Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 37, 2011, 55-85

ON GLOBAL REGULAR SOLUTIONS
TO THE NAVIER-STOKES EQUATIONS
IN CYLINDRICAL DOMAINS

WOJCIECH M. ZAJACZKOWSKI

ABSTRACT. We consider the incompressible fluid motion described by the
Navier-Stokes equations in a cylindrical domain © C R® under the slip
boundary conditions. First we prove long time existence of regular solutions
such that v € W;l(Q x (0,T)), Vp € La(Q2 x (0,T)), where v is the
velocity of the fluid and p the pressure. To show this we need smallness
of ||v,25(0) () and || f,25]l 2, (% (0,1)), Where f is the external force and
r3 is the axis along the cylinder. The above smallness restrictions mean
that the considered solution remains close to the two-dimensional solution,

which, as is well known, is regular.

Having T sufficiently large and imposing some decay estimates on
lf ()l Ly(n2) We continue the local solution step by step up to the global

one.

2010 Mathematics Subject Classification. 76D03, 76D05, 35Q30.

Key words and phrases. Navier—-Stokes equations, existence of regular solutions, global

existence, slip boundary conditions.
The paper is partially supported by Polish Grant Nr: NN 201 396937.

The author is supervisor in the International Ph. D. Projects Programme of Foundation
for Polish Science operated within the Innovative Economy Operational Programme 2007-2013

(Ph. D. Programme: Mathematical Methods in Natural Sciences).

©2011 Juliusz Schauder Center for Nonlinear Studies

55



56 W. M. ZAJACZKOWSKI

1. Introduction

We consider the initial-boundary value problems to the Navier-Stokes equa-

tions
ve+v-Vo—divT(v,p) = f in Q xRy,
divv =0 in Q xRy,
(1.1) v-m=0 on S xRy,
vt -D() - To +7v - Ta =0, a=1,2, onS xRy,
v]i=0 = v(0) in Q,

where Q C R? is a cylindrical domain, S = 99, v = (vy(x,t),v2(z,t),v3(x,t)) €
R3 is the velocity of the fluid, p = p(x,t) € R the pressure, f = (fi(z,t), f2(, 1),
fa(z,t)) € R? the external force field, = (z1,72,23) the global Cartesian
system in (), @ is the unit outward vector normal to S, 7T,, o = 1,2, is the
tangent vector to S.

By T(v,p) we denote the stress tensor of the form

(1.2) T(v,p) = vD(v) - pI,

where v > 0 is the viscosity coefficient, I is the unit matrix and D(v) is the
dilatation tensor of the form

(13) D(’U) = {'U'L',:cj + Vj x; }i,j=1,2,3 = Vo + (V’U)T.

Finally, v > 0 is the slip coefficient.

By the dot we denote the scalar product in R3.

We assume that € is a cylinder parallel to the z3-axis with arbitrary cross
section. Moreover, S = S7 U .Ss, where Sy is the part of the boundary parallel to
the z3-axis and S9 is perpendicular to it. Hence

S ={z € R3: wo(x1,22) = ¢, —a < 3 < a},

Sy = {x € R?: po(x1,22) < co, 3 is equal either — a or a},

where a, ¢g are given positive numbers and ¢g (1, z2) = ¢g describes a sufficiently
smooth closed curve in the plane x3 = const.

The aim of this paper is to prove the existence of global regular solutions
to problem (1.1) without restrictions on the size of norms of the initial velocity
and the external force. The problem of wellposedness and regularity of weak
solutions has a long history. In 1933 J. Leray (see [13]) proved the existence of
global regular two-dimensional solutions in R? and in 1959 O. A. Ladyzhenskaya
(see [9]) showed the result in a bounded domain. Next many results of global
regular solutions were proved under smallness conditions. In [7] H. Fujita and
T. Kato assumed smallness of initial velocity in the homogeneous space H/2.
The result was improved in [20] by F. Weissler to the Lebesgue space Lz. In [3]
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M. Cannone, Y. Meyer and F. Planchon proved existence of global unique regular
solutions imposing smallness of initial velocity in Bp_ .y 3/p , p < 00.

The result allows a construction of global solution with strongly oscilating
initial velocity with large norms either in H2 or Ly. Most recently, Koch and
Tataru [8] proved the existence of a global unique solutions with sufficiently
small initial velocity belonging to the space of vector fields whose components
are derivatives of BMO functions.

A very clear and deep historical review can be found in [6].

The existence of global regular two-dimensional solutions (see [9], [13]) im-
plies, by a perturbation argument, the existence of solutions to the 3d Navier—
Stokes equations in their neighbourhood in some spaces. To realize the pertur-
bation we are free in choosing basic spaces, domains and boundary conditions.
Choosing Besov spaces and periodic boundary conditions, J. Y. Chemin, I. Gal-
lagher and M. Paicu (see [6]) and the first two persons in [5] proved the existence
of global regular solutions varying slowly in one direction. Hence, the solutions
are in some sense close to two-dimensional solutions.

In [4] a construction of a regular solution is made in two steps. First there
is proved the existence of solutions to the Navier—Stokes equations with two
independent variables (z1,x2) with the initial data being the mean with respect
to a3 of the initial velocity. Next a solution to the Navier—Stokes equations is
derived by a perturbation argument applied to the above solutions.

For more references concerning the regularity problem see [6].

In this paper we prove the existence of global regular solutions under small-
ness of quantities [|v,4,(0)[|r,() and || f.es|£,(0,7;16,5(22))-

The main step of this proof is solvability of the problem for one component of
the vorticity, x = v2 5, — V1 4,, Which is possible under boundary slip conditions
because they imply good boundary conditions for x (see problem (3.16)).

It seems that our smallness condition (1.5) below is less restrictive than the
corresponding one in [6].

The idea of considering the problem for the vorticity is taken from [10] (see
also [22], [24]-[27]). But in [22], [25]-[27] stability results for axially symmetric
solutions with small swirl were proved.

We should mention that the proof in this paper does not work for non-slip
boundary conditions. However, for the space periodic case the proof holds and
will be much simpler.

The techniques of papers [4]-[6] need much effords to be applicable for any
bounded domain.

The paper is organized in the following way. In Section 2 there are introduced
spaces used in this paper. In Section 3 we derived problems for h = v, and
x which help us to show an a priori estimate in Section 4. In Section 5 the



58 W. M. ZAJACZKOWSKI

existence of solutions to problem (1.1) is proved by the Leray—Schauder fixed
point theorem. In Section 6 the existence is extended to any time step by step.
We should mention that long time existence to problem (1.1) was considered
in [17] and global existence in [16].
Finally in Appendix some auxiliary results are either proved or formulated.
To prove global existence of solutions to (1.1) we shall examine problem
(1.1) step by step in time. Therefore instead of (1.1) we consider the system of
problems

ve +v-Vo—divT(v,p) = f in QFDT = Q x (KT, (k + 1)T),

divo =0 in QDT
(1.4) v-T=0 on SEHVT — § 5 (kT, (k+ 1)T),
n-DW) To+7v Ta =0,
a=1,2, on S*FUT
V=g = v(kT) in Q,

where k € Ng = NU{0} and v(kT) is calculated as a trace of v from the interval
((k = 1)T,kT).
To formulate existence results for problem (1.4) we introduce the following

assumptions

ASSUMPTION 1. Let

Kz(kT) :”f,zg||L2(kT,(k+1)T;L5/5(Q)) + H(I"Ot f)S||L2(kT,(k+1)T;L6/5(Q))
0,5 (K1) 2, (0) + [ (xot v)3(KT) || L, ()
+ 1y e+vry + [0(ET) | 71 (0) + p(d1, d2)(dr + d2),
K3(k,T) = p(dr, do) K3 (k, T) + || f|| 1y (eu+ry + [0 (BT 110
Ka(k,T) = f 25| oorvry + [|0,05(KT) | 2, ()
di = fllLo @y Le/s(2) + VO] Lo,

sl sgrenry + |

do = [ fll ok, (k+1)T;L6 5 (2)) + [0(ET) || £, (22)
be finite, where ¢ is an increasing positive function.
ASSUMPTION 2. Let
d(k, T) = || fzs | ok, (bt1) Lo 5()) + (13l g0y 4 110,25 (RT) | o0
be finite.

ASSUMPTION 3. Assume that d(k,T) is so small that there exists a constant
A such that

(1.5) clp(dy, d2) A® + K3] exp(cda A) exp(Ko)d(k, T) + Ky < A,
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where ¢ does not depend on T and k.

THEOREM A. Let the Assumptions 1-3 hold. Then there exists a solution to
problem (1.4) such that

V0 gy € Wf’l(ﬂ(kH)T),Vp, VP .z, € LQ(Q(k+1)T)

and

||v7$3||W22'1(Q(k+1)T) < A,
(1.6) HU||W22'1(Q(I¢+1)T) + HVpHLz(Q(kJrl)T) < W(dl,dQ,A,K2)7
||Vp7w3||L2(Q(k+1)T) < @(d1,d2,A,K27K3’K4),

where ¢ is an increasing positive function.

REMARK A;. In general the constant A = A(k,T) depends on k, T, because
the quantities Ko, K3, K4 depend on the time integral norms of f and on

(1.7) [o(kT) |20y, |

Vs (KT) || 1 (2)-

Hence Theorem A is a local existence theorem and in reality describes existence
in the interval [0, T] only, because quantities (1.7) are not yet defined for k£ > 1.

Therefore the part of Theorem A for intervals [KT,(k + 1)T], k > 1, is
important for the proof of global existence only.

Hence the main step in the proof of global existence consists in obtaining
estimations for quantities (1.7) independent of k.

REMARK As. Since A depends on T by time integral norms of the external
force f, T should not be very small for solutions to problem (1.4). It is un-
derstandable because smallness restriction on quantity d(k,T) is imposed (see
Assumptions 2, 3). However, it is not convenient to have large T' because then
more restrictions on the external force f must be imposed.

THEOREM B. Let the assumptions of Theorem A hold. Let either Assump-
tion 6.3 (see (6.28), (6.29)) or Assumption 6.4 (see (6.30)—(6.32)) hold. Then
there exists a global solution to problem (1.1) such that v € W' (Q x (kT,
(k+1)T)), Vp € La(Q x (KT, (k+ 1)T)) for any k € Ny.

2. Notation

By ¢ we denote a generic constant which changes its value from line to line.
In general it depends on the constants of imbeddings, regularity of the boundary
and so on.

By ¢ we denote a generic function which is always positive and increasing of
its arguments. It also may change its form from line to line.
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We denote
O = Q x (k- 1)T,kT), QT — Q x (T1, Ts).

We use isotropic and anisotropic Lebesgue spaces

Ly(Q), Qe{0",57,0,5}, pell o,
LQ(O7T;LP(Q))7 Q € {975}7 Q7p S [1700];
Sobolev spaces
W 2(@QF), Qef{,s}, seZiufo}, pell o

with the following norm for even s

1/p
||u||W;,s/2(QT) = < Z / | DO ulP dmdt)
la|+2a<s 7 @7
where D = 091092052, a = (o, a2, a3), |a| = a1 + g + a3, a; € Zy U {0},

t=1,2,3, and in the case of odd s we have the fractional derivatives. Similarly,
we define

W;(Q), Qe{Q 5}

For p = 2 we have

H*(Q) =W5(Q), L2(Q)=H"(Q).

We define a space natural for weak solutions to the heat and the Stokes equations
V3 (Q") = {u: [|ullypqr) = ess sup lu@l o) + [1VUll L, 0,787 @) < o0},

where k € Ny.
Next we introduce the Sobolev spaces with mixed norms (see [18], [14]).
We define space W31 (QT), ¢,r € [1,00], as a set of functions with the fol-
lowing norm finite

1/r
lalhaz ary = (el om + 3 1080l m )

lor]<2

where
1/r

T
ol omy = ([ Tl ott) o arz
0
Let us consider the Stokes system
Ut — leT(’l),p) = fa
dive =0,
(2.1)
v7sg=0, T-DW) Ta+70 -Tals=0, a=12,

’U|t:0 = 0.
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Similarly as in [18], [14] we prove

LEMMA 2.1. Assume that f € L,,.(QT), vy € Bg;z/r(Q), q,r € (1,00).
Then there exists a solution to problem (2.1) such that v € W2HI(QT), Vp €
Ly +(QT and the estimate

(2.2) [vllwz@ry + IVPlL, @r) < cllfllz, @r) + lvoll g2/ )
holds.

By B. (), Q CR", ¢,r € (1,00), | € Ry we denote the Besov space with
the finite norm

||u||BfLT(Q) = ||U||W(£l](Q) + ”uHB(l]}[l](Q)’

where [I] is the integer part of | and

n oo dh 1/r
lullag o= (X [ IAblg i )
i=1
where A € (0,1) and
A;(h)u(z) = u(z + e;h) — u(x)

where e; = (0ik)k=1,...n and z, x + e;h € Q.

3. Auxiliary results

We start from the weak solutions because in this paper the existence of
regularized weak solution will be proved.

DEFINITION 3.1. By a weak solution to problem (1.1) we mean v € V3 (Q7)
such that dive = 0, v - 7i|g = 0, and satisfying the integral identity

1
(3.1) / (—v- -+ §VID)(’L)) ‘D(p) +v-Vu-p)dzdt
QT
2
+72/ v'?acp~?ad5dt+/v~ga|t:q~dx
a=1 ST Q

—/U(O)~g0\t:0dx:/ fedrdt,
Q QT

which holds for any sufficiently smooth ¢ such that dive =0, ¢ - 7|s = 0.
To prove the existence of weak solutions we need the Korn inequality.

LEMMA 3.2 (see [19]). Assume that Eq(v) = ||D(v)||%2(ﬂ), divv = 0 and
v-Tlg = 0. Assume that the cylindrical domain Q is not azially symmetric.
Then there exists a constant c1, which depends at most on Q and S, such that

(3-2) ol () < e1Ba(v).
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Proor. We have
/ ‘D(U)F dx = / (Ui,zj + viji)Q dx = / (’UiQ,z]- + ’sz,zi + 2viy1jvj:$i) dzx,
Q Q Q

where we used the summation convention and

/ 'Ui,wjvj,wi dx = / TLi’Ui,ijj dsS = ni,ijvivj dsS = / ni@jvivdel.
Q S1US2 S1US2 S1

Hence
(3.3) IVl|Z, ) < C(EQ(U) +/ V2 d51>,
S1

where v, =V Tq, vza =v? + 02

By the Poincaré inequality we have

(3.4) loll2s e < C(EQ(U) +/S o2 d51>.

Hence the trace theorem implies

(3.5) ol 0y < e(Ba@) + ol m)):

Next we prove the following: there exist positive constants § and M such that
(3.6) lolZ,0) < 0IIVPIL, @) + MEa(v),

where § can be chosen sufficiently small.
We prove (3.6) by contradiction. Assume that such M does not exist. Then
for any m € N there exists v™ € H1({2) such that

V™ 700) = 0V [7,0) + mEa(v™) = G (v™).

Then for u™ = v™/|[v™ ||, ) we have

G (v™)

™oy =1, Gum(u™) = —iZ 2
2@ o™ [ o)

<1

Therefore from the sequence {u™} we can choose a subsequence {u™*} which
converges weakly in H'(Q2) and strongly in L2(Q) to a limit u € H*({2). More-
over, Eq(u™*) < 1/my, — 0. Hence Eq(u) = 0. Since 2 is not axially symmetric
we have u = 0. This contradicts

el = lim Jlu™* |z, (0) = 1.

Hence (3.6) holds. From (3.5) and (3.6) we obtain (3.2). O
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LEMMA 3.3. Assume that f € Loo(Ry; Lg/5(2)), v(0) € La(2) and Q is not
axially symmetric. Then

2

for any t € Ry, cy is the constant from the imbedding H*(2) C Lg(2), c1
appeared in (3.2). Next

1 [(cic
8D 100l < 5 (A2 sy + 1Ol ) = d

(3.8)  [lvllve@x k)
1 C1
< — |:\/762||f||L2(kT,(k+1)T;L6/5(Q)) + U(kT)||L2(Q)] = da(k),

Uy

fort e (KT, (k+1)T], v. = min{l, \/v/c1}.

PrOOF. Multiplying (1.1); by v, integrating over €2, using (1.1)2 34, the
Korn inequality and applying the Holder and the Young inequalities to the term
with f yield

1d v ec? 1
(3.9) §$||U||2L2(Q) + EHUqul(Q) < 72”'0”%{1(9) + %Hf”%(;/;)(ﬂ)'

Setting € = v/(c1c3) implies

d

(3.10) -

2
2 v 2 8] 2
V]2, @) + aHUHHl(Q) S 111,52

Replacing the norm |[[v|giq) by |[v[/z,@), multiplying the result by
exp((v/c1)t) and integrating with respect to time we obtain (3.7).

Integrating (3.10) with respect to time from kT to t € (kT,(k + 1)T] we
obtain (3.8). O

From the above lemma by an application of the Galerkin method and the
considerations from [11, Chapter 6] we have

LEMMA 3.4. Let the assumptions of Lemma 3.3 hold. Then there exists
a weak solution to problem (1.1) in any interval (KT, (k+1)T), k € Ng = NU{0}
such that

(3.13) [vllve (x (ers (k1)) < da-

To prove global existence of regular solutions to problem (1.1) we need to
obtain an estimate without restrictions on the existence time. We are not able
to obtain such an estimate starting directly from problem (1.1). Following [17],
[24] we replace problem (1.1) by a sequence of problems. For this purpose we
introduce the quantities

(314) h = V3, q=DPaz3, 9= f,fb3'
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LEMMA 3.5 (see [17], [24]). Assume that v is given. Then (h,q) is a solution
to the problem

hy—divT(h,q) = —v-Vh—h-Vo+g in QDT
divh =0 in QDT
(315)  h-m=0, v D(h) Ta+vh Ta=0, a=12 onS T,
hi =0, i=1,2, h3e, =0 on ST
hli=kr = h(KT) in Q,

where h(kT) is considered as given.

LEMMA 3.6 (see [17], [24]). Let F3 = (rot f)s, h,v be given. Then x =

(rotwv)s is a solution to the problem

X7t +v- VX — h3X + h2U3711 — hl’L}g’zQ — Z/AX = F3 in Q(kJrl)T,

X = vi(Nie,; 715 + Tli,:rjnj)

(3.16) 0 Ti(Tize; = Ties) + %Uﬂ'lj = X« on S{FFUT,
X,zs =0 on S§k+1)T7
X|t=0 = x(kT) in Q,

where x(kT) is considered as given, and tangent and normal vectors to Sy are
defined as follows

_ Ve 1
7151:7:790,11,%0@70,
5= 19g] = [wg] PP 0)
Vi 1

?|51 =

W - W(_(p,xzaw,mvo)? ?2|51 = (0’0’ ]‘)

4. Estimates
First we obtain estimates for solutions to problem (3.15).

LEMMA 4.1. Assume that

(a) v is the weak solution to problem (1.1),
(b) h € Loo(kT, (k+1)T; L3(12)),
(C) g c LQ(kTv (k + 1)T; L6/5(Q))) f3 € LQ(SZ X (kT7 (k + I)T))’ h(kT) €
LQ(Q), k € Np.
Then

24 g2y gl
2 Loo (kT,t;L3(S2)) g Lz(kT,t;La/s(Q)))

+ [ fsl 7, (50 x k) + IREDZ )

2
(4.1) V*||hHV2°(Q><(kT,t)) <
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where t € (KT, (k + 1)T), v., co are defined in Lemma 3.3, ¢1 in Lemma 3.2.
PrOOF. Multiplying (3.15); by h, integrating over €2, using (3.15)23 4 and
the Korn inequality yields
1d v €1 1
(4.2) 5@”%%2(9) + a”h”?{l(m < E||h||2L5(Q) + 2781||VU||2L2(Q)||]7«||2L3(Q)
+ 2 ) + 51 o + 51
2 Le(Q) 2¢5 I Lg5(9) 31 L2(S2)"

Setting e1¢3 = (1/2)(v/c1), €2 = &1 in (4.2) we obtain

2
2c1¢5

d v
(4.3) %”hH%Q(Q) + E”hH?{l(Q) < (IvollZ, o 17117, 0

v
119117, o) T 2130170050
Integrating (4.3) from kT to t € (KT, (k + 1)T] and using (3.13) we get (4.1). O

LEMMA 4.2. Let the assumptions (a) and (c) of Lemma 4.1 hold. Let the
assumption (b) is replaced by v € Lo(kT, (k + 1)T; L3(2)). Then

t

4cqc2
@) 1O+ [ 10O B < exp (22T er s )
2c1¢3, 1o 2 2
’ THQHLQ(kT,t;LG/s(Q)) + V||f3HL2(kT,t;L2(Sz)) + ||h(kT)||L2(Q) :
PROOF. Instead of (4.3) in this case we examine the inequality

d v
(4.5) %”hll%z(ﬂ) + Tclllhllip@

2¢1¢3

=— (IVoll Ty @ 1701200y + 119017, 0 ) + 21 F301 20 s)-

From (4.5) we get

d
%(”hH%Z(Q)

e—ca|\V1)\|2L2<kT,t;L3(n)>) + 2L||h”%{l(Q)e—CSHVUH%,Q(kT,t;Lg_(Q))
&1
—cs|| V|13 .
< (esllglis, gy + VI falEy sy eIV IEa0m s,
where c3 = 2cic3/v and t € (KT, (k + 1)T).
Integrating the above inequality with respect to time yields

t
||h(t)||%2(ﬂ)+eCSHVU”iQ(kT,t;L3(Q))/ Hh(t/)H?p(Q)efcsHVvHiﬂkT’t,;LS(Q)) a'
kT

t
2
< elIVUlL g ) / (03||g(t’)||%6/5(m + VHf?’(t/)”QLQ(SQ))
kT

_ 2 X 2
e alIVollz, (er,e/505(2) dt’ + e(’3HVUHL2(kT,t;L3(Q)) ||h(kT)||%2(Q).

Simplifying, we obtain (4.4). O
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Now we examine problem (3.16). Since we need to obtain energy type esti-
mate for solutions to (3.16) we have to make the Dirichlet boundary condition
homogeneous. For this purpose we introduce a function y as a solution to the

problem
Xt —vAx =0 in Q x (kT,(k+ 1)T),
(4.6) X = X+ on Sy x (KT, (k +1)T),
' Xy =0 on Sy x (KT, (k + 1)T),

jat:k:T =0 n Q
From [27] we have:

LEMMA 4.3. For solutions to problem (4.6) we have the estimates
(4.7) XN L, (e, (k1) 7L, (2)) < CllXe Ly (ke (k1) T2, (51))
for any q,p € [1, 00],
||)Z||L2(kT,(k+1)T;H1(Q)) < C||X*HW;71/2,1/2—1/4(S£k+1>T)~
Then the new function X' = x — X s a solution to the following problem

X:t +v- VX' — haX' + havsz, — hivs 4,

—vAY = F3 —v-VX+ hsX in Q x (kT, (k+ 1)T),
(48) X' =0 on S x (kT,(k+1)T),
X'py =0 on Sy x (kT, (k+1)T),

X |e=kr = X (KT) in Q.

LEMMA 4.4. Assume that h€ Loo (KT, (k+1)T; L3(Q2)), v' € Loo (KT, (k+1)T
HY(Q)) N Lo(kT, (k + 1)T; H2(Q)) N La(Q; HY2(ET, (k + 1)T)), v' = (v1,v2),
X(KT) € L2(Q), k € Ng, F3 € Lo(KT,(k + 1)T; Lg/5(S2)). Then solutions to
problem (3.16) satisfy the inequality

(4.9) IX[lvox k) < @le2,d2) Sup A s )

+ e %p(c2, e, da) sup 1RO 7,0) + & “plc2, cay dr, da)

8c
+ JHFBHLz(th Loys () T ENV | oo (b1 ()

10 | Lokt 09))) + Callv ||y 2 gerey) + IXET) || Lo )
where € € (0,1), a > 0, t € (KT, (k + 1)T], cq is defined below in (4.14), dy,

ds, co in Lemma 3.3 and ¢ is a generic function which changes its form from
formula to formula.
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PRrOOF. Multiplying (4.8); by x’/, integrating over ), using boundary con-
ditions (4.8)2,3 yields

1d 2 2 2
(410) §$HX/HL2(Q) + VHVX/HLz(Q) = /Qh?)x du

—/(hgvgw1 —h11137x2)xldx+/ng'dx—/v~V>Zx’dx+/ hsxx' dz.
Q Q Q Q

The first term on the r.h.s. of (4.10) can be bounded by
‘/ hax'X d

‘/hgx dr| = ’/hgxxdx

< ZHX'H%G(Q) + g”h?)HQLg(Q)HXH%z(Q)

/h3x>< X)dx| <

+ 2oy + = MhallE o IR o
the second by
ZIX ooy + 5 Il o lona
and the third by
DI B+ 5 1P 1R, o

The fourth term on the r.h.s. of (4.10) we express in the form

/ v-VY'xdx
Q
and estimate as follows
||VX 1%, o ||UHL6(Q X% 0

Finally, the last term on the r.h.s. of (4.10) is bounded by

5 1 -
S I o) + 5 I 1K )

Using the above estimates in (4.10), setting 1 = €3 = €3 = €5 = ¢, €4 = V/2,
e =v/(8¢c2), where ¢y is introduced in Lemma 3.3, we obtain

802

d
(4.11) &”X/”2L2(Q) + V]| VXII, ) < (||XHL2(Q) + vz, 7)) 1Bl 0

2
# (2l + 2

Integrating (4.11) with respect to time and using the estimate for the weak

16¢3 8ca

|h||L2(Q>)||x||L3(m+ IBI2, o

solutions in Lemma 3.3 we obtain

1662d

(4.12) IX'N17, ) + YIVX Ikt i na)) < —— sup 1R())17 ()

+ 1602 +2 802
14

ds Sltlp\WHzLS(Q) +— ||F3||L2 KT,t:Lg () T ||X(kT)||L2(Q)
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Since x = X’ + X we have

16¢co 16¢co + 2 ~
(413)  IXIDoxprey < — 5 S‘ipnh(t)nig(g) + fdg sup X117 40
+ @HF 17 + X1} + [x(kT)|17
o Bl Ly (kT 56 5()) T XTIV (x (k1)) T 11X Lo(Q)

where t € (KT, (k+ 1)T.
In view of Lemma 4.3 and some interpolation inequalities (see [2, Chapter 3,
Section 10]) we have
”iHLz(kT,t;Lz(Q)) SC/lHU/HLz(kT,t;Lz(Sl))
<elv' | Ly kr,em )) + che ™ da,
H%”Lm(kT,t;La(Q)) SCgHU,HLm(kT,t;LS(Sl))
<Y\ || o wrsmr o)) + che 0dy,
IXI Lo (k22 (02)) SCEHUIHLOC(ICT,t;LQ(sl))
(4.14) <2 |1 rresm @) + e Pd,

||v5€HL2(kT,t;L2(Q)) < C/7HU/HW21/2=1/4(51 x (kT,t))

IN

CéH“/HW;‘l/Q(Qx(kT,t))
= ([l Lokt @) + 1V o012 00m)))
< 51/2“”/\&2(1@,@1{2(9))
+e7 2dy + &l |y (172 ()
where ¢, ... , ¢y are constants from corresponding imbedding theorems.

Let ¢ <e¢4,i=1,...,9. Using (4.14) and (4.13) we obtain (4.9). O

Let us consider the problem

. !

Vi,xg — V2,27 = X in )

. !

(4.15) Vi + V2,2, = —hg in
v'-m =0 on Sy,

where ' = QN {plane : x5 = const € (—a,a)}, S = S1 N {plane : x3 = const €
(—a,a)} and z3, t are considered as parameters.

LEMMA 4.5. Let the assumptions of Lemmas 4.1 and 4.4 be satisfied. Then

(4.16) [V llvpaxwr.e) < cdallhllLo wr.0a)) + ¢(di, d2)(di + da)
+ ||Vl Ly 12 ety + K1 (R, T),

where

(4.17)  Ki(k,T) =19/l Lo,k +1)TsL6 5 (2)) T 1 E3 | Lok, (k)T L6 5(20)
+ 1 fsllLa(Sox k7, (k1)) + RET) | Lo(0) + IX(RT) | 2202
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and we skip the dependence on c1, ca, c4.

PROOF. For solutions to problem (4.15) we have the estimate

419 [ WG cor des < llxligaxan * Igaxuma)

Taking (4.18), estimate (4.1) and using (4.1) and (4.9) with sufficiently small ¢
we obtain (4.16). O

Let us consider problem (1.4) in the form

vy — divT (v, p) = —v'-Vu—uvsh+f in Q(k-&-l)T7

dive =10 in Q(k+1)T,
(4.19) v-m=0 on SH+DT.

T-DW) Ta+w-Ta =0, a=1,2, on SEVT

V|i=kr = v(kT) in Q.

LEMMA 4.6. Let the assumptions of Lemmas 4.1 and 4.4 hold. Let h €
Lyo/3(2 x (KT, (k+1)T)), f € Lo(Q x (KT, (k+1)T), v(kT) € HY(Q), k € Np.
Then for solutions to problem (4.19) the following inequality is valid
(420) ||’U||W22’1(QkTvt) + ||vaL2(QkTvt) < @(dla d2)[H(k7 T) + K2(k? T)P

+ el fllza@rrey + (R 11 (@),

where ¢ does not depend on T, and H, Ko are defined by (4.23) and (4.24),
respectively. Moreover, k € Ny.

PROOF. From [23, Lemma 3.7] we have

”U/”Llo(QkTvt) < C5||UI||V21(QkT,t),

hence
H”U/ . V'UHLé(QkT,t) < ||'U/||L10(QkT,t)HV'UHLZ(QICT,t)
3
< d2||v/||L10(QkT*t) < 05d2||v/||V21(QkT:‘)v
[vshllz, q@rrty < V]l @rr )R L5000
follows.

In view of the above estimates we obtain for solutions to (4.19) the inequality
(4.21) ||’U||W52/é(QkT,f,) + va”Ls/s(QkT,t) < Cﬁd2(65||vl||v21(QkT,t)
bl s @vr) + o1l o @vre) + 0By a5 )

where QFT"t = Q x (KT, t) and cg is the constant appearing in estimation of the
nonstationary Stokes system corresponding to (4.19). In view of Lemma A.4
constant cg does not depend on T'.
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Employing (4.16) in the r.h.s. of (4.21) and using the interpolation
V'l 1y a2 ey < €||U/||W52/'§(QkT=t) + c(1/e)d2
we obtain from (4.21) for sufficiently small € the inequality
(022 folwzsern + 198l p@ern < cdaHUT) + cRa(k ),
where ¢ does not depend on T, with
(4.23) Ky (k,T) =K1(k,T) + p(d1, d2)(dr + d2)
+ 1 flls s ey + ||U(kT)HW://;(Q),
where K is defined by (4.17) and
(4.24) H(k,T) = ||hl| L ert:25(2) + 1Bl L, 507 t)-
From (4.22) and (4.16) we have
(125)  Wolwz e + ¥l eny < oldnsdo) [HOE,T) + Kk, T
By imbedding theorems we obtain
(4.26) 10"+ V| Ly rriey SV (Lo @er) [Vl L, o 00y

< CH’UIHVzl(QkT,t) ||U||W:/,é(9kT,t)

S C(p(dl, dQ)[H(kJ, T) + KQ(k7 T)]Q
and

@20 Jushlzaeerey < loslzagoero bl e
< C””HW{?/’;(Q’GTJ) 1l 215 (0070)
< C@(dl, dg)[H(k‘, T) + Kg(k‘, T)]H(k‘, T),

where ¢ does not depend on T (see Lemma A.3). In view of (4.26) and (4.27)
we derive (4.20). O

Now we consider problem (3.15).

LEMMA 4.7. Let the assumptions of Lemma 4.6 be satisfied. Let h(kT) €
HYQ), g € LET, (k + 1)T; Ley5()), fs € Lo(kT, (k + 1)T; Ly(Ss)), k € No.
Then solutions to problem (3.15) satisfy the inequality
(4.28) |hllwzr qrr.ey + [IVall Ly @er)

< clp(dr, do)(H + K2)* + || flI 1, vy + 10T |31 (c))
Nl gersy + cllglageerey + NAGT) e,
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where t € (KT, (k+ 1)T) and ¢ does not depend on T

PROOF. For solutions to problem (3.15) we have

(4.29) [z gurey + IVallaorry < erlllo- VAl e
- Vol ey + 9l ey + IR s e,

where ¢; does not depend on T in view of Lemma A.4.
Given v € W' (Q*+DT) we have

(430)  [[o-Vhllgyaerey < [ollapaere) IVl @erey

< cllvllyz gery (€4l sy + ce™ ¥4 Ry erry)
1/4 —3/4

<é ||h||W221(Qka) +cgg ||U||;14/22:1(QkT,t)||h||L2(QkTr”)7

where ¢ does not depend on T in view of Lemmas A.3 and A.4.
Similarly, we have

(4.31) ||h'VU||L2(mT,t) < HV’UHLm/S(SZ’“T’t)Hh”Lg,(QkT,t)

< cl[ollyzs geriry (€4 Rllyz oy + ce= 4 hllyory)

1/4 —3/4

< &5 il quray + 23 [0y 2 g Bl Lagerre),

where ¢ does not depend on 7' by Lemmas A.3, A.4.

Using (4.30) and (4.31) in (4.29), assuming that £1,e2 are sufficiently small
and (4.20) holds we obtain (4.28). O

Let us introduce the notation
X(KT,t) = [l 20 er
d(KT,t) = 9|l Lo rr b0 5 2)) + 13l Lok t:L2(50)) + IRET) || 2,02
Ka(kT,t) = pld1, do) KZ(KT, ) + | fll garrer + [0GT) 110,
Ky (BT, t) =gl ryurey + [R(ET) |11 ()

The above quantities are denoted by X (kT), d(kT), K3(kT), K4(kT) for t =
(k+1)T.

(4.32)

LEMMA 4.8. Assume that the quantities d(kT), K;(kT), i = 2,3,4, are fi-
nite. Assume that d(kT) is sufficiently small. Then there exists a constant
A(k,T) such that

(4.33) X(kT,t) < A(k,T).
PRrROOF. We shall denote by ¢ constants independent of T'. Since

IVUllzaer, (e ymizac@)) < ellvllz;soury
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we have by Lemma 4.2 and (4.22) that
(434) Hh”Lz(QkT‘t) S exp(cdgH + KQ)d(kT)
Using that H(kT,t) < ¢X(kT,t) we obtain from (4.28) the inequality

(4.35) X (kT,t) < clp(dy,do) X3 (KT, t) + K3 (KT, t)]
-exp(cdo X (KT, t) + Ko(kT,t))d(kT,t) + K4(kT,1).

To show that there exists a constant A such that X (kT,t) < A(k,T) we have to
satisfy the inequality

(4.36) clp(dy, do) A® + K3] exp(cda A) exp(Ko)d(kT) + K4 < A.

Inequality (4.36) holds for d(kT') sufficiently small and A sufficiently large (A >
Ky). In this case estimate (4.33) holds. O

From [15] we have

REMARK 4.9. To simplify (4.36) we estimate Ky and K3 by ¢(dy,ds) K and
©(dy, do) K?, respectively, where

K(KT,t) =gl Lorer,tine s () + 15 La(eritsL6 502))
+ sl sirey + 1l Lo@rry + 0 (RT) 1) + di + da.

Then (4.36) takes the form
(4.37) ©(dy,d)[A® 4+ K8 exp(cdaA) exp(p(dy, do) K)d(ET) + K4 < A.

To show the existence of A satisfying (4.37) we use the method of successive
approximations

(4.38) Apy1 = p[AS + K8 exp(cdaA,,) exp(pK)d + Ky.
The sequence {A,} converges and

(4.39) lim A, =A< (n+1)K,

n—oo
for any n > 0, if d is so small that

1
< .
= cda|(n + 1)8K$ + K8 exp(cda(n + 1) K4) exp(¢K)

(4.40) d

Choosing 7 large we have A large but then d must be correspondingly small.



GLOBAL REGULAR SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 73

5. Existence

To prove the existence of solutions to problem (1.4) we construct the map-
pings

vy — divT(v,p) = =\ - VU + f in QLT
dive =0 in QDT
(5.1) v-m=0 on SH+DT
vn - ]D)(q;) Ta4+70 - Ta =0, a=1,2, on S(k+1)T7
Vlecir = v(kT) n 0,
and
hy — divT(h,q) = -A(T-Vh+h-V0) +g in QDT
divh =0 in QDT
(5.2) h-m=0, vi-D(h) -To+7h-Ta =0, a=1,2, on S£k+1)T7
hi=0, i=1,2, hgu =0 on §FEFVT
hli=rT = h(kT) in Q,

where A € [0,1] and 7, h are considered as given functions.

Moreover, we assume that 7 = Vasy § = fug, MKT) = v(kT) 5,. Differen-
tiating (5.1) with respect to xz3 and subtracting from (5.2) we obtain h = v 4,.
Problems (5.1), (5.2) determine the mappings

O1:(T,0) — (v,p), Do (T, 1, A) = (h,q).
Let ® = (1, P5). In Section 4 we found a priori estimate for a fixed point of ®
for A =1.

For A = 0 we have a unique existence of solutions to problems (5.1) and (5.2).

Let us introduce the space
MQEFITY = Ly (BT, (k+ DT W5, 31 (), n>2, 7 >2.
We shall find restrictions on r,n such that
B: M(QEFDT) s MQIFHDTY  pg(QEFDT) 5 pq(QHEHDT)

is a compact mapping.
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Assume that v € Lo, (KT, (k + 1)T; Wﬁln/(3+n)(9))' Then
1/r

(k+1)T
(5.3) l|v- V'U”LT(kT,(kJrl)T;LU(Q)) = (/kT dt||v - VUHTLT,(Q)>

(k+1)T 1/r
< (/kT dtv||26n/(3—n)(ﬂ)”VUHEGW/(S-H))(Q))

(k+1)T 1/r
< ~|12r
< c</kT dt||v||w61n/(3+n)(g)>

~12
< lollL,, or ey Ty, o )

In the same way we obtain

(5.4) - VAL, k1 kr1)7iL, ) T 1B VO L, k7, (k4 1) 7L, ()

< C\\5”LQT(kT,(kH)T;Wgn/(sM)(Q)) ”h”Lgr(kT,(k+1)T;Wén/(3+n)(Q))-

In view of (5.3) and (5.4) we obtain that solutions to problems (5.1) and (5.2)
belong to W2H(QFT) (see [18]).
We use the imbeddings (see [2, Chapter 3, Section 10])

(5.5) Wyt (QFT) o WEHQFT)
and
(5.6) W3 (QFT) C Loy (KT, (k + )T Wiy (4. () = M(QFT),

where (5.5) holds for n > 2, r > 2 and (5.6) is compact for r, 7 satisfying the
inequality

which takes the form

(5.7) 1< —+4-.

Setting r = n = 2 we obtain that ¥,h € Ly(kT, (k + 1)T; W112/5(Q)) and then
condition (5.7) takes the form

3 1 1 3

Hence, we have the compactness of mappings ®; and ®.
To show the continuity of mappings ®; and ®, we consider
{ Vst — diVT(Usaps) = —Av, - VU, + f in Q(k-i-l)T?

(5.9) dive, =0
| n-vs = 0’ vn - ID)(US) ‘Ta +’YUS T = 0 on S(k+1)T7

Vs|t=kr = V(KT in €,
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and
hst — divT(hs,qs) = —A(hs - VUs + 05 - Vhs) + g i QDT
divh, =0
(510) n- hS = 07 vn - ]D)(hs) ‘Ta + ’yhs Ta = 07 o = 17 2 on S£k+1)T
hei =0, i=12 hgg, =0 on ST
hs|t:kT = h(kT) in Qv
where s = 1, 2.
Let
(5.11) V=vi—vy, H=hi—hy, P=p1—p2, Q=q — .
Then V and H are solutions to the problems
Vi — divT(V,P) = —\(V - VU, + 03 - VV),
divV =0,
(5.12) v
V-mls=0, vi-D(V) Tog+9V -Tols =0, a=1,2,
V‘t:O = Oa
and

Hy — divT(H,Q) = —A(H - Vo, + hy - VV +V - Vhy + 0y - VH),
divH =0,
(5.13) H-nls, =0, vi-D(H) Toa+~vH Tals, =0, a=1,2,
Hils, =0, ¢=1,2, Hjzga,ls, =0,
H|j—pr = 0.

Assume that A # 0. Then for solutions of (5.12) we have

(5.14) IVl pmaernry = HV‘|L2T(kT,(k+1)T;W61n/(3+n)(Q))

<c ||VHW22’1(Q(R'+1)T) < CHVHWg;i(Q(kH)T)
2

<c Z ||5€ ||Lzr(kT§(k+1)T;W61n/(3+n) (©)

s=1
NV 2o, (ks (k1) T2

6n/(3+n)(Q))
< c(DV | pmrrry,

where r > 2, 1 > 2 and satisfy either (5.7) or (5.8).
Similarly we have

(5.15) 1H | pgaonry < e(UVI@asory + 1H | agamsnr)),

where A is the constant from Lemma 4.8.

)

)

75
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Inequalities (5.14) and (5.15) imply the continuity of mapping ®. Continuity
with respect to A is evident. Hence by the Leray-Schauder fixed point theorem
we have the existence of solutions to problem (1.1) such that v € W' (Q*+DT),
Vp € Ly(QFEFDT). This concludes the proof of Theorem A.

6. Global existence

To prove the global existence of solutions to problem (1.1) we have to show
that the constant A appearing in Lemma 4.8 does not depend on k. For this
purpose we have to show that, for any k € Ny,

(6.1) [v((k+ D))l ) < v(ET) a1 ()
(6.2) 1R((k + 1)) 20y < NR(ET) || 110
To show (6.1) we need

LEMMA 6.1. Assume that there exists a local solution to problem (1.4) in the
interval [kKT, (k + 1)T]. Then there exist constants ¢}, ¢4, ¢y independent of T
such that

, , (k+1)T ,
(63) [[o((k+ V)T < che A FFDTHRe(ART) /k IOyt

+ cheATHACARID [y (RT) 2, .

Assume that
(6.4) 1F )| Lac) < £ D) Lygye 2+,
t e (KT, (k+1)T], 6 > 0. Then (6.3) implies

(6.5) lo((k + 1)T)|[7 ) < che”PTHaeAEDN FRT)|, q)

+ che AT HAPARD (kT 2, g

PrROOF. To prove the lemma we use problem (1.4) in the form

vy —divT(v,p) = —v - Vu + f,
(6.6) dive =0,
v-mlg =0, T -T(v,p) Ta+70 Tals =0, v|t=gr = v(kT).

Multiplying (6.6) by div T(v,p) and integrating the result over Q yields
(6.7) / v - divT(v,p)dz — [ |divT(v,p)|* dx
Q Q

=— [ v-Vo-divT(v,p)dz + [ f-divT(v,p)dz.
Q Q
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Integrating by parts the first integral leads to

68) [ 0Tis(0p)e, do = [ @T(00)e, do = [ i, B0, do
Q Q Q
:/Ui,tanij(’U,p)dS—/’Ui@thij(U)dai

S Q

1
= /S(’U.ratTai-‘r’l)ntni)anij(U,p) ds — §/QDZ‘]‘(’U,5>DU(U) dzx
1d
- - T T d - 7 D 2d 5
v [ sy - 15 [ pas

where we used that v, =v Tq, Vo =V N, v =V, Tq + v, in a neighbourhood
of S,
D(v) = {Di;(v)}ij=123, T(v,p) ={Ti;(v,p)}i =123
and the summation convention over the repeated indices is assumed: 7,57 = 1,2, 3,
a=1,2.
Using (6.8) in (6.7), and applying the Hélder and the Young inequalities to
the integrals on the r.h.s. of (6.7), we obtain

1 1
(6.9) 2(4/ ID(v)|? dz + v |U-Ta|2d5'1) +§/ |div T(v, p)|* dx
Q Q

§/|U.VU|2+/f2dx.
Q Q

Using Lemma A.5 and the Korn inequality in Lemma 3.2 we obtain

d 1/ 9 / _ 12 >
6.10 —| = D(v)|* dz + v v Tol dS
6100 5(; [ e [ o-mafas,

1
+c) <4/ |]D)(v)|2dx+7 |v-7a|2d5’1>
Q

S1

S1
1 _

<&lvllF )| 5 [ P@Pde+y [ |o-Tal?dS1 )+ SlIF7,@)
4 Jo 51

where ¢}, ¢}, do not depend on t.
Let

1 _
(6.11) X(®) = ZID@)IZ, 0) + 70 FallZs)-
Then from (6.10) we have
(612) (X (et Hir W hcior 4 < |73 et Bir 1Mo
where t € (KT, (k4 1)T]. Integrating (6.12) with respect to time yields

t 4 "
(613) X(t) < it hirade /,cT 117t~ 2

+ e~ U=RT)+ [z adt’ x (),
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where a = c3[[v(t)[17__ (o)

First we consider the case
(6.14) 1FONF ) < IFRT)I7, e 2+
Then (6.13) implies
t
(6.15) X(t) < eQJkaclltJrf,:T adt,Hf(kT)Hig(Q)/ 6(6,1*25)75' dt’
kT
+ e—c/l(t—kT)—i-f,:’T adt/X(kT).
Hence
_ _ t ’ ! 1
(6.16) X(t) < e~ 200K+ [ipalt)dt m”f(kT)H%Z(Q)
+ efcll(tfkT)JrfktTadt’X(kT).

Setting t = (k 4+ 1)T and using the Korn inequality we obtain from (6.16) the
relation

_ (BT |y 12 1
(6.17) ||v((k+1)T)||§{1(Q) <de R LO] e dtm”f(kT)”%z(Q)

+ Cgefc’lT+fk(;+1)T \|U(t)||2LOQ(Q) dt”v(kT)”?{l(Q).

In view of Theorem A and the equivalence of X(t) and |[v(t)||z1 (o) we ob-
tain (6.5).
Assume that (6.14) does not hold. Then (6.13) takes the form
¢
(6.18) X(0) < cheertHined [ F(E)] peit a
kT
+em R i cdt' X (k).
Setting t = (k + 1)T, using (6.11) and Theorem A we obtain (6.3). O
To show (6.2) we need

LEMMA 6.2. Assume that fs|s, = 0. Assume that there ezists a local solution
to problem (1.4) in the interval [kT, (k+ 1)T)|. Then there exist constants ¢}, ch,
ch such that

(6.19)  [[A((k+ D)T) |} () < chea kDT Feae(AKT)
(k+1)T , , ,
: / i lg(t)113, et dt + che™ 1T HeaeAEDN L (RT3, o).
Assume that, for t € (KT, (k+ 1)T], § > 0,

(6.20) lg@)llzac@) < lgRT) | pa@ye 0.
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Then
(6:21) [[A((k + DT)[[Fp1(q) < che™*THAPAEI g (KT) |,
+ ey TFASAEI (KT |3 o)

PROOF. Let us consider problem (3.15). Multiplying (3.15); by div T(h, q)
and integrating over € yields

(6.22) / ht - divT(h, q)dx — / |div T(h, q)|* dx
Q Q
=— / (v-Vh+h-Vou)divT(h,q)dz + / f-divT(h,q)dz.
Q Q
Repeating the considerations from (6.8) we have

/ he - divT(h, q) dz = — v / hr. ths, dSy
Q S1

——— [ |D(h |2d:z:+/ h3.+T33(h, q) dSa,
4dt/ S5 3,t433 2

where the last term equals

/ hs,t(2h3,5 + q) dS2 = / h3+qdSs = / 3.t f3 dSs.
S5 S, Sy
We do not know how to cope with this term. Therefore, we assume that

(6.23) fals, = 0.
Then (6.22) implies

d|1 _ .
620 G[5 [ Pds e [ hemafas] + lav T,
Q S1

<(lollLw@ VAl La@) + [Vl Ly @ 1ol Lo (@) 1div T(R, @)l Lo (o)
+ 119l Lo 1div T (R, @)l| £y (2

From (6.24) we have

(6.25) { /\ID) |2d:c+v/ |- Tal® dSl:| /\divT(hﬂ)Fdl”

< c(lvlli o) + IVOIL, @) 1130 @) + 1911, @)

Using Lemma A.5 and the Korn inequality yields

d
(6.26) G TaXs s (01l oy + IVl @)X + llgllZ, -
where
1
(6.27) X = ZHD(h)H%Z(Q) +7||hm||%2(sl),

and ¢}, ¢4 do not depend on ¢.
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Using that

(k+1)T
/k Oy + VO 0 < (AR T)),

and repeating the considerations from the proof of Lemma 6.1 we conclude the
proof of Lemma 6.2. ]

To prove global existence of solution to problem (1.1) we have to show in-
equalities (6.1) and (6.2) for any k € Ny. For this purpose we use Lemmas 6.1
and 6.2. Let us introduce the assumptions

ASSUMPTION 6.3. Assume that
, , (k+1)T ,
(6:28)  chem AT A [T ) oy ecita
+ e AT A y(0) 131 ) < 1100131 (0,
and
, , (k+1)T ,
(6:20)  chemSOTITreseA [ ), e

_|_e—C1T+C4S"(A(T))||h(0)||?{1(g) < Hh(o)”%ﬂ(ﬂ)‘

ASSUMPTIONS 6.4. Assume that

1f o) < IFET)| Lyye *EFD,
19 2oy < Nlg(KD) || yye ¢+,

foré >0, te (kT,(k+ 1)T], k € Ng. Assume also

(6.30)

(6:31)  cye” XTHAPADD | F(RT)||Z, (q) + che™ d T T4 |u(0) || g

< [v(0) I 0

(6.32) e THAPAID | g(kT) |, ) + e AT TAATDR(0) |31
< Hh(o)”?ﬁfl(n),

for any k € Ng.

PrOOF OF THEOREM B. Take k = 0. Then A(0,T) = A(T) and in view of
Assumptions 6.3 and 6.4 we obtain

lo(D)l @) < 0(0) ]2 (),

(6.33)
12| 10) < 1A(O)] 112 (-
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Take k = 1. Then in view of (6.33) we can repeat the proof of Theorem A in
the interval [T, 27 and we obtain that A(1,7) = A(T). Then Assumptions 6.3
and 6.4 imply

o) 1) < (1) la @) < [v(0)] 5 (@),

IhRT) [y < 1Mz @) < I1AO) |2 ()

Hence, repeating the above considerations we prove Theorem B. O

(6.34)

A. Appendix
Let us consider the problem
u—Au=0 in Q7
(A.1) ulg = ¢ on ST,
Ulg—o =0 in Q,

where  C R3 is a bounded domain.

From [26] we have for solutions to problem (A.1) the estimate
(A.2) lully 0,0, @) < aillellL, 01,08, pra €L,
holds, where a; is a constant.

LEMMA A.1. The constant a1 does not depend on T.

PROOF. From [26] we have

T d > /p
(A3)  ullp, 0751, < ¢ / 7_3/2( / ab e PTn/(47) dxn> dr
0 0

) H@HLq(o,T;LP(Q)),

where d > diam 2 and ¢ does not depend on T.

We express the above integral in the form

1 1 d , 1/p
/ dT—T?’/2 </ 2P e~PTn/(47) dxn)
0 0

T d , 1/p
+ / d71/73/2</ 2P e P/ (47) dxn> =1 + I,
1 0

1 1 [ee] 5 1/[)
I < / d7'3/2</ xﬁeﬂmn/(‘”) dxn) =1.
0 T 0

Changing variables y,, = x,//7, dz, = \/Tdy, we get

1 o . 1/p 1
I :/ dTT1/2p+1/2_3/2</ yPe Pin dyn) < c(p)/ drri/?=1 < c(p).
0 0 0

where
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Next
T 1 d 1/p
I, < dT—— dPd
o= [z ([ )
T ar 1
:d1+1/p/ 7 < 9ditl/p (1 _ \/T> < od! 1/,

1 T

which concludes the proof. O

LEMMA A.2. The constant as in the imbedding

(A.4) [ullL,o@ry < azllullvy@r)
does not depend on T.

PROOF. First we show that the constant a’ from the imbedding

(A.5) ully 0,752, 0) < @'llullvo@r

does not depend on T'.

We follow the considerations from [12, Chapter 2, Section 3]. To apply the
interpolation inequality (3.1) from [12, Chapter 2, Section 3] we have to extend
u outside of € in such a way that the extended function w vanishes outside
a compact set. Then the interpolation inequality holds without a lower order
term on the r.h.s. Hence, we extend u by the Hestenes-Whitney method in such
a way that u|g = u, suppu = Qand Qis a compact set. Moreover, Hﬂ”Hl@) <
cllulla o, HﬂHLQ@) < chl|ull L, (), where the constants ¢, ¢, depend on §2. For
u we have the interpolation

1701
L (Q)’

@

Ly (& <L

- - - 3
Il @ < SIVal?, g @l =2-

|l w

where ¢4 depends on €.
Next, we have

T 1/q
~ ~ ~Nl—«
A N ey I

Setting ag = 2 and applying the Young inequality yields
el 0.:,@) < clllvp@r).

where ¢ depends on Q only.
In view of the definition of the extension we obtain

(AG) ||uHLq(0,T;Lp(Q)) S ||a||Lq(O,T;LP(§)) S Cil”aHVzU(ﬁT) S Cg”UHVzO(QT)

with constant c¢f independent of T
Let u € V31(QT). By (A.5) we have

(A7) l[ull £, 0,71 (0)) < esllullygor)-
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To show that w € Ly(0,T; L,(€2)) we have to satisfy the relations

3 n 2 3 3 3 <1 30
-—+-==, —-—-—=Z so p=
p q 2 p o b 3+o
Hence 34 5 3
o
+-=z
o q 2
Choosing ¢ = ¢ we obtain ¢ = 10, so the lemma is proved. O

From [1, Chapter 5, 5.14] we have

LEMMA A.3. Imbeddings
(A8) Ve ullr, @r) < asllullyzqr),
o <p, a=0,1, hold with constant as independent of T .

Let us consider the problem

vy —divT(v,p) = f in Q7
diveo =0 in Q7
(A.9) v-m=0 on ST,

D) To+70-Ta=0, a=1,2 onST,
v]i=0 = Vo in €.

LEMMA A.4. Given f € L.(QT), vy € WT2_2/T(Q) there exists a solution to

problem (A.9) such that v € W2H(QT), Vp € L.(QT) and

(A.10) [ollwz1@ry + VDI, @r) < aalllfllz, @r) + [lvollyyz-2/v )
where ay does not depend on T .
PrROOF. We use [21, Chapter 3, Theorem 3.1.1]. O
Let us consider the elliptic problem
—divT(v,p) = f in Q,
dive =0 in Q,
(A.11)
v-mn=0 on S,

n-T(v,p) Ta+70 -Ta =0, a=1,2, onS.

LEMMA A.5. Let f € La(Q), S € C%. Then there exists a solution to problem
(A.11) such that v € H?(Q) and Vp € L2(Q) and the following estimate

(A.12) vl z20) + IVPllLo) < el fllza )

holds. Moreover, we have

2
(A.13) 1D 1740 +7 Y 10 TallZaes) < cllflZ)-

a=1
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