as
H1(z1) = Σ2

z1 .

From Step 2 we know both that Σ1
x is compact and that H1 has compact

values.
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Now, we prove that it is u.s.c. so that, by applying Proposition 2.1, we get
the range

⋃
z1∈Σ1

x
Σ2

z1 to be compact.
Note that defining the multifunction Q1: Σ1

x → K(C([t1, t2];E)) as

Q1(z1) = Σ2
z1 |[t1,t2]

,

the multifunction H1 can be written as the composition of the multimap P 1: Σ1
x

→ K(Σ1
x × C([t1, t2];E)) defined by

P 1(z1) = {z1} ×Q1(z1)

with the continuous map η1:P 1(Σ1
x) → C([−τ, t2];E) defined by

η1(z1, z) = z[z1]

(see (3.2)).
So, we first prove that the multifunction Q1 is u.s.c. We assume to the

contrary that there exists z1 ∈ Σ1
x such that Q1 is not u.s.c. in z1. Therefore

there exist ε > 0 and two sequences {z1
n}∞n=1, z

1
n → z1 in C([−τ, t1];E), and

{z2
n}∞n=1, z

2
n ∈ Σ2

z1
n | [t1,t2]

, such that

(3.8) z2
n /∈ B(Σ2

z1 |[t1,t2]
, ε), n ≥ 1.

Since {z2
n}∞n=1 is a sequence of solutions, we have:

(3.9) z2
n(t) = T (t, t1)[z1

n(t1) + I1(z1
nt1

)] +
∫ t

t1

T (t, s)f2
n(s) ds, t ∈ [t1, t2]

where f2
n ∈ L1([t1, t2];E), f2

n(s) ∈ F (s, z2
ns) for almost every s ∈ [t1, t2]. Then,

for s ∈ [t1, t], (F4) yields

χ({f2
n(s)}∞n=1) ≤ µ(s) sup

−τ≤θ≤0
χ({z2

n(s+ θ)}∞n=1)

≤ µ(s)
(

sup
−τ≤η≤0

χ(x(η)) + sup
0≤η≤t1

χ({z1
n(η)}∞n=1) + sup

t1≤η≤s
χ({z2

n(η)}∞n=1)
)
.

The MNC χ({z1
n(η)}∞n=1) = 0, since {z1

n}∞n=1 is a converging sequence, then

χ({f2
n(s)}∞n=1) ≤ eLsµ(s) sup

t1≤η≤t2

e−Lηχ({z2
n(η)}∞n=1).

Now, using similar arguments as in the proof of condensivity in Step 1, it is possi-
ble to prove that the set {z2

n}∞n=1 is relatively compact in C([t1, t2];E). Therefore
without loss of generality we can assume that there exists z2 ∈ C([t1, t2];E) such
that z2

n → z2 in C([t1, t2];E).
Now we prove that z2 ∈ Q1(z1). For every n ≥ 1, we consider z2

n ∈ Σ2
z1 | [t1,t2]

and the corresponding function f2
n from (3.9).
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As in Step 1 it is possible to prove that there exists f
2 ∈ L1([t1, t2];E) such

that f2
n ⇀ f

2 ∈ L1([t1, t2];E). Now, by using Lemma 3.6, we have

f
2
(t) ∈ F (t, z2

t ), a.e. t ∈ [t1, t2].

From Proposition 3.4 and the fact that the function I1 is continuous, by consid-
ering the limit in both sides of (3.9) we get

z2(t) = T (t, t1)[z1(t1) + I1(z1
t1)] +

∫ t

t1

T (t, s)f
2
(s) ds, t ∈ [t1, t2]

where f
2 ∈ L1([t1, t2];E), f

2
(s) ∈ F (s, z2

s) for almost every s ∈ [t1, t2], that is
z2 ∈ Σ2

z1 |[t1,t2]
= Q1(z1).

The fact that z2
n → z2 ∈ Q1(z1) leads a contradiction with (3.8). Therefore,

by applying well known results on composition and cartesian product of mul-
timaps (see e.g. [12, Theorems 1.2.12 and 1.2.8]), we can conclude that H1 is
u.s.c.

By iterating this process we obtain the compactness of the solution set Σ
(cf. (3.7)) on the whole interval [−τ, b]. �

Remark 3.8. We point out that our Theorem 3.7 contains the analogous
result due to Benedetti ([4, Theorem 3.4]) for Cauchy problems governed by
semilinear differential inclusions with linear part given by a constant operator A.

In fact, if A is the infinitesimal generator of a C0-semigroup, then A satisfies
assumption (A) just by defining every term of the family {A(t)}t∈[0,b] as A(t) = A

for every t ∈ [0, b] and by recalling that a C0-semigroup {U(t)}t∈[0,b] leads to an
evolution system by means of relation T (t, s) = U(t− s).

Moreover, every mild solution of (P) can be rewritten as a mild solution of
the Cauchy problem with constant operator.

Remark 3.9. Note that if Ik ≡ 0 for every k = 1, . . . , N , then Theorem 3.7
provides both the existence of mild solutions on the whole interval [−τ, b] for the
non-impulsive delay evolution Cauchy problem{

y′(t) ∈ A(t)y(t) + F (t, yt) for a.e. t ∈ [0, b],

y(t) = x(t) for t ∈ [−τ, 0],

and the compactness of the solution set for this problem in the space C([−τ, b];E).

4. Existence of solutions on non compact intervals

Using the results in the previous section we can give an existence result for
the problem (P)∞. Let us consider the set ∆∞ = {(t, s) ∈ R+

0 ×R+
0 : 0 ≤ s ≤ t}

and the evolution system {T (t, s)}(t,s)∈∆∞ .
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In this framework, for every natural number k ≥ 1 there exists a constant
Dk = D∆k

> 0 such that

‖T (t, s)‖L(E) ≤ Dk, (t, s) ∈ ∆k = {(t, s) ∈ R+
0 × R+

0 : 0 ≤ s ≤ t ≤ tk+1}.

On the linear part of the differential inclusion of problem (P )∞ we assume
a condition that we call (A)∞, which is the same as condition (A) but on the
interval [0,∞[.

Let us denote by L1
loc([0,∞[) the set of all Bochner summable functions on

the compact subsets of [0,∞[.
The multivalued map F : [0,∞[× C([−τ, 0];E) → Kv(E) is such that:

(F1)∞ The multifunction F ( · , c): [0,∞[ → Kv(E) has a strongly measurable
selection for every c ∈ C([−τ, 0];E), i.e. there exists a strongly measur-
able function f : [0,∞[ → E such that f(t) ∈ F (t, c) for almost every
t ∈ [0,∞[;

(F2)∞ The multimap F (t, · ): C([−τ, 0];E) → Kv(E) is u.s.c. for almost every
t ∈ [0,∞[;

(F3)∞ There exists a function α ∈ L1
loc([0,∞[) such that:

‖F (t, c)‖ ≤ α(t)(1 + ‖c‖C), a.e. t ∈ [0,∞[;

(F4)∞ There exists a function µ ∈ L1
loc([0,∞[) such that:

χ(F (t,D)) ≤ µ(t) sup
−τ≤t≤0

χ(D(t)), a.e. t ∈ [0,∞[,

for every bounded D ⊂ C([−τ, 0];E).

Definition 4.1. A function y ∈ C([−τ,∞[;E) is said to be a mild solution
of the problem (P)∞ if

(a) y(t) = T (t, 0)x(0) +
∑

0<tk<t T (t, tk)Ik(ytk
) +

∫ t

0
T (t, s)f(s) ds, for t ∈

[0,∞[, where f ∈ L1
loc([0,∞[;E) and f(s) ∈ F (s, ys) for almost every

s ∈ [0,∞[,
(b) y(t) = x(t), t ∈ [−τ, 0],
(c) y(t+k ) = y(tk) + Ik(ytk

), k ∈ N+.

Theorem 4.2. Suppose that hypotheses (A)∞ and (F1)∞–(F4)∞ hold and
assume that maps Ik: C([−τ, 0];E) → E, k ∈ N+, are continuous. Then problem
(P)∞ has at least one mild solution on [−τ,∞[.

Proof. Let {Tk}k∈N+ be the monotone family of compact intervals Tk =
[0, tk]. Of course

⋃
k∈N+ Tk = [0,∞[. For every k ∈ N+, we consider the problem

(P)k


y′(t) ∈ A(t)y(t) + F (t, yt) a.e. t ∈ Tk, t 6= tj , j < k,

y(t) = x(t) for t ∈ [−τ, 0],

y(t+j ) = y(tj) + Ij(ytj
) for j < k.
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From Theorem 3.7 there exists at least one mild solution ϕk ∈ C([−τ, tk];E) for
this problem.

Let us consider the sequence of the restrictions to the interval [−τ, t1] of the
mild solutions fixed above, i.e. (ϕk|[−τ,t1])k∈N+ . Since this sequence is contained
in the solution set of problem (P)1, say Σ1, and this set is a compact subset of
the space C([−τ, t1];E) (see again Theorem 3.7), we can claim that there exists
a subsequence (ϕkn|[−τ,t1])n∈N converging to a function ψ1 ∈ C([−τ, t1];E) mild
solution of the problem (P)1; so

(4.1) ψ1(t) = T (t, 0)x(0) +
∫ t

0

T (t, s)f1(s) ds, t ∈ T1

where f1 ∈ L1(T1;E), f1(s) ∈ F (s, ψ1
s) for almost every s ∈ T1.

Now, let us consider in C([−τ, t2];E) the sequence (ϕkn|[−τ,t2])n∈N of mild
solutions for the impulsive Cauchy problem (P)2. Again, we know that the
set of all mild solutions of (P)2 is compact. Then, there exists a subsequence
(ϕknh

|[−τ,t2])h∈N+ converging in the space C([−τ, t2];E) to a function ψ2 ∈
C([−τ, t2];E) which is a mild solution for the impulsive Cauchy problem (P)2,
so that

(4.2) ψ2(t) = T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψ2
tj

) +
∫ t

0

T (t, s)f2(s) ds, t ∈ T2

for f2 ∈ L1(T2;E), f2(s) ∈ F (s, ψ2
s) for almost every s ∈ T2. Of course,

ψ2
|T1

= ψ1.

Iterating this process we obtain, for every k ∈ N+, a mild solution ψk: [−τ, tk] →
E for problem (P)k with

(4.3) ψk(t) = T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψk
tj

) +
∫ t

0

T (t, s)fk(s) ds, t ∈ Tk

where fk ∈ L1(Tk;E), fk(s) ∈ F (s, ψk
s ) for almost every s ∈ Tk. Of course, for

every integer k ≥ 2, we have

(4.4) ψk
|Tk−1

= ψk−1.

Consider now the function ψ: [−τ,∞[ → E defined by

(4.5) ψ(t) =


XT1(t)ψ

1(t) +
∞∑

k=2

XTk\Tk−1(t)ψ
k(t) for t ≥ 0,

x(t) for t ∈ [−τ, 0],

where XI is the characteristic function of a set I.
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We claim that function ψ is a mild solution of problem (P)∞. Of course, it
is enough to prove condition (a) of Definition 4.1. To this aim, let us note that
if we put

fT2(t) =

{
f1(t) for t ∈ T1,

f2(t) for t ∈ T2 \ T1,

then fT2 ∈ L1(T2;E) and, by (4.4), fT2(t) ∈ F (t, ψ2
t ) for almost every t ∈ T2.

Moreover, it is also true that

ψ2(t) = T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψ2
tj

) +
∫ t

0

T (t, s)fT2(s) ds, t ∈ T2.

In fact by (4.1), (4.2), (4.4) we have

(4.6)
∫ t1

0

T (t1, s)f1(s) ds =
∫ t1

0

T (t1, s)f2(s) ds

then

ψ2(t) =T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψ2
tj

)

+ T (t, t1)
∫ t1

0

T (t1, s)f2(s) ds+
∫ t

t1

T (t, s)f2(s) ds

=T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψ2
tj

)

+ T (t, t1)
∫ t1

0

T (t1, s)f1(s) ds+
∫ t

t1

T (t, s)f2(s) ds

=T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψ2
tj

) +
∫ t

0

T (t, s)fT2(s) ds.

Analogously, put

fT3(t) =


f1(t) for t ∈ T1,

f2(t) for t ∈ T2 \ T1,

f3(t) for t ∈ T3 \ T2,

then fT3 ∈ L1(T3;E) and fT3(t) ∈ F (t, ψ3
t ) for almost every t ∈ T3. Further, for

t ∈ T3, relation (4.3) gives

ψ3(t) =T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψ3
tj

) + T (t, t1)
∫ t1

0

T (t1, s)f3(s) ds

+ T (t, t2)
∫ t2

t1

T (t2, s)f3(s) ds+
∫ t

t2

T (t, s)f3(s) ds.

Now, from the value of ψ3 in t1, (4.4) and (4.6), we have that

(4.7)
∫ t1

0

T (t1, s)f3(s) ds =
∫ t1

0

T (t1, s)f2(s) ds =
∫ t1

0

T (t1, s)f1(s) ds.
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Moreover, obviously it is∫ t2

t1

T (t2, s)f3(s) ds = ψ3(t2)− T (t2, 0)x(0)

− T (t2, t1)I1(ψ3
t1)−

∫ t1

0

T (t2, s)f3(s) ds;

by using the first equality of (4.7), the last term can be written as∫ t1

0

T (t2, s)f3(s) ds = T (t2, t1)
∫ t1

0

T (t1, s)f3(s) ds

= T (t2, t1)
∫ t1

0

T (t1, s)f2(s) ds.

Then from the value of ψ2(t2) we get the identity∫ t2

t1

T (t2, s)f3(s) ds =
∫ t2

t1

T (t2, s)f2(s) ds.

So we can conclude that

ψ3(t) = T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψ3
tj

) +
∫ t

0

T (t, s)fT3(s) ds, t ∈ T3.

By the iteration of this process we have

(4.8) ψk(t) = T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψk
tj

) +
∫ t

0

T (t, s)fTk
(s) ds, t ∈ Tk

where

fTk
(s) = XT1(s)f

1(s) +
k∑

j=2

XTj\Tj−1(s)f
k(s), s ∈ Tk

(and fTk
∈ L1(Tk;E), fTk

(s) ∈ F (s, ψk
s ) for almost every s ∈ Tk).

Now, we show that the locally summable function f : [0,∞[ → E defined by

(4.9) f(t) = XT1(t)f
1(t) +

∞∑
k=2

XTk\Tk−1(t)f
k(t), t ≥ 0

is suitable for (a) of Definition 4.1.
In fact, fixed t ≥ 0, there exists a unique k ∈ N+ such that t ∈ Tk \Tk−1 and

therefore, bearing in mind (4.5), (4.8) and (4.9), we get

ψ(t) =ψk(t) = T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψk
tj

) +
∫ t

0

T (t, s)fTk
(s) ds

=T (t, 0)x(0) +
∑

0<tj<t

T (t, tj)Ij(ψtj ) +
∫ t

0

T (t, s)f(s) ds.

Of course, by (4.9) and (4.5) we also obtain f(s) = fk(s) ∈ F (s, ψk
s ) = F (s, ψs)

for almost every s ≥ 0, which concludes the proof. �
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Remark 4.3. In analogy with Remarks 3.8 and 3.9, we observe that The-
orem 4.2 provides the existence of mild solutions for problem (P)∞ also in the
autonomuos case (i.e. A not depending on t) and, if Ik ≡ 0 for every k ∈ N+, it
furnishes the existence of mild solutions on [−τ,∞[ for the non-impulsive delay
evolution Cauchy problem{

y′(t) ∈ A(t)y(t) + F (t, yt) for a.e. t ∈ [0,∞[,

y(t) = x(t) for t ∈ [−τ, 0],

Remark 4.4. We note that the method of proof used for Theorem 4.2 also
provides the existence of mild solutions for the impulsive Cauchy problem defined
on the non closed interval [0, b[ (0 < b <∞)

y′(t) ∈ A(t)y(t) + F (t, yt) a.e. t ∈ [0, b[, t 6= tk, k ∈ N,

y(t) = x(t) for t ∈ [−τ, 0],

y(t+k ) = y(tk) + Ik(ytk
) for k ∈ N+,

where the jump points are an increasing sequence of times tk ∈ [0, b[ converging
to b. Of course, assumptions (A)∞ and (F )∞ must be suitably adapted to the
present case.
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