
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 32, 2008, 177–185

THE IMPLICIT FUNCTION THEOREM
FOR CONTINUOUS FUNCTIONS

Carlos Biasi — Carlos Gutierrez — Edivaldo L. dos Santos

Abstract. In the present paper we obtain a new homological version of
the implicit function theorem and some versions of the Darboux theorem.

Such results are proved for continuous maps on topological manifolds. As

a consequence, some versions of these classic theorems are proved when we
consider differenciable (not necessarily C1) maps.

1. Introduction

This paper deals with a generalization of the classical Implicit Function The-
orem. In this respect, C. Biasi and E. L. dos Santos proved a homological version
of the implicit function theorem for continuous functions on general topological
spaces which has interesting applications in the theory of topological groups.
More specifically, Theorem 2.1 of [1] states that: “If X, Y , Z are Hausdorff
spaces, with X locally connected, Y locally compact and f :X × Y → Z such
that (fx0)∗ = (f |(x0×Y ))∗:Hn(Y, Y − y0) → Hn(Z,Z − z0) is a nontrivial ho-
momorphism, for some natural n > 0, where {y0} = (fx0)

−1({z0}), then there
exists an open neighbourhood V of x0 and a function g:V ⊂ X → Y satisfying
the equation f(x, g(x)) = z0, for each x ∈ V . Moreover, g is continuous at x0”.
This result establishes the existence of an implicit function g, however, the con-
tinuity of such function is guaranteed only at the point x0. In this paper, under
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little stronger assumptions, we can ensure the continuity of g at a neighbourhood
of x0. More precisely,

Theorem 4.1. Let X be a locally pathwise connected Hausdorff space and
let Y , Z be oriented connected topological manifolds of dimension n. Let f :X ×
Y → Z be a continuous map such that, for all x ∈ X, the map fx:Y → Z

given by fx(y) = f(x, y) is open and discrete. Suppose that for some (x0, y0) ∈
X × Y , |deg(fx0 , y0)| = 1. Then there exists a neighbourhood V of x0 in X and
a continuous function g:V → Y such that f(x, g(x)) = f(x0, y0), for all x ∈ V .

As a consequence we obtain

Corollary 4.2. Let X be a locally pathwise connected Hausdorff space. Let
U ⊂ Rn be an open subset of Rn and let f :X × U → Rn be a continuous map.
Suppose that fx:U → Rn is a differentiable (not necessarily C1) map without
critical points, for each x ∈ X. Given (x0, y0) ∈ X×U and z0 = f(x0, y0), there
exist a neighbourhood V of x0 and a continuous function g:V → U such that
g(x0) = y0 and, for every x ∈ V, f(x, g(x)) = z0.

Corollary 4.3. Let I × V ×W be an open neighbourhood of (t0, x0, y0) in
R×Rn×Rm and let F : (I×V ×W, (t0, x0, y0)) 7→ (Rm, 0) be a continuous map.
Suppose that, for all (t, x) ∈ I × V , the map y ∈ W → F (t, x, y) is differen-
tiable (but not necessarily C1) and without critical points. Then the differential
equation

F (t, x, x′) = 0, x(t0) = x0, x′(t0) = y0

has a solution in some interval (t0 − ε, t0 + ε).

We also prove the following versions of Darboux Theorem.

Theorem 5.1. Let M and N be oriented connected topological manifolds of
dimension n and let f :M → N be a continuous map. Suppose that there exist
x0 and x1 in M such that deg(f, x0) < 0 and deg(f, x1) > 0. Then there exists
x2 in M such that deg(f, x2) = 0

Corollary 5.2. Let M and N be oriented connected topological manifolds
of dimension n and let f :M → N be a differentiable map. Suppose that there
exist x0 and x1 in M such that det[f ′(x0)] < 0 and det[f ′(x1)] > 0. Then f has
a critical point.

A fundamental step to establish the versions of the Implicit Function The-
orem and Darboux Theorem is Lemma 3.1 (Key Lemma), which is connected
with the Yu Yu Trohimčuk conjecture (see [3], [7]), known as the problem of sign
constancy of the local degree.
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2. Preliminares

In this section we introduce some basic notions, notations and results that
will be used throughout this paper. All considered singular homology groups will
always have coefficients in Z. By dimension we understand the usual topological
dimension in the sense of [5].

In the following definitions, X and Y will be oriented connected topological
manifolds of dimension n ≥ 1 and f :X → Y will be a continuous map. The
definition of orientation for topological manifolds can be found, for instance,
in [4].

Definition 2.1. A map f :X → Y is said to be discrete at a point x0, if
there exists a neighbourhood V of x0 such that f(x) 6= f(x0), for any x ∈ V −x0,
that is, f−1(f(x0)) ∩ (V − x0) = ∅.

An example: the mapping f(z) = z2 is open and discrete at every point of
the complex plane.

Definition 2.2. Let y ∈ Y such that Ly = f−1(y) is a compact subset
of X. Let αLy ∈ Hn(X, X − Ly) and βy ∈ Hn(Y, Y − y) be the orientation
classes along Ly and y, respectively. There exists an integer number deg(f, y)
such that f∗(αLy

) = deg(f, y) · βy, where f∗:Hn(X, X − Ly) → Hn(Y, Y − {y})
is the homomorphism induced by f . The number deg(f, y) is called degree of f

at y.

Definition 2.3. Let f :X → Y be a discrete map at a point x0 and let us
denote by y0 = f(x0). Consider αx0 ∈ Hn(V, V − x0) and βy0 ∈ Hn(Y, Y −
y0) the orientation classes at x0 and y0, respectively. There exists an integer
number deg(f, x0) such that f∗(αx0) = deg(f, x0)·βy0 , where the homomorphism
f∗:Hn(V, V − x0) → Hn(Y, Y − y0) is induced by f . The number deg(f, x0) is
called local degree of f at x0.

Definition 2.4. Suppose that f :X → Y is not necessarily a discrete map.
Define

deg(f, x) =

{
0 if f is not discrete at x,

deg(f, x) if f is discrete at x (as in Definition 2.3).

The proof of the following two propositions can be found in [4].

Proposition 2.5. Let X and Y be oriented connected topological manifolds
of dimension n ≥ 1 and let f :X → Y be a continuous map. Consider y ∈ Y

such that f−1(y) is finite. Then,

deg(f, y) =
∑

x∈f−1(y)

deg(f, x).
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Proposition 2.6. Let X and Y be oriented connected topological manifolds
of dimension n ≥ 1 and f :X → Y be a continuous map. Let us consider
a compact connected subset K of Y such that LK = f−1(K) is compact. Then,
deg(f, y) does not depend of y ∈ K.

As an immediate consequence of Proposition 2.6 we have the following:

Corollary 2.7. Let X and Y be oriented connected topological manifolds
of dimension n ≥ 1 and f :X → Y be a proper continuous map. Then, for all
y ∈ Y , deg(f, y) = deg(f).

In [8], Väisälä proved the following version of the Černavskĭı’s theorem (see
[2] and [3]):

Theorem 2.8. Let X and Y be topological manifold of dimension n. Suppose
that f :X → Y is an open and discrete map. Then dim(f(Bf )) ≤ n − 2 and
dim(Bf ) ≤ n− 2, where Bf denotes the set of points x of X such that f is not
a local homeomorphism at x.

3. Persistence of the sign of deg(f, x)

The following lemma will be fundamental in the proof of the versions of the
Implicit Function Theorem and Darboux Theorem.

Lemma 3.1 (Key Lemma). Let X and Y be oriented connected topological
manifolds of dimension n. Suppose that f :X → Y is an open and discrete map.
Then, for any x ∈ X, one has that deg(f, x) 6= 0; moreover, deg(f, x) has always
the same sign.

Proof. It follows from Theorem 2.8 that dim Bf ≤ n − 2, then X − Bf is
connected. Since f is a local homeomorphism on X −Bf , one has that

(3.1) deg(f, x) = c, for all x ∈ X −Bf , where either c = 1 or c = −1.

Let x0 ∈ Bf and denote by y0 = f(x0). Since f is a discrete map and X is
locally compact, we can choose an open connected neighbourhood V of x0 such
that V is compact and f(x) 6= f(x0) for all x ∈ V − x0. Then, there exists an
open neighbourhood W of y0 = f(x0) such that W is a compact and connected
subset of Y and (f |V )−1(W ) = (f |V )−1(W ) ⊂ V . Therefore, (f |V )−1(W ) is
compact and it follows from Proposition 2.6 that

(3.2) deg(f |V , y) = deg(f |V , y0), for all y ∈ W

On the other hand, since U = (f |V )−1(W ) is an open set in X and f is a open
map, we have that f |V (U) ⊂ W is an open set in Y and since Y − f(Bf ) is
dense in Y (recall that dim(f(Bf )) ≤ n − 2 by Theorem 2.8), there exists y1 ∈
f |V (U)−f(Bf ). Therefore, it follows from (3.2) that deg(f |V , y1) = deg(f |V , y0).
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Let (f |V )−1(y1) = {x1, . . . , xk} in X − Bf . Then, by Proposition 2.5 we have
that

(3.3) deg(f, x0) = deg(f |V , y0) = deg(f |V , y1) =
∑

xi∈(f |V )−1(y1)

deg(f |V , xi).

On the other hand, since xi ∈ X − Bf for i = 1, . . . , k, by formula (3.1),
deg(f, xi) = c where either c = 1 or c = −1. Then, it follows from (3.3)
that deg(f, x0) = kc and therefore deg(f, x) has always the same sign, for any
x ∈ X. �

4. The Implicit Function Theorem

In this section we shall show a new homological version of the Implicit Func-
tion Theorem.

Theorem 4.1 (Implicit Function Theorem). Let X be a locally pathwise
connected Hausdorff space and let Y , Z be oriented connected topological ma-
nifolds of dimension n. Let f :X × Y → Z be a continuous map such that, for
all x ∈ X, the map fx:Y → Z given by fx(y) = f(x, y) is open and discrete.
Suppose that for some (x0, y0) ∈ X × Y , |deg(fx0 , y0)| = 1. Then there exists
a neighbourhood V of x0 in X and a continuous function g:V → Y such that
f(x, g(x)) = f(x0, y0), for all x ∈ V .

Proof. Let z0 = f(x0, y0). Since Y is locally compact and fx0 is a discrete
map, we can choose a compact neighbourhood W ⊂ Y of y0 ∈ Y satisfying

(fx0)
−1(z0) ∩W = y0.

We will first show that for any compact neighbourhood K ⊂ Int(W ) containing
y0, there exists a neighbourhood V of x0 such that

(4.1) (fx|W )−1({z0}) ⊆ K, for all x ∈ V.

In fact, suppose that for each neighbourhood V of x0 there exists (xV , yV ) in
V × (W −K) such that f(xV , yV ) = z0. Let us consider a generalized sequence,
called a net, ((xV , yV ))V ∈V , where V is the collection of all the neighbourhoods
of x0, partially ordered by reverse inclusion (for details see [6, p. 187–188]).
Therefore, lim xV = x0 and since (yV ) is a net contained in the compact sub-
set W − Int(K), there exists y1 ∈ W − Int(K) which is a limit point of some
convergent subnet of (yV ). Hence, (x0, y1) is a limit point of some subnet of
(xV , yV ). Since f is a continuous map, one has f(x0, y1) = z0 which implies that
y1 = y0, contradicting the fact that y1 ∈ W − Int(K). Therefore, there exists
a neighbourhood V of x0 satisfying (4.1).

Choose a compact neighbourhood K ⊂ Int(W ) of y0. It follows from (4.1)
that for each x ∈ V , the map of pairs fx: (W,W−K) → (Z,Z−z0) is well defined.
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Since X is locally pathwise connected, we can assume that V is a pathwise
connected neighbourhood of x0 and therefore, for each x in V , there exists a path
α in V joining x0 to x. We define the homotopy of pairs H: (I×W, I×(W−K)) →
(Z,Z − z0) given by

H(t, y) = f(α(t), y) = fα(t)(y), for all (t, y) ∈ I ×W.

Since W is compact and H is an appropriate homotopy between fx0 |W and
fx|W , we obtain deg(fx|W , z0) = deg(fx0 |W , z0). Now, as deg(fx0 |W , z0) =
deg(fx0 , y0) and as, by hypotheses, |deg(fx0 , y0)| = 1 we obtain

(4.2) |deg(fx|W , z0)| = |deg(fx0 |W , z0)| = |deg(fx0 , y0)| = 1.

Since fx is open and discrete, it follows from Lemma 3.1 that deg(fx, y) 6= 0, for
any y ∈ Y , and deg(fx, y) has always the same sign. Thus, if (fx|W )−1(z0) =
{y1, · · · , yk} ⊂ W with k ≥ 2, we have that

|deg(fx|W , z0)| =
∣∣∣∣ k∑

i=1

deg(fx, yi)
∣∣∣∣ =

k∑
i=1

|deg(fx, yi)| > 1,

which contradicts (4.2). Therefore, for each x ∈ V there exists a unique y ∈
K ⊂ W such that (fx|W )−1(z0) = y; in other words, for each x ∈ V there exists
a unique y = g(x) ∈ K such that fx(g(x)) = f(x, g(x)) = z0 for each x ∈ V .

We will show that the map g:V → K ⊂ Y is continuous. Let A be a neigh-
bourhood of y = g(x) such that A ⊂ K. Let us assume that for any neigh-
bourhood U of x, there exists xU in U such that g(xU ) belongs to the compact
subset K − A. Let y in K − A be the limit point of the some convergent sub-
net of (g(xU )). Thus, (x, y) is the limit point of the some convergent subnet
of (xU , g(xU )). Since f is continuous and g is given implicitly by the equa-
tion f(xU , g(xU )) = z0 we have that f(x, y) = z0, which implies that y = y,
contradicting the fact that y ∈ K −A. �

Corollary 4.2. Let X be a locally pathwise connected Hausdorff space. Let
U ⊂ Rn be an open subset of Rn and let f :X × U → Rn be a continuous map.
Suppose that fx:U → Rn is a differentiable (not necessarily C1) map without
critical points, for each x ∈ X. Given (x0, y0) ∈ X×U and z0 = f(x0, y0), there
exist a neighbourhood V of x0 and a continuous function g:V → U such that
g(x0) = y0 and, for every x ∈ V , f(x, g(x)) = z0.

Proof. Since fx:U → Rn is a differentiable (not necessarily C1) map with-
out critical points, we have that fx is an open and discrete map, for each x in X.
Therefore, the result follows from Theorem 4.1. �
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Corollary 4.3. Let I × V ×W be an open neighbourhood of (t0, x0, y0) in
R×Rn×Rm and let F : (I×V ×W, (t0, x0, y0)) 7→ (Rm, 0) be a continuous map.
Suppose that, for all (t, x) ∈ I × V , the map y ∈ W → F (t, x, y) is differen-
tiable (but not necessarily C1) and without critical points. Then the differential
equation

F (t, x, x′) = 0, x(t0) = x0, x′(t0) = y0

has a solution in some interval (t0 − ε, t0 + ε).

Proof. By Corollary 4.2, we have that there exists a neighbourhood (t0 −
ε1, t0 + ε1)×V1 of (t0, x0) and a function g: (t0− ε1, t0 + ε1)×V1 → W such that

F (t, x, g(t, x)) = 0

By Peano Theorem, there exists a solution ϕ: (t0−ε, t0+ε) → V1 of the differential
equation

x′ = g(t, x), x(t0) = x0, x′(t0) = y0.

This implies the corollary. �

5. Generalizations of the Darboux theorem

The classical Darboux theorem states that if f : [a, b] → R is a differentiable
map which has the property that f ′(a) < 0 and f ′(b) > 0, then there exists
a point c ∈ (a, b) such that f ′(c) = 0.

In order to obtain some versions of the Darboux theorem we apply the results
previously obtained.

Theorem 5.1 (A homological version of the Darboux theorem). Let M , N

be oriented connected topological manifolds of dimension n and let f :M → N be
a continuous map. Suppose that there exist x0, x1 in M such that deg(f, x0)<0
and deg(f, x1)>0, then there exists x2 in M such that deg(f, x2)=0.

Proof. If f is not a discrete map at some x ∈ M , it follows from Defini-
tion 2.4 that deg(f, x) = 0. In this way, suppose that f is a discrete map at x,
for every x ∈ M . Therefore, if deg(f, x) 6= 0 for any x ∈ M , then f is also an
open map and from Lemma 3.1 we conclude that deg(f, x) has always the same
sign, for any x ∈ M , which is a contradiction. �

The following theorems are differentiable versions of the Darboux theorem.
Let us observe that when f is of class C1, these results are trivial.

Corollary 5.2. Let M and N be oriented connected topological manifolds
of dimension n and let f :M → N be a differentiable map. Suppose that there
exist x0 and x1 in M such that det[f ′(x0)] < 0 and det[f ′(x1)] > 0. Then f has
a critical point.
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Proof. Suppose that f does not have critical points. In this case, one has
that for any x ∈ M , |deg(f, x)| = 1 6= 0. Thus, f is an open and discrete map
and it follows from Lemma 3.1 that deg(f, x) has always the same sign, which is
a contradiction. �

Corollary 5.3. Consider f, g:M → Rn differentiable maps, where M is
an oriented connected topological manifold of dimension n. Suppose that there
exist α ∈ R and x0, x1 ∈ Mn such that

det[f ′(x0)− αg′(x0)] < 0 and det[f ′(x1)− αg′(x1)] > 0.

Then, there exists x2 ∈ M such that det[f ′(x2)− αg′(x2)] is equal to zero.

Proof. It suffices to apply Theorem 5.2 for the map h = f − αg. �

As a direct consequence of Theorem 5.3 one has the following version of the
classical Darboux theorem for differentiable maps from Rn into Rn.

Corollary 5.4 (Differentiable Darboux theorem). Let f :U → Rn be a dif-
ferentiable map, where U is an open connected subset of Rn. Suppose that there
exist α ∈ R and x0, x1 ∈ U such that det[f ′(x0)−αI] < 0 and det[f ′(x1)−αI] >

0. Then, there exists x2 ∈ U such that det[f ′(x2)−αI] is equal to zero (i.e. α is
an eigenvalue of f ′(x2)).

Now consider f and U under the same assumptions of Corollary 5.4 and let
us denote by p0(λ) = det[f ′(x0))− λI] and by p1(λ) = det[f ′(x1))− λI]. Let n0

and n1 natural numbers. In these conditions, we prove the following

Corollary 5.5. Let x0, x1 ∈ U and α ∈ R such that p0(λ) = q0(λ)·(α−λ)n0

and p1(λ) = q1(λ)(α − λ)n1 , where q0(λ) and q1(λ) are not null polynomials.
Suppose that n0 is odd and n1 is even. If q0(α)q1(α) > 0 then there exists δ > 0
satisfying the following condition: for each λ ∈ (α, α+ δ) there exists x2 = x2(λ)
such that det[f ′(x2)− λI] is equal to zero.

Proof. Since n0 is odd and n1 is even, one has that, for λ > α close to α, the
polynomials p0(λ) and p1(λ) have different signs. It follows from Corollary 5.4
that if δ > 0 is small enough and λ ∈ (α, α + δ), there exists x2 = x2(λ) such
that p2(λ) = det[f ′(x2)− λI] is equal to zero. �

Remark 5.6. Theorem 5.5 remains the same in the case that q0(α)q1(α) < 0
and λ ∈ (α− δ, α).

Acknowledgements. The authors are grateful to the referee for the com-
ments and suggestions, concerning the presentation of this article, which led to
this present version.



The Implicit Function Theorem 185

References

[1] C. Biasi and E. L. dos Santos, A homological version of the implicit function theorem,

Semigroup Forum 72 (2006), 353–361.
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Caixa Postal 668
13560-970, São Carlos SP, BRAZIL

E-mail address: biasi@icmc.usp.br, gutp@icmc.usp.br

Edivaldo L. dos Santos
Universidade Federal de São Carlos

Departamento de Matemática Caixa
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