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AN EXTENSION
OF LEGGETT–WILLIAMS NORM-TYPE THEOREM

FOR COINCIDENCES AND ITS APPLICATION

Aijun Yang

Abstract. In this paper, several versions extension of Leggett–Williams
norm-type theorem for coincidences are given and proved to obtain the

positive solutions of the operator equation Mx = Nx, where M is a quasi-

linear operator and N is nonlinear. Moreover, as an application, the ex-
istence of positive solutions for multi-point boundary value problem with

a p-Laplacian is obtained by one of those theorems.

1. Introduction

In [9], D. O’Regan and M. Zima proved the Leggett–Williams norm-type
theorem for the abstract equation Lx = Nx with L a noninvertible linear oper-
ator, which has become a useful tool in finding positive solutions to differential
equations boundary value problems at resonance. Those theorems based upon
the famous Mawhin’s continuous theorem [8] and the properties of cones in Ba-
nach spaces and Leray–Schauder degree for completely continuous operators. In
2004, W. Ge and J. Ren extended Mawhin’s theorem to nonlinear operator in [5].
Motivated by above works, in this paper, we give and prove the extension of the
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Leggett–Williams norm-type theorems in Section 2 and introduce an application
to a kind of multi-point boundary value problem with a p-Laplacian in Section 3.

2. Norm type theorems for quasi-linear operator

For the convenience of the reader, we first recall some of fundamental facts
on quasi-linear operator and cone theory in Banach spaces. Let X, Z be real
Banach spaces. Consider a continuous mapping M : dom M ⊂ X → Z. Assume
that:

(1) M is a quasi-linear operator, i.e. Im M is a closed subset of Z and Ker M

is linearly homeomorphic to Rn, n < ∞.

From the condition (1), there exist continuous projection P :X → X1 and
semi-projection Q:Z → Z1 such that Im P = KerM and Ker Q = Im M (see [2],
[4], [5]). Moreover, since dim Im Q = codim Im M , there exists an isomorphism
J : Im Q → KerM with J(θ) = θ. Let Ω ⊂ X be an open and bounded set with
the origin θ ∈ Ω. Suppose Nλ: Ω → Z, λ ∈ [0, 1] is a continuous operator, denote
N1 by N . Let Σλ = {x ∈ Ω : Mx = Nλx}. Assume Nλ is M -compact in Ω,
that is,

(2) there is a vector subspace Z1 of Z with dim Z1 = dim X1 and an operator
R: Ω×[0, 1] → X2 being continuous and compact such that, for λ ∈ [0, 1],

(I −Q)Nλ(Ω) ⊂ Im M ⊂ (I −Q)Z,(2.1)

QNλx = θ, λ ∈ (0, 1) ⇔ QNx = θ,(2.2)

R( · , 0) is the zero operator and R( · , λ)|Σλ
= (I − P )|Σλ

,(2.3)

M [P + R( · , λ)] = (I −Q)Nλ.(2.4)

Define Sλ: Ω ∩ dom M → X, λ ∈ [0, 1] by

(2.5) Sλ = P + R( · , λ) + JQN.

Then the equation Mx = Nλx has a solution x ∈ Ω if and only if x is a fixed
point of Sλ for all λ ∈ [0, 1] (see [5]). Set S = S1.

Let C be a cone in X, it is well known that C induces a partial order in X

by

x � y ⇔ y − x ∈ C.

Moreover, for every u ∈ C \ {θ} there exists a positive number σ(u) such that

(2.6) ||x + u|| ≥ σ(u)||x|| for all x ∈ C

(see [10]). Let γ:X → C be a retraction, that is, a continuous mapping such
that γ(x) = x for all x ∈ C.
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Theorem 2.1. Let C be a cone in X. If Ω1, Ω2 are open bounded subsets
of X with Ω1 ⊂ Ω2 and C∩(Ω2\Ω1) 6= ∅. Assume that (1), (2) and the following
conditions hold:

(3) ||Nλx|| < ||Mx|| for all x ∈ C ∩ ∂Ω2 ∩ dom L and λ ∈ (0, 1),
(4) degB{[I − (P + JQN)γ]|Ker M ,KerM ∩ Ω2, θ} 6= 0, where degB is the

Brouwer degree,
(5) there exists u0 ∈ C \ {θ} such that ||x|| ≤ σ(u0)||Sx|| for x ∈ C(u0) ∩

∂Ω1, where C(u0) = {x ∈ C : µu0 � x for some µ > 0} and σ(u0) is
such that ||x + u0|| ≥ σ(u0)||x|| for every x ∈ C,

(6) Sλ ◦ γ(Ω2 \ Ω1) ⊂ C for λ ∈ [0, 1].

Then the equation Mx = Nx has a solution in C ∩ (Ω2 \ Ω1).

Proof. Without loss of generality, we suppose that Mx = Nx has no so-
lution in C ∩ (∂Ω1 ∪ ∂Ω2). It remains to prove that S has a fixed point in
C ∩ (Ω2 \ Ω1). For λ ∈ [0, 1] and x ∈ Ω2, define

(2.7) S̃(λ, x) = (P + JQN)γx + R(γx, λ).

The continuity of P , J and γ together with the condition (2) imply that S̃ is
compact on [0, 1]×Ω2 (see [4], [5]). It is similar to the proof of Theorem 1 in [9],
we first prove that

(2.8) x 6= µu0 + (1 + µ)S̃(1, x) for x ∈ ∂Ω1, µ ≥ 0.

Otherwise, suppose that there exist x0 ∈ ∂Ω1 and µ0 > 0 such that

x0 = µ0u0 + (1 + µ0)S̃(1, x0).

In view of (6), one gets x0 ∈ C(u0). In addition,

||x0|| = ||µ0u0 + (1 + µ0)S̃(1, x0)||
≥σ(u0)(1 + µ0)||S̃(1, x0)|| > σ(u0)||S̃(1, x0)|| = σ(u0)||Sx0||,

which contradicts (5). In addition, x 6= S̃(1, x) for x ∈ ∂Ω1 because we assume
that Mx = Nx has no solution on C ∩ (∂Ω1 ∪ ∂Ω2). So (2.8) is satisfied.

Notice that S̃(1, · ) is compact on Ω2 \ Ω1. Thus, by Dugundji extension
theorem (see [4], [9]), there exists a compact operator F : Ω2 → X such that
F |Ω2\Ω1

= S̃(1, · ) and F (Ω2) ⊂ conv S̃(1, · )(Ω2 \ Ω1). The assumption (6)

implies that S̃(1, · )(Ω2 \ Ω1) ⊂ C. Notice that C is closed and convex, then
F (Ω2) ⊂ C, which leads to

inf{||u0 + Fx|| : x ∈ Ω1} > 0.

If it is not the case, then for each n ∈ N, take xn ∈ Ω1 such that ||u0 + Fxn|| <
1/n. Thus, limn→∞ ||u0 + Fxn|| = 0. As a result, limn→∞ Fxn = −u0. In view
of {Fxn} ⊂ C and C is closed, we have −u0 ∈ C, which is impossible.
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In the following, choose µ∗ > 0 satisfying

(2.9) µ∗ >
sup{||x||+ ||S̃(1, x)|| : x ∈ Ω1}

inf{||u0 + Fx|| : x ∈ Ω1}
.

Define the homotopy mapping H: [0, 1]× Ω1 → X by

H(t, x) = S̃(1, x) + tµ∗(u0 + Fx).

Since Fx = S̃(1, x) for x ∈ ∂Ω1, H(t, x) = tµ∗u0 +(1+ tµ∗)S̃(1, x). (2.8) implies
that x 6= H(t, x) for all t ∈ [0, 1] and x ∈ ∂Ω1. Then, by homotopy invariance of
Leray–Schauder degree we can obtain

deg{I −H(1, · ),Ω1, θ} = deg{I −H(0, · ),Ω1, θ}.

We claim that deg{I−H(1, · ),Ω1, θ} = 0. Otherwise, if deg{I−H(1, · ),Ω1, θ} 6=
0, then there exists x0 ∈ Ω1 such that

x0 = S̃(1, x0) + µ∗(u0 + Fx0),

which yields

µ∗ ≤ ||x0||+ ||S̃(1, x0)||
||u0 + Fx0||

,

contrary to (2.9). Then, we can obtain

(2.10) deg{I − S̃(1, · ),Ω1, θ} = 0.

Next, we show that

(2.11) deg{I − S̃(1, · ),Ω2, θ} 6= 0.

To do this, we first show that x 6= S̃(λ, x) for x ∈ ∂Ω2. Clearly, x 6= S̃(1, x)
for x ∈ ∂Ω2, and x 6= S̃(0, x) for x ∈ ∂Ω2 from (4) (since the Brouwer degree is
defined) and (2). Suppose that there exist λ0 ∈ (0, 1) and x0 ∈ ∂Ω2 such that
x0 = S̃(λ0, x0), that is,

x0 = (P + JQN)γx0 + R(γx0, λ0).

In view of (6), x0 ∈ C. Thus, x0 = (P +JQN)x0+R(x0, λ0), which is equivalent
to Mx0 = Nλ0x0, contrary to (3). As a result, we have

deg{I − S̃(1, · ),Ω2, θ} = deg{I − S̃(0, · ),Ω2, θ}
= deg{I − (P + JQN)γ, Ω2, θ}
= degB([I − (P + JQN)γ]|Ker M ,KerM ∩ Ω2, θ} 6= 0.

Thus, (2.11) holds. From (2.10), (2.11) and the additivity of Leray–Schauder
degree, we obtain

deg{I − S̃(1, · ),Ω2 \ Ω1, θ} 6= 0,
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which implies that S has a fixed point in the set C ∩ (Ω2 \ Ω1). This proof is
completed. �

Remark 2.2. If M = L is a linear operator and Nλ = λN for N is L-
compact, let R(x, λ) = λKp(I −Q)Nx, then

S̃(λ, x) = (P + JQN)γx + λKp(I −Q)Nγx = Ψ̃(λ, x),

where Lp, Kp and Ψ̃ are the same as defined in [9]. So Theorem 2.1 extends
Leggett–Williams norm-type theorem for coincidences.

Remark 2.3. If Nλ = λN for λ ∈ (0, 1) satisfies the conditions in Leggett–
Williams norm-type theorem for coincidences, then (3) holds immediately. How-
ever, when Nλ is M -compact, ||Nλx|| < ||Nx|| is crucial since N and λ are no
longer linear relation. In (6), due to the same reason that R( · , λ) is nonlin-
ear on λ, λ = 1 is not enough, it is necessary to let λ ∈ [0, 1]. Meanwhile,
when λ = 0, S0 ◦ γ(∂Ω2) = (P + JQN)γ(∂Ω2), so we omit the condition
(P + JQN)γ(∂Ω2) ⊂ C comparing to the original theorem in [9].

Notice that the condition (3) can be replaced by

(7) Mx 6= Nλx for all x ∈ C ∩ ∂Ω2 ∩ dom M and λ ∈ (0, 1).

Therefore, the following theorem holds.

Theorem 2.4. Let the assumptions of Theorem 2.1 be satisfied with (3)
replaced by (7). Then the equation Mx = Nx has at least one solution in C ∩
(Ω2 \ Ω1).

In the following, we consider the existence of positive solutions to the equa-
tion Mx = Nx with R(λ, · ) satisfying a k-set contractive assumption. Recall
that a map T :D ⊂ X → X, is said to be k-set contraction if it is continuous and
bounded and there exists k ≥ 0 such that α(TA) ≤ kα(A) for every bounded
subset A of D, where α is the Kuratowski measure of noncompactness (see [1]).

Theorem 2.5. Let C be a cone in X. If Ω1, Ω2 are open bounded subsets
of X with Ω1 ⊂ Ω2 and C ∩ (Ω2 \ Ω1) 6= ∅. Assume that the assumptions of
Theorem 2.1 are satisfied with (2) and (6) replaced by

(8) the assumptions of (2) hold with R(λ, · ):X → X2 is not compact but
a k-set contraction on every bounded subset of X with k < 1,

(9) Sλ ◦ γ(Ω2) ⊂ C,

respectively. Then the equation Mx = Nx has a solution in C ∩ (Ω2 \ Ω1).

Proof. As in the proof of Theorem 2.1, consider S̃ defined by (2.7) for
λ ∈ [0, 1] and x ∈ Ω2. The condition 2◦ and the continuity of P , J and γ imply
that S̃ is a k-set contraction on [0, 1] × Ω2. If k = 0, the assertion follows from
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Theorem 2.1. For the case k 6= 0, choose a positive constant L satisfying

L <
1− k

k

inf{||u0 + LS̃(1, x)|| : x ∈ Ω1}
sup{||x||+ ||S̃(1, x)|| : x ∈ Ω1}

.

It can be shown that such an L exists (see [9]). Next, we claim that

(2.12) x 6= µu0 + (1 + µL)S̃(1, x) for x ∈ ∂Ω1, µ ≥ 0.

In fact, if there exist x0 ∈ ∂Ω1 and µ0 > 0 such that

x0 = µ0u0 + (1 + µ0L)S̃(1, x0).

It follows from (9) that x0 ∈ C(u0). Moreover,

||x0|| = ||µ0u0 + (1 + µ0L)S̃(1, x0)|| ≥ σ(u0)(1 + µ0L)||S̃(1, x0)||
>σ(u0)||S̃(1, x0)|| = σ(u0)||Sx0||,

which contradicts (5). Obviously, x 6= S̃(1, x) for x ∈ ∂Ω1. Hence (2.12) holds.
Let µ∗ > 0 such that

(2.13)
1− k

kL
> µ∗ >

sup{||x||+ ||S̃(1, x)|| : x ∈ Ω1}
inf{||u0 + LS̃(1, x)|| : x ∈ Ω1}

.

Set k1 = (µ∗L + 1)k. Obviously, k1 ∈ (0, 1). For t ∈ [0, 1] and x ∈ Ω1, consider

H(t, x) = tµ∗u0 + (tµ∗L + 1)S̃(1, x).

Clearly, H: [0, 1] × Ω1 → C and H is a k1-set contractive map. Moreover, from
(2.12) we obtain x 6= H(t, x) for all t ∈ [0, 1] and x ∈ ∂Ω1. Thus,

deg{I −H(1, · ),Ω1, θ} = deg{I −H(0, · ),Ω1, θ}.

We can prove that deg{I −H(1, · ),Ω1, θ} = 0 (see [9]). Then,

(2.14) deg{I − S̃(1, · ),Ω1, θ} = 0.

As in the proof of Theorem 2.1 we can also show that

(2.15) deg{I − S̃(1, · ),Ω2, θ} 6= 0.

From (2.14), (2.15) we obtain

deg{I − S̃(1, · ),Ω2 \ Ω1, θ} 6= 0,

and the assertion follows. �

Next, we consider the case of R( · , λ) being a condensing mapping. Recall
that a map T :D ⊂ X → X is said to be condensing if it is continuous and for any
bounded set S ⊂ D with α(S) > 0, T (S) is also bounded and α(T (S)) ≤ α(S).
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Theorem 2.6. Let C be a cone in X. If Ω1, Ω2 are open bounded subsets
of X with Ω1 ⊂ Ω2 and C ∩ (Ω2 \ Ω1) 6= ∅. Assume that the assumptions of
Theorem 2.5 are satisfied with (8) and (5) replaced by

(10) the assumptions of (2) hold with R(λ, · ):X → X2 is not compact but
a condensing mapping on every bounded subset of X,

(11) there exist u0 ∈ C\{θ} such that ||x|| < σ(u0)||Sx|| for x ∈ C(u0)∩∂Ω1,

respectively. Then the equation Mx = Nx has a solution in C ∩ (Ω2 \ Ω1).

Proof. As in the proof of Theorem 2.5, consider S̃ given by (2.7) for λ ∈
[0, 1] and x ∈ Ω2. In view of the assumptions, S̃ is a condensing mapping on
[0, 1] × Ω2. Similar to the proof of Theorem 4 in [9], we can prove that for all
µ > 0 and x ∈ ∂Ω1,

(2.16) x 6= µu0 + S̃(1, x).

Let µ∗ > 0 be such that

(2.17) µ∗ >
sup{||x||+ ||S̃(1, x)|| : x ∈ Ω1}

||u0||
.

For t ∈ [0, 1] and x ∈ Ω1, define

H(t, x) = tµ∗u0 + S̃(1, x).

Obviously, H: [0, 1]× Ω1 → C and H is a condensing mapping. From (2.16) we
get H(t, x) 6= x for (t, x) ∈ [0, 1]× ∂Ω1. So,

deg{I −H(1, · ),Ω1, θ} = deg{I −H(0, · ),Ω1, θ}.

We can verify that deg{I −H(1, · ),Ω1, θ} = 0 (see [9]). Then,

deg{I − S̃(1, · ),Ω1, θ} = 0.

The rest of the proof follows as before. �

Remark 2.7. In particular, when Mu = (φp(u′))′, where φp(s) = |s|p−2 · s,
p > 1, then the operators M = (d/dt)(φp((d/dt) · )) is a quasi-linear operator.
The same is for M∗ = (d/dt)(φ((d/dt) · )), where φ: R → R is a homeomorphism
with φ(0) = 0, φ(±∞) = ±∞. Here M and M∗ are said to be a p-Laplacian and
a p-Laplacian-like, respectively. Theorem 2.1 can be used to discuss those kind
of equations.
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3. Positive solutions for multi-point BVP with a p-Laplacian

As an application of Theorem 2.1, we consider the following multi-point
boundary value problem:

(φp(x′(t)))′ + f(t, x(t)) = 0, t ∈ (0, 1),(3.1)

x(0) =
m−2∑
i=1

αix(ξi), x′(1) = 0,(3.2)

where φp(s) = |s|p−2·s, p > 1, 1/p+1/q = 1, φ−1
p = φq, 0 < ξ1 < . . . < ξm−2 < 1,

αi ≥ 0, i = 1, . . . , m− 2, and
∑m−2

i=1 αi = 1.
When p = 2, G. Infante and M. Zima [7] studied the existence of positive

solutions to 
−x′′(t) = f(t, x(t)) for t ∈ (0, 1),

x′(0) = 0, x(1) =
m−2∑
i=1

αix(ηi).

with αi ≥ 0 and
∑m−2

i=1 αi = 1 by Leggett–Williams norm-type theorem for
coincidences.

For the case p 6= 2, H. Feng et al [2] considered the multi-point BVP with
one dimension p-Laplacian

(φp(x′(t)))′ = f(t, x(t), x′(t)) for t ∈ (0, 1),

x(0) =
n∑

i=1

αix(ξi), x(1) =
n∑

i=1

αix(ηi),

with
∑m−2

i=1 αi = 1. The authors obtained the existence of at least one symmetric
solution by using the Ge-Mawhin’s continuation theorem.

In [11], Y. Zhu et al considered the second order multi-point BVP with p-
Laplacian 

(φp(u′(t)))′ = f(t, u(t), u′(t)) for t ∈ (0, 1),

u′(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi),

with
∑m−2

i=1 αi = 1 and obtained the existence of at least one solution by the
coincidence degree theory of Mawhin.

From above works, we can see that under the condition
∑m−2

i=1 αi = 1, the
authors obtained positive solutions in [7], when the differential operator is linear,
while in [2] and [11], the differential operator involved is p-Laplacian, but those
results can’s ensure the solutions to be positive. This is crucial since only positive
solutions are useful for many applications. In this section, we will develop the
results in [2], [7], [11].

In order to prove the existence result, we present here a definition.
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Definition 3.1. We say that the function f : [0, 1] × R → R satisfies the
L1-Carathéodory conditions, if

(A1) for each u ∈ R, the mapping t 7→ f(t, u) is Lebesgue measurable,
(A2) for almost every t ∈ [0, 1], the mapping u 7→ f(t, u) is continuous on R,
(A3) for each r > 0, there exists αr ∈ L1[0, 1] satisfying αr(t) > 0 on [0, 1]

such that

|u| ≤ r ⇒ |f(t, u)| ≤ αr(t).

Now, we state our main result on the existence of positive solutions for the
BVP (3.1)–(3.2).

Theorem 3.2. Assume that

(H1) f : [0, 1]× R+ → R satisfies the L1-Carathéodory conditions,
(H2) there exists B > 0, κ ∈ (0, 1] and c2 ≥ c1 > 0 satisfying q(q − 1)c1 ≥

(2q +1)(c2− c1)q−1 such that f(t, B) < 0, c1 ≤ f(t, 0) ≤ c2 for t ∈ [0, 1]
and

−κx < f(t, x) < κx for (t, x) ∈ [0, 1]× (0, B],

(H3) there exist b ∈ (0, B), ρ ∈ (0, 1], δ ∈ (0, 1) and g ∈ L1[0, 1], g(t) ≥ 0 on
[0, 1], h1 ∈ C([0, 1]× (0, b], R+), h2 ∈ C([0, 1]× (0, bq−1], R+) such that
f(t, x) ≥ g(t)[h1(t, x)+h2(t, xq−1)] for (t, x) ∈ [0, 1]× (0, b]. h1(t, x)/xρ

is non-increasing on (0, b] and h2(t, x)/x non-increasing on (0, bq−1]
with

(3.3)
∫ 1

ξm−2

g(s)
h1(s, b)

b
ds ≥ φp(Γ)

1− δ

δρ

and

(3.4)
∫ 1

ξm−2

g(s)
h2(s, bq−1)

bq−1
ds ≥ φp(Γ)

3 · 2q−2κq−1

δq−1
,

where

Γ =
(

1−
m−2∑
i=1

αi(1− ξi)q

)/(
q

m−2∑
i=1

αiξi

)
.

Then the BVP (3.1)–(3.2) has at least one positive solution on [0, 1] provided

(3.5) κφp

(
1
Γ

)
+

3
2
κq−1φq

(
1 + φp

(
1
Γ

))
Bq−2 ≤ 1.

Proof. Consider the Banach spaces X = C[0, 1] and Z = L1[0, 1] with the
usual sup norm || · ||∞ and Lebesgue norm || · ||1, respectively.



186 A. Yang

Define M : dom M → Z and Nλ: Ω → Z with

dom M =
{

x ∈ X : x, φp(x′) ∈ AC[0, 1],

x(0) =
m−2∑
i=1

αix(ξi), x′(1) = 0, (φp(x′))′ ∈ L1[0, 1]
}

by Mx(t) = −(φp(x′(t)))′ and Nλx(t) = λf(t, x(t)), t ∈ [0, 1], respectively. Then

KerM = {x ∈ dom M : x(t) ≡ con [0, 1]}

and

(3.6) Im M =
{

z ∈ Z :
m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

z(τ) dτ

)
ds = 0

}
.

Clearly, dim KerM = 1 and Im M is closed. So (1) holds.
Define the projection P :X → X1 by (Px)(t) =

∫ 1

0
x(s) ds, and semi-projec-

tion Q:Z → Z1 by

(3.7) (Qz)(t) = φp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))

· φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

z(τ) dτ

)
ds

)
.

Clearly, Im P = KerM , Ker Q = Im M .
Let Ω ⊂ X be an open and bounded subset with θ ∈ Ω. For for all x ∈ Ω, it

is easy to know that Q[(I −Q)Nλ(x)] = θ. So (I −Q)Nλ(x) ∈ KerQ = Im M .
For for all z ∈ Im M , one gets Qz = 0. Thus, z = z−Qz = (I−Q)z ∈ (I−Q)Z.
Therefore, (2.1) holds. Obviously (2.2) holds.

Define R: Ω× [0, 1] → X2 by

(3.8) R(x, λ)(t) = −
∫ 1

0

r(t, s)φq

( ∫ 1

s

λ(f(τ, x(τ))− (Qf)(τ)) dτ

)
ds,

where X2 is the complement space of X1 = KerM in X and

r(t, s) =

{
1− s for 0 ≤ t ≤ s ≤ 1,

−s for 0 ≤ s ≤ t ≤ 1.

It is clearly that R( · , 0) = θ. Since f satisfies the L1-Carathéodory conditions,
Arzela–Ascoli theorem implies that R is relatively compact and the continuity
of R on Ω follows from the Lebesgue dominated convergence theorem.
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For x ∈ Σλ, we have λf(t, x(t)) = −(φp(x′(t)))′ ∈ Im M = KerQ. So

R(x, λ)(t) = −
∫ 1

0

r(t, s)φq

( ∫ 1

s

λ(f(τ, x(τ))− (Qf)(τ)
)

dτ

)
ds

=
∫ 1

0

r(t, s)φq

( ∫ 1

s

(φp(x′(τ)))′ dτ

)
ds

=x(t)−
∫ 1

0

x(s) ds = [(I − P )x](t),

which implies (2.3). For x ∈ Ω, we have

M [Px + R(x, λ)](t) =M

[ ∫ 1

0

x(s) ds

−
∫ 1

0

r(t, s)φq

( ∫ 1

s

λ(f(τ, x(τ))− (Qf)(τ)) dτ

)
ds

]
=λ[f(t, x(t))−Qf(t, x(t))] = [((I −Q)Nλ)(x)](t),

which yields (2.4). Therefore, Nλ is M -compact in Ω, that is, (2) is satisfied.
Next, consider the cone

C = {x ∈ X : x(t) ≥ 0 on [0, 1]}.

Let Ω1 = {x ∈ X : δ||x||∞ < |x(t)| < b on [0, 1]}, Ω2 = {x ∈ X : ||x||∞ < B}.
Clearly, Ω1 and Ω2 are bounded and open sets and

Ω1 = {x ∈ X : δ||x||∞ ≤ |x(t)| ≤ b on [0, 1]} ⊂ Ω2

(see [9]). Moreover, C ∩ (Ω2 \Ω1) 6= ∅. Let J = I and (γx)(t) = |x(t)| for x ∈ X.
In order to show (3), suppose that there exist x0 ∈ C ∩ ∂Ω2 ∩ dom M and

λ0 ∈ (0, 1) such that Mx0 = Nλ0x0, that is, −(φp(x′0(t)))
′ = λ0f(t, x0(t)) for all

t ∈ [0, 1]. For t1 ∈ (0, 1] such that x0(t1) = B. This gives

0 ≥ (φp(x′0(t1)))
′ = −λ0f(t, B),

which contradicts (H2). For the case t1 = 0, x0(0) = B, from the boundary
condition x0(0) =

∑m−2
i=1 αix0(ξi) and

∑m−2
i=1 αi = 1, we can see x0(ξi) = B,

ξi ∈ (0, 1), i = 1, . . . , m− 2. Then 0 ≥ (φp(x′0(ξi)))′ = −λ0f(t, B), which is also
in contradiction to (H2).

To prove (4), consider x ∈ KerM ∩ Ω2. Then x(t) ≡ c on [0, 1]. Define

H(c, λ) = c− λ|c| − λφp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))

· φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

f(τ, |c|) dτ

)
ds

)
,
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where c ∈ [−B,B] and λ ∈ [0, 1]. Suppose H(c, λ) = 0, in view of (H2), we
obtain

c =λ|c|+ λφp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))

· φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

f(τ, |c|) dτ

)
ds

)
≥ λ|c| − λκ|c| = λ(1− κ)|c| ≥ 0.

Hence, H(c, λ) = 0 implies c ≥ 0. Furthermore, if H(B, λ) = 0, we would have

0 ≤ B(1− λ) = λφp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))

· φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

f(τ,B) dτ

)
ds

)
,

which contradicts (H2) for λ ∈ (0, 1]. Obviously, if λ = 0, then B = 0, which is
impossible. Thus, H(c, λ) 6= 0 for c ∈ KerM ∩ ∂Ω2 and λ ∈ [0, 1]. Therefore,

degB{H( · , 1),KerM ∩ Ω2, θ} = degB{H( · , 0),KerM ∩ Ω2, θ}.

However,

degB{H( · , 0),KerM ∩ Ω2, θ} = degB{I,KerM ∩ Ω2, θ} = 1.

Then

degB{[I−(P+JQN)γ]Ker M ,KerM∩Ω2, θ} = degB{H( · , 1),KerM∩Ω2, θ} 6= 0.

Next, we prove (6). For x ∈ Ω2 \ Ω1 and t ∈ [0, 1], in the case ||x||∞ > 0, in
view of (H2),

(3.9) (P + JQN)γx(t) =
∫ 1

0

|x(s)| ds + φp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))

· φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

f(τ, |x(τ)|) dτ

)
ds

)

>

∫ 1

0

|x(s)| ds + φp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))

· φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

(−κ|x(τ)|) dτ

)
ds

)
≥

∫ 1

0

|x(s)| ds− κφp

(
1
Γ

) ∫ 1

0

|x(s)| ds

=
(

1− κφp

(
1
Γ

)) ∫ 1

0

|x(s)| ds
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and

R(γx, λ)(t) = −
∫ 1

0

r(t, s)φq

( ∫ 1

s

λ(f(τ, |x(τ)|)− (Qf)(τ)) dτ

)
ds

= −
∫ 1

0

(1− s)φq

( ∫ 1

s

λ(f(τ, |x(τ)|)− (Qf)(τ)) dτ

)
ds

+
∫ t

0

φq

( ∫ 1

s

λ(f(τ, |x(τ)|)− (Qf)(τ)) dτ

)
ds

> − 3
2
φq

( ∫ 1

0

(κ|x(s)|+ Q(κ|x(s)|)) ds

)
= − 3

2
κq−1φq

( ∫ 1

0

|x(s)| ds + φp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))

· φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

|x(τ)| dτ

)
ds

))
≥ − 3

2
κq−1φq

(
1 + φp

(
1
Γ

))
φq

( ∫ 1

0

|x(s)| ds

)
≥ − 3

2
κq−1φq

(
1 + φp

(
1
Γ

))
Bq−2

∫ 1

0

|x(s)| ds.

From (3.5), we get

(Sλ ◦ γx)(t) = (P + JQN)γx(t) + R(γx, λ)(t)

≥
[
1− κφp

(
1
Γ

)− 3
2
κq−1φq

(
1 + φp

(
1
Γ

))
Bq−2

] ∫ 1

0

|x(s)| ds ≥ 0.

In the case x(t) ≡ 0 on [0, 1], from (H2),

(Sλ ◦ γx)(t)

=φp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))
φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

f(τ, 0) dτ

)
ds

)
−

∫ 1

0

(1− s)φq

( ∫ 1

s

λ(f(τ, 0)−Q(f(τ, 0))) dτ

)
ds

+
∫ t

0

φq

( ∫ 1

s

λ(f(τ, 0)−Q(f(τ, 0))) dτ

)
ds

≥φp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))
φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

c1 dτ

)
ds

)
−

∫ 1

0

(1− s)φq

( ∫ 1

s

λ(c2 −Q(c1)) dτ

)
ds+

∫ t

0

φq

( ∫ 1

s

λ(c1 −Q(c2)
)

dτ

)
ds

≥ c1 −
(c2 − c1)q−1

q + 1
− (c2 − c1)q−1/q ≥ 0.

As a result, Sλ ◦ γ(Ω2 \ Ω1) ⊂ C.
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It remains to show that (5) is satisfied. Take u0(t) ≡ 1 on [0, 1]. Then
u0 ∈ C \ {θ}, C(u0) = {x ∈ C : x(t) > 0 on [0, 1]} and choose σ(u0) = 1. Let
x ∈ C(u0) ∩ ∂Ω1, then x(t) > 0, 0 < ||x||∞ ≤ b and x(t) ≥ δ||x||∞ on [0, 1].
Therefore, from (H3) and (H2), we obtain for x ∈ C(u0) ∩ ∂Ω1,

(JQNx)(t)

=φp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))
φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

f(τ, x(τ)) dτ

)
ds

)

≥φp

(
q

/(
1−

m−2∑
i=1

αi(1− ξi)q

))

· φp

( m−2∑
i=1

αi

∫ ξi

0

φq

( ∫ 1

s

g(τ)(h1(τ, x(τ)) + h2(τ, xq−1(τ))) dτ

)
ds

)
≥φp

(
1
Γ

)[∫ 1

ξm−2

g(s)h1(s, x(s)) ds +
∫ 1

ξm−2

g(s)h2(s, xq−1(s)) ds

]
=φp

(
1
Γ

)[∫ 1

ξm−2

g(s)
h1(s, x(s)

xρ(s)
xρ(s) ds +

∫ 1

ξm−2

g(s)
h2(s, xq−1(s))

xq−1(s)
xq−1(s) ds

]
≥φp

(
1
Γ

)[
δ

ρ

||x||ρ∞
∫ 1

ξm−2

g(s)
h1(s, b)

bρ
ds + δq−1||x||q−1

∞

∫ 1

ξm−2

g(s)
h2(s, bq−1)

bq−1
ds

]
≥φp

(
1
Γ

)
[(1− δ)||x||∞ + 3 · 2q−2κq−1||x||q−1

∞ ]φp(Γ)

= (1− δ)||x||∞ + 3 · 2q−2κq−1||x||q−1
∞ .

and

R(γx, λ)(t) =−
∫ 1

0

r(t, s)φq

( ∫ 1

s

λ(f(τ, x(τ))− (Qf)(τ)) dτ

)
ds

> − 3
2
φq

( ∫ 1

0

(κx(s) + Q(κx(s))) ds

)
≥ − 3

2
φq(κ||x||∞ + Q(κ||x||∞)) = −3 · 2q−2κq−1||x||q−1

∞ .

Hence,

(Sx)(t) = (P + JQN)x(t) + R(γx, λ)(t)

≥ δ||x||∞ + (1− δ)||x||∞ + 3 · 2q−2κq−1||x||q−1
∞ − 3 · 2q−2κq−1||x||q−1

∞ = ||x||∞.

Thus, ||x|| ≤ σ(u0)||Sx|| for all x ∈ C(u0) ∩ ∂Ω1. Theorem 2.1 implies that the
equation Mx = Nx has at least one solution x∗ ∈ C ∩ (Ω2 \Ω1) on [0, 1] and the
assertion follows. �

Remark 3.3. Note that with the projection P (x) = x(0) as in [2], [11],
condition (6) of Theorem 2.1 is no longer satisfied.
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