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ON GLOBAL REGULAR SOLUTIONS
TO THE NAVIER–STOKES EQUATIONS

IN CYLINDRICAL DOMAINS

Wojciech M. Zajączkowski

Abstract. We consider the incompressible fluid motion described by the

Navier-Stokes equations in a cylindrical domain Ω ⊂ R3 under the slip
boundary conditions. First we prove long time existence of regular solutions

such that v ∈ W 2,1
2 (Ω × (0, T )), ∇p ∈ L2(Ω × (0, T )), where v is the

velocity of the fluid and p the pressure. To show this we need smallness
of ‖v,x3 (0)‖L2(Ω) and ‖f,x3‖L2(Ω×(0,T )), where f is the external force and

x3 is the axis along the cylinder. The above smallness restrictions mean

that the considered solution remains close to the two-dimensional solution,
which, as is well known, is regular.

Having T sufficiently large and imposing some decay estimates on

‖f(t)‖L2(Ω) we continue the local solution step by step up to the global
one.
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1. Introduction

We consider the initial-boundary value problems to the Navier-Stokes equa-
tions

(1.1)

vt + v · ∇v − divT(v, p) = f in Ω× R+,

div v = 0 in Ω× R+,

v · n = 0 on S × R+,

νn · D(v) · τα + γv · τα = 0, α = 1, 2, on S × R+,

v|t=0 = v(0) in Ω,

where Ω ⊂ R3 is a cylindrical domain, S = ∂Ω, v = (v1(x, t), v2(x, t), v3(x, t)) ∈
R3 is the velocity of the fluid, p = p(x, t) ∈ R the pressure, f = (f1(x, t), f2(x, t),
f3(x, t)) ∈ R3 the external force field, x = (x1, x2, x3) the global Cartesian
system in Ω, n is the unit outward vector normal to S, τα, α = 1, 2, is the
tangent vector to S.
By T(v, p) we denote the stress tensor of the form

(1.2) T(v, p) = νD(v)− pI,

where ν > 0 is the viscosity coefficient, I is the unit matrix and D(v) is the
dilatation tensor of the form

(1.3) D(v) = {vi,xj + vj,xi}i,j=1,2,3 ≡ ∇v + (∇v)T .

Finally, γ ≥ 0 is the slip coefficient.
By the dot we denote the scalar product in R3.
We assume that Ω is a cylinder parallel to the x3-axis with arbitrary cross

section. Moreover, S = S1 ∪S2, where S1 is the part of the boundary parallel to
the x3-axis and S2 is perpendicular to it. Hence

S1 = {x ∈ R3 : ϕ0(x1, x2) = c0, −a < x3 < a},
S2 = {x ∈ R3 : ϕ0(x1, x2) < c0, x3 is equal either − a or a},

where a, c0 are given positive numbers and ϕ0(x1, x2) = c0 describes a sufficiently
smooth closed curve in the plane x3 = const.
The aim of this paper is to prove the existence of global regular solutions

to problem (1.1) without restrictions on the size of norms of the initial velocity
and the external force. The problem of wellposedness and regularity of weak
solutions has a long history. In 1933 J. Leray (see [13]) proved the existence of
global regular two-dimensional solutions in R3 and in 1959 O. A. Ladyzhenskaya
(see [9]) showed the result in a bounded domain. Next many results of global
regular solutions were proved under smallness conditions. In [7] H. Fujita and
T. Kato assumed smallness of initial velocity in the homogeneous space Ḣ1/2.
The result was improved in [20] by F. Weissler to the Lebesgue space L3. In [3]
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M. Cannone, Y. Meyer and F. Planchon proved existence of global unique regular
solutions imposing smallness of initial velocity in Ḃ−1+3/pp,∞ , p <∞.
The result allows a construction of global solution with strongly oscilating

initial velocity with large norms either in Ḣ1/2 or L3. Most recently, Koch and
Tataru [8] proved the existence of a global unique solutions with sufficiently
small initial velocity belonging to the space of vector fields whose components
are derivatives of BMO functions.

A very clear and deep historical review can be found in [6].

The existence of global regular two-dimensional solutions (see [9], [13]) im-
plies, by a perturbation argument, the existence of solutions to the 3d Navier–
Stokes equations in their neighbourhood in some spaces. To realize the pertur-
bation we are free in choosing basic spaces, domains and boundary conditions.
Choosing Besov spaces and periodic boundary conditions, J. Y. Chemin, I. Gal-
lagher and M. Paicu (see [6]) and the first two persons in [5] proved the existence
of global regular solutions varying slowly in one direction. Hence, the solutions
are in some sense close to two-dimensional solutions.

In [4] a construction of a regular solution is made in two steps. First there
is proved the existence of solutions to the Navier–Stokes equations with two
independent variables (x1, x2) with the initial data being the mean with respect
to x3 of the initial velocity. Next a solution to the Navier–Stokes equations is
derived by a perturbation argument applied to the above solutions.

For more references concerning the regularity problem see [6].

In this paper we prove the existence of global regular solutions under small-
ness of quantities ‖v,x3(0)‖L2(Ω) and ‖f,x3‖L2(0,T ;L6/5(Ω)).
The main step of this proof is solvability of the problem for one component of

the vorticity, χ = v2,x1 − v1,x2 , which is possible under boundary slip conditions
because they imply good boundary conditions for χ (see problem (3.16)).

It seems that our smallness condition (1.5) below is less restrictive than the
corresponding one in [6].

The idea of considering the problem for the vorticity is taken from [10] (see
also [22], [24]–[27]). But in [22], [25]–[27] stability results for axially symmetric
solutions with small swirl were proved.

We should mention that the proof in this paper does not work for non-slip
boundary conditions. However, for the space periodic case the proof holds and
will be much simpler.

The techniques of papers [4]–[6] need much effords to be applicable for any
bounded domain.

The paper is organized in the following way. In Section 2 there are introduced
spaces used in this paper. In Section 3 we derived problems for h = v,x3 and
χ which help us to show an a priori estimate in Section 4. In Section 5 the
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existence of solutions to problem (1.1) is proved by the Leray–Schauder fixed
point theorem. In Section 6 the existence is extended to any time step by step.
We should mention that long time existence to problem (1.1) was considered

in [17] and global existence in [16].
Finally in Appendix some auxiliary results are either proved or formulated.
To prove global existence of solutions to (1.1) we shall examine problem

(1.1) step by step in time. Therefore instead of (1.1) we consider the system of
problems

(1.4)

vt + v · ∇v − divT(v, p) = f in Ω(k+1)T = Ω× (kT, (k + 1)T ),
div v = 0 in Ω(k+1)T ,

v · n = 0 on S(k+1)T = S × (kT, (k + 1)T ),
n · D(v) · τα + γv · τα = 0,
α = 1, 2, on S(k+1)T ,

v|t=KT = v(kT ) in Ω,

where k ∈ N0 = N∪{0} and v(kT ) is calculated as a trace of v from the interval
((k − 1)T, kT ].
To formulate existence results for problem (1.4) we introduce the following

assumptions

Assumption 1. Let

K2(kT ) =‖f,x3‖L2(kT,(k+1)T ;L6/5(Ω)) + ‖(rot f)3‖L2(kT,(k+1)T ;L6/5(Ω))
+ ‖f3‖L2(S(k+1)T2 ) + ‖v,x3(kT )‖L2(Ω) + ‖(rot v)3(kT )‖L2(Ω)
+ ‖f‖L2(Ω(k+1)T ) + ‖v(kT )‖H1(Ω) + ϕ(d1, d2)(d1 + d2),

K3(k, T ) =ϕ(d1, d2)K22 (k, T ) + ‖f‖L2(Ω(k+1)T ) + ‖v(kT )‖H1(Ω),
K4(k, T ) = ‖f,x3‖L2(Ω(k+1)T ) + ‖v,x3(kT )‖L2(Ω),

d1 = ‖f‖L∞(R+,L6/5(Ω)) + ‖v(0)‖L2(Ω),
d2 = ‖f‖L2(kT,(k+1)T ;L6/5(Ω)) + ‖v(kT )‖L2(Ω)

be finite, where ϕ is an increasing positive function.

Assumption 2. Let

d(k, T ) = ‖f,x3‖L2(kT,(k+1)T ;L6/5(Ω)) + ‖f3‖L2(S(k+1)T2 ) + ‖v,x3(kT )‖L2(Ω)

be finite.

Assumption 3. Assume that d(k, T ) is so small that there exists a constant
A such that

(1.5) c[ϕ(d1, d2)A8 +K43 ] exp(cd2A) exp(K2)d(k, T ) +K4 ≤ A,
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where c does not depend on T and k.

Theorem A. Let the Assumptions 1–3 hold. Then there exists a solution to
problem (1.4) such that

v, v,x3 ∈W
2,1
2 (Ω

(k+1)T ),∇p,∇p,x3 ∈ L2(Ω(k+1)T )

and

(1.6)

‖v,x3‖W 2,12 (Ω(k+1)T ) ≤ A,

‖v‖W 2,12 (Ω(k+1)T ) + ‖∇p‖L2(Ω(k+1)T ) ≤ ϕ(d1, d2, A,K2),

‖∇p,x3‖L2(Ω(k+1)T ) ≤ ϕ(d1, d2, A,K2,K3,K4),

where ϕ is an increasing positive function.

Remark A1. In general the constant A = A(k, T ) depends on k, T , because
the quantities K2, K3, K4 depend on the time integral norms of f and on

(1.7) ‖v(kT )‖H1(Ω), ‖v,x3(kT )‖H1(Ω).

Hence Theorem A is a local existence theorem and in reality describes existence
in the interval [0, T ] only, because quantities (1.7) are not yet defined for k ≥ 1.

Therefore the part of Theorem A for intervals [kT, (k + 1)T ], k ≥ 1, is
important for the proof of global existence only.
Hence the main step in the proof of global existence consists in obtaining

estimations for quantities (1.7) independent of k.

Remark A2. Since A depends on T by time integral norms of the external
force f , T should not be very small for solutions to problem (1.4). It is un-
derstandable because smallness restriction on quantity d(k, T ) is imposed (see
Assumptions 2, 3). However, it is not convenient to have large T because then
more restrictions on the external force f must be imposed.

Theorem B. Let the assumptions of Theorem A hold. Let either Assump-
tion 6.3 (see (6.28), (6.29)) or Assumption 6.4 (see (6.30)–(6.32)) hold. Then
there exists a global solution to problem (1.1) such that v ∈ W 2,12 (Ω × (kT,
(k + 1)T )), ∇p ∈ L2(Ω× (kT, (k + 1)T )) for any k ∈ N0.

2. Notation

By c we denote a generic constant which changes its value from line to line.
In general it depends on the constants of imbeddings, regularity of the boundary
and so on.
By ϕ we denote a generic function which is always positive and increasing of

its arguments. It also may change its form from line to line.
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We denote

ΩkT = Ω× ((k − 1)T, kT ), ΩT1,T2 = Ω× (T1, T2).

We use isotropic and anisotropic Lebesgue spaces

Lp(Q), Q ∈ {ΩT , ST ,Ω, S}, p ∈ [1,∞],
Lq(0, T ;Lp(Q)), Q ∈ {Ω, S}, q, p ∈ [1,∞];

Sobolev spaces

W s,s/2p (QT ), Q ∈ {Ω, S}, s ∈ Z+ ∪ {0}, p ∈ [1,∞],

with the following norm for even s

‖u‖
W
s,s/2
p (QT ) =

( ∑
|α|+2a≤s

∫
QT
|Dαx∂at u|p dx dt

)1/p
where Dαx = ∂

α1
x1 ∂

α2
x2 ∂

α3
x3 , α = (α1, α2, α3), |α| = α1 + α2 + α3, αi ∈ Z+ ∪ {0},

i = 1, 2, 3, and in the case of odd s we have the fractional derivatives. Similarly,
we define

W sp (Q), Q ∈ {Ω, S}.
For p = 2 we have

Hs(Q) =W s2 (Q), L2(Q) = H
0(Q).

We define a space natural for weak solutions to the heat and the Stokes equations

V k2 (Ω
T ) = {u : ‖u‖V k2 (ΩT ) = ess sup

t≤T
‖u(t)‖Hk(Ω) + ‖∇u‖L2(0,T ;Hk(Ω)) <∞},

where k ∈ N0.
Next we introduce the Sobolev spaces with mixed norms (see [18], [14]).
We define space W 2,1q,r (Ω

T ), q, r ∈ [1,∞], as a set of functions with the fol-
lowing norm finite

‖u‖W 2,1q,r (ΩT ) =
(
‖ut‖rLq,r(ΩT ) +

∑
|α|≤2

‖Dαxu‖rLq,r(ΩT )
)1/r
,

where

‖u‖Lq,r(ΩT ) =
(∫ T
0
‖u(·, t)‖rLq(Ω)dt

)1/r
, q, r ≥ 1.

Let us consider the Stokes system

(2.1)

vt − divT(v, p) = f,

div v = 0,

v · n|S = 0, n · D(v) · τα + γv · τα|S = 0, α = 1, 2,
v|t=0 = v0.
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Similarly as in [18], [14] we prove

Lemma 2.1. Assume that f ∈ Lq,r(ΩT ), v0 ∈ B2−2/rq,r (Ω), q, r ∈ (1,∞).
Then there exists a solution to problem (2.1) such that v ∈ W 2,1q,r (ΩT ), ∇p ∈
Lq,r(ΩT and the estimate

(2.2) ‖v‖W 2,1q,r (ΩT ) + ‖∇p‖Lq,r(ΩT ) ≤ c(‖f‖Lq,r(ΩT ) + ‖v0‖B2−2/rq,r (Ω)),

holds.

By Blq,r(Ω), Ω ⊂ Rn, q, r ∈ (1,∞), l ∈ R+ we denote the Besov space with
the finite norm

‖u‖Blq,r(Ω) = ‖u‖W [l]q (Ω) + ‖u‖Ḃl−[l]q,r (Ω)
,

where [l] is the integer part of l and

‖u‖Bλq,r(Ω) =
( n∑
i=1

∫ ∞
0
‖∆i(h)u‖rLq(Ω)

dh

h1+rλ

)1/r
,

where λ ∈ (0, 1) and

∆i(h)u(x) = u(x+ eih)− u(x)

where ei = (δik)k=1,...,n and x, x+ eih ∈ Ω.

3. Auxiliary results

We start from the weak solutions because in this paper the existence of
regularized weak solution will be proved.

Definition 3.1. By a weak solution to problem (1.1) we mean v ∈ V 02 (ΩT )
such that div v = 0, v · n|S = 0, and satisfying the integral identity

(3.1)
∫
ΩT
(−v · ϕ,t +

1
2
νD(v) · D(ϕ) + v · ∇v · ϕ) dx dt

+ γ
2∑
α=1

∫
ST
v · ταϕ · τα dS dt+

∫
Ω
v · ϕ|t=T dx

−
∫
Ω
v(0) · ϕ|t=0 dx =

∫
ΩT
f · ϕdx dt,

which holds for any sufficiently smooth ϕ such that divϕ = 0, ϕ · n|S = 0.

To prove the existence of weak solutions we need the Korn inequality.

Lemma 3.2 (see [19]). Assume that EΩ(v) = ‖D(v)‖2L2(Ω), div v = 0 and
v · n|S = 0. Assume that the cylindrical domain Ω is not axially symmetric.
Then there exists a constant c1, which depends at most on Ω and S, such that

(3.2) ‖v‖2H1(Ω) ≤ c1EΩ(v).
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Proof. We have∫
Ω
|D(v)|2 dx =

∫
Ω
(vi,xj + vj,xi)

2 dx =
∫
Ω
(v2i,xj + v

2
j,xi + 2vi,xjvj,xi) dx,

where we used the summation convention and∫
Ω
vi,xjvj,xi dx =

∫
S1∪S2

nivi,xjvj dS =
∫
S1∪S2

ni,xjvivj dS =
∫
S1

ni,xjvivjdS1.

Hence

(3.3) ‖∇v‖2L2(Ω) ≤ c
(
EΩ(v) +

∫
S1

v2τα dS1

)
,

where vτα = v · τα, v2τα = v
2
τ1 + v

2
τ2 .

By the Poincaré inequality we have

(3.4) ‖v‖2H1(Ω) ≤ c
(
EΩ(v) +

∫
S1

v2τα dS1

)
.

Hence the trace theorem implies

(3.5) ‖v‖2H1(Ω) ≤ c(EΩ(v) + ‖v‖
2
L2(Ω)).

Next we prove the following: there exist positive constants δ and M such that

(3.6) ‖v‖2L2(Ω) ≤ δ‖∇v‖
2
L2(Ω) +MEΩ(v),

where δ can be chosen sufficiently small.

We prove (3.6) by contradiction. Assume that such M does not exist. Then
for any m ∈ N there exists vm ∈ H1(Ω) such that

‖vm‖2L2(Ω) ≥ δ‖∇v
m‖2L2(Ω) +mEΩ(v

m) ≡ Gm(vm).

Then for um = vm/‖vm‖L2(Ω) we have

‖um‖L2(Ω) = 1, Gm(u
m) =

Gm(vm)
‖vm‖L2(Ω)

≤ 1.

Therefore from the sequence {um} we can choose a subsequence {umk} which
converges weakly in H1(Ω) and strongly in L2(Ω) to a limit u ∈ H1(Ω). More-
over, EΩ(umk) ≤ 1/mk → 0. Hence EΩ(u) = 0. Since Ω is not axially symmetric
we have u = 0. This contradicts

‖u‖L2(Ω) = lim
mk→∞

‖umk‖L2(Ω) = 1.

Hence (3.6) holds. From (3.5) and (3.6) we obtain (3.2). �
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Lemma 3.3. Assume that f ∈ L∞(R+;L6/5(Ω)), v(0) ∈ L2(Ω) and Ω is not
axially symmetric. Then

(3.7) ‖v(t)‖L2(Ω) ≤
1√
2

(
c1c2
ν
‖f‖L∞(R+;L6/5(Ω)) + ‖v(0)‖L2(Ω)

)
≡ d1

for any t ∈ R+, c2 is the constant from the imbedding H1(Ω) ⊂ L6(Ω), c1
appeared in (3.2). Next

(3.8) ‖v‖V 02 (Ω×(kT,t))

≤ 1
ν∗

[√
c1
ν
c2‖f‖L2(kT,(k+1)T ;L6/5(Ω)) + ‖v(kT )‖L2(Ω)

]
≡ d2(k),

for t ∈ (kT, (k + 1)T ], ν∗ = min{1,
√
ν/c1}.

Proof. Multiplying (1.1)1 by v, integrating over Ω, using (1.1)2,3,4, the
Korn inequality and applying the Hölder and the Young inequalities to the term
with f yield

(3.9)
1
2
d

dt
‖v‖2L2(Ω) +

ν

c1
‖v‖2H1(Ω) ≤

εc22
2
‖v‖2H1(Ω) +

1
2ε
‖f‖2L6/5(Ω).

Setting ε = ν/(c1c22) implies

(3.10)
d

dt
‖v‖2L2(Ω) +

ν

c1
‖v‖2H1(Ω) ≤

c1c
2
2

ν
‖f‖2L6/5(Ω)

Replacing the norm ‖v‖H1(Ω) by ‖v‖L2(Ω), multiplying the result by
exp((ν/c1)t) and integrating with respect to time we obtain (3.7).
Integrating (3.10) with respect to time from kT to t ∈ (kT, (k + 1)T ] we

obtain (3.8). �

From the above lemma by an application of the Galerkin method and the
considerations from [11, Chapter 6] we have

Lemma 3.4. Let the assumptions of Lemma 3.3 hold. Then there exists
a weak solution to problem (1.1) in any interval (kT, (k+1)T ), k ∈ N0 ≡ N∪{0}
such that

(3.13) ‖v‖V 02 (Ω×(kT ;(k+1)T ) ≤ d2.

To prove global existence of regular solutions to problem (1.1) we need to
obtain an estimate without restrictions on the existence time. We are not able
to obtain such an estimate starting directly from problem (1.1). Following [17],
[24] we replace problem (1.1) by a sequence of problems. For this purpose we
introduce the quantities

(3.14) h = v,x3 , q = p,x3 , g = f,x3 .
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Lemma 3.5 (see [17], [24]). Assume that v is given. Then (h, q) is a solution
to the problem

(3.15)

h,t − divT(h, q) = −v · ∇h− h · ∇v + g in Ω(k+1)T ,

divh = 0 in Ω(k+1)T ,

h · n = 0, νn · D(h) · τα + γh · τα = 0, α = 1, 2, on S(k+1)T1 ,

hi = 0, i = 1, 2, h3,x3 = 0 on S(k+1)T2 ,

h|t=kT = h(kT ) in Ω,

where h(kT ) is considered as given.

Lemma 3.6 (see [17], [24]). Let F3 = (rot f)3, h, v be given. Then χ =
(rot v)3 is a solution to the problem

(3.16)

χ,t + v · ∇χ− h3χ+ h2v3,x1 − h1v3,x2 − ν∆χ = F3 in Ω(k+1)T ,
χ = vi(ni,xjτ1j + τ1i,xjnj)

+ v · τ1(τ12,x1 − τ11,x2) +
γ

ν
vjτ1j ≡ χ∗ on S(k+1)T1 ,

χ,x3 = 0 on S(k+1)T2 ,

χ|t=0 = χ(kT ) in Ω,

where χ(kT ) is considered as given, and tangent and normal vectors to S1 are
defined as follows

n|S1 =
∇ϕ
|∇ϕ|

=
1
|∇ϕ|
(ϕ,x1 , ϕ,x2 , 0),

τ |S1 =
∇⊥ϕ
|∇ϕ|

=
1
|∇ϕ|
(−ϕ,x2 , ϕ,x1 , 0), τ2|S1 = (0, 0, 1).

4. Estimates

First we obtain estimates for solutions to problem (3.15).

Lemma 4.1. Assume that

(a) v is the weak solution to problem (1.1),
(b) h ∈ L∞(kT, (k + 1)T ;L3(Ω)),
(c) g ∈ L2(kT, (k + 1)T ;L6/5(Ω)), f3 ∈ L2(S2 × (kT, (k + 1)T )), h(kT ) ∈
L2(Ω), k ∈ N0.

Then

(4.1) ν∗‖h‖2V 02 (Ω×(kT,t)) ≤
2c1c22
ν
(d22‖h‖2L∞(kT,t;L3(Ω)) + ‖g‖

2
L2(kT,t;L6/5(Ω)))

+ ν‖f3‖2L2(S2×(kT,t)) + ‖h(kT )‖
2
L2(Ω),
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where t ∈ (kT, (k + 1)T ], ν∗, c2 are defined in Lemma 3.3, c1 in Lemma 3.2.

Proof. Multiplying (3.15)1 by h, integrating over Ω, using (3.15)2,3,4 and
the Korn inequality yields

(4.2)
1
2
d

dt
‖h‖2L2(Ω) +

ν

c1
‖h‖2H1(Ω) ≤

ε1
2
‖h‖2L6(Ω) +

1
2ε1
‖∇v‖2L2(Ω)‖h‖

2
L3(Ω)

+
ε2
2
‖h‖2L6(Ω) +

1
2ε2
‖g‖2L6/5(Ω) + ν‖f3‖

2
L2(S2).

Setting ε1c22 = (1/2)(ν/c1), ε2 = ε1 in (4.2) we obtain

d

dt
‖h‖2L2(Ω) +

ν

2c1
‖h‖2H1(Ω) ≤

2c1c22
ν
(‖∇v‖2L2(Ω)‖h‖

2
L3(Ω)(4.3)

+ ‖g‖2L6/5(Ω)) + ν‖f3‖
2
L2(S2).

Integrating (4.3) from kT to t ∈ (kT, (k + 1)T ] and using (3.13) we get (4.1). �

Lemma 4.2. Let the assumptions (a) and (c) of Lemma 4.1 hold. Let the
assumption (b) is replaced by v ∈ L2(kT, (k + 1)T ;L3(Ω)). Then

(4.4) ‖h(t)‖2L2(Ω) +
∫ t
kT

‖h(t′)‖2H1(Ω)dt
′ ≤ exp

(
4c1c22
ν
‖∇v‖L2(kT,(k+1)T ;L3(Ω))

)
·
[
2c1c22
ν
‖g‖2L2(kT,t;L6/5(Ω)) + ν‖f3‖

2
L2(kT,t;L2(S2)) + ‖h(kT )‖

2
L2(Ω)

]
.

Proof. Instead of (4.3) in this case we examine the inequality

(4.5)
d

dt
‖h‖2L2(Ω) +

ν

2c1
‖h‖2H1(Ω)

≤ 2c1c
2
2

ν
(‖∇v‖2L3(Ω)‖h‖

2
L2(Ω) + ‖g‖

2
L6/5(Ω)) + ν‖f3‖

2
L2(S2).

From (4.5) we get

d

dt
(‖h‖2L2(Ω)e

−c3‖∇v‖2L2(kT,t;L3(Ω))) +
ν

2c1
‖h‖2H1(Ω)e

−c3‖∇v‖2L2(kT,t;L3(Ω))

≤ (c3‖g‖2L6/5(Ω) + ν‖f3‖
2
L2(S2))e

−c3‖∇v‖2L2(kT,t;L3(Ω)) ,

where c3 = 2c1c22/ν and t ∈ (kT, (k + 1)T ].
Integrating the above inequality with respect to time yields

‖h(t)‖2L2(Ω) + e
c3‖∇v‖2L2(kT,t;L3(Ω))

∫ t
kT

‖h(t′)‖2H1(Ω)e
−c3‖∇v‖2L2(kT,t′;L3(Ω)) dt′

≤ ec3‖∇v‖
2
L2(kT,t;L3(Ω))

∫ t
kT

(c3‖g(t′)‖2L6/5(Ω) + ν‖f3(t
′)‖2L2(S2))

· e−c3‖∇v‖
2
L2(kT,t′;L3(Ω) dt′ + ec3‖∇v‖

2
L2(kT,t;L3(Ω))‖h(kT )‖2L2(Ω).

Simplifying, we obtain (4.4). �
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Now we examine problem (3.16). Since we need to obtain energy type esti-
mate for solutions to (3.16) we have to make the Dirichlet boundary condition
homogeneous. For this purpose we introduce a function χ̃ as a solution to the
problem

(4.6)

χ̃t − ν∆χ̃ = 0 in Ω× (kT, (k + 1)T ),
χ̃ = χ∗ on S1 × (kT, (k + 1)T ),
χ̃,x3 = 0 on S2 × (kT, (k + 1)T ),
χ̃|t=kT = 0 in Ω.

From [27] we have:

Lemma 4.3. For solutions to problem (4.6) we have the estimates

(4.7) ‖χ̃‖Lq(kT,(k+1)T ;Lp(Ω)) ≤ c‖χ∗‖Lq(kT,(k+1)T ;Lp(S1))

for any q, p ∈ [1,∞],

‖χ̃‖L2(kT,(k+1)T ;H1(Ω)) ≤ c‖χ∗‖W 1−1/2,1/2−1/42 (S(k+1)T1 ).

Then the new function χ′ = χ− χ̃ is a solution to the following problem

(4.8)

χ′,t + v · ∇χ′ − h3χ′ + h2v3,x1 − h1v3,x2
− ν∆χ′ = F3 − v · ∇χ̃+ h3χ̃ in Ω× (kT, (k + 1)T ),

χ′ = 0 on S1 × (kT, (k + 1)T ),
χ′,x3 = 0 on S2 × (kT, (k + 1)T ),
χ′|t=kT = χ(kT ) in Ω.

Lemma 4.4. Assume that h∈L∞(kT, (k+1)T ;L3(Ω)), v′∈L∞(kT, (k+1)T ;
H1(Ω)) ∩ L2(kT, (k + 1)T ;H2(Ω)) ∩ L2(Ω;H1/2(kT, (k + 1)T )), v′ = (v1, v2),
χ(kT ) ∈ L2(Ω), k ∈ N0, F3 ∈ L2(kT, (k + 1)T ;L6/5(Ω)). Then solutions to
problem (3.16) satisfy the inequality

‖χ‖V 02 (Ω×(kT,t)) ≤ ϕ(c2, d2) sup
t
‖h(t)‖L3(Ω)(4.9)

+ ε−aϕ(c2, c4, d2) sup
t
‖h(t)‖2L3(Ω) + ε

−aϕ(c2, c4, d1, d2)

+
8c2
ν
‖F3‖L2(kT,t;L6/5(Ω)) + ε(‖v

′‖L∞(kT,t;H1(Ω))
+ ‖v′‖L2(kT,t;H2(Ω))) + c4‖v

′‖L2(Ω;H1/2(kT,t)) + ‖χ(kT )‖L2(Ω),

where ε ∈ (0, 1), a > 0, t ∈ (kT, (k + 1)T ], c4 is defined below in (4.14), d1,
d2, c2 in Lemma 3.3 and ϕ is a generic function which changes its form from
formula to formula.
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Proof. Multiplying (4.8)1 by χ′, integrating over Ω, using boundary con-
ditions (4.8)2,3 yields

(4.10)
1
2
d

dt
‖χ′‖2L2(Ω) + ν‖∇χ

′‖2L2(Ω) =
∫
Ω
h3χ

′2 dx

−
∫
Ω
(h2v3,x1 − h1v3,x2)χ′ dx+

∫
Ω
F3χ

′ dx−
∫
Ω
v · ∇χ̃χ′dx+

∫
Ω
h3χ̃χ

′ dx.

The first term on the r.h.s. of (4.10) can be bounded by∣∣∣∣ ∫
Ω
h3χ

′2 dx

∣∣∣∣ = ∣∣∣∣ ∫
Ω
h3χ

′(χ− χ̃) dx
∣∣∣∣ ≤ ∣∣∣∣ ∫

Ω
h3χ

′χdx

∣∣∣∣+ ∣∣∣∣ ∫
Ω
h3χ

′χ̃ dx

∣∣∣∣
≤ ε1
4
‖χ′‖2L6(Ω) +

1
ε1
‖h3‖2L3(Ω)‖χ‖

2
L2(Ω)

+
ε1
4
‖χ′‖2L6(Ω) +

1
ε1
‖h3‖2L2(Ω)‖χ̃‖

2
L3(Ω)

the second by
ε2
2
‖χ′‖2L6(Ω) +

1
2ε2
‖h‖2L3(Ω)‖v3,x′‖

2
L2(Ω),

and the third by
ε3
2
‖χ′‖2L6(Ω) +

1
2ε3
‖F3‖2L6/5(Ω).

The fourth term on the r.h.s. of (4.10) we express in the form∫
Ω
v · ∇χ′χ̃ dx

and estimate as follows
ε4
2
‖∇χ′‖2L2(Ω) +

1
2ε4
‖v‖2L6(Ω)‖χ̃‖

2
L3(Ω).

Finally, the last term on the r.h.s. of (4.10) is bounded by

ε5
2
‖χ′‖2L6(Ω) +

1
2ε5
‖h‖2L2(Ω)‖χ̃‖

2
L3(Ω).

Using the above estimates in (4.10), setting ε1 = ε2 = ε3 = ε5 = ε, ε4 = ν/2,
ε = ν/(8c2), where c2 is introduced in Lemma 3.3, we obtain

(4.11)
d

dt
‖χ′‖2L2(Ω) + ν‖∇χ

′‖2L2(Ω) ≤
8c2
ν
(‖χ‖2L2(Ω) + ‖v3,x′‖

2
L2(Ω))‖h‖

2
L3(Ω)

+
(
2
ν
‖v‖2L6(Ω) +

16c2
ν
‖h‖2L2(Ω)

)
‖χ̃‖2L3(Ω) +

8c2
ν
‖F3‖2L6/5(Ω).

Integrating (4.11) with respect to time and using the estimate for the weak
solutions in Lemma 3.3 we obtain

(4.12) ‖χ′‖2L2(Ω) + ν‖∇χ
′‖2L2(kT,t;L2(Ω)) ≤

16c2d22
ν
sup
t
‖h(t)‖2L3(Ω)

+
16c2 + 2
ν
d22 sup

t
‖χ̃‖2L3(Ω) +

8c2
ν
‖F3‖2L2(kT,t;L6/5(Ω)) + ‖χ(kT )‖

2
L2(Ω).



68 W. M. Zajączkowski

Since χ = χ′ + χ̃ we have

(4.13) ‖χ‖2V 02 (Ω×(kT,t)) ≤
16c2
ν
d22 sup

t
‖h(t)‖2L3(Ω) +

16c2 + 2
ν
d22 sup

t
‖χ̃‖2L3(Ω)

+
8c2
ν
‖F3‖2L2(kT,t;L6/5(Ω)) + ‖χ̃‖

2
V 02 (Ω×(kT,t))

+ ‖χ(kT )‖2L2(Ω),

where t ∈ (kT, (k + 1)T ].
In view of Lemma 4.3 and some interpolation inequalities (see [2, Chapter 3,

Section 10]) we have

(4.14)

‖χ̃‖L2(kT,t;L2(Ω)) ≤ c
′
1‖v′‖L2(kT,t;L2(S1))

≤ ε‖v′‖L2(kT,t;H1(Ω)) + c
′
2ε
−1d2,

‖χ̃‖L∞(kT,t;L3(Ω)) ≤ c
′
3‖v′‖L∞(kT,t;L3(S1))

≤ ε1/6‖v′‖L∞(kT,t;H1(Ω)) + c
′
4ε
−5/6d1,

‖χ̃‖L∞(kT,t;L2(Ω)) ≤ c
′
5‖v′‖L∞(kT,t;L2(S1))

≤ ε1/2‖v′‖L∞(kT,t;H1(Ω)) + c
′
6ε
−1/2d1,

‖∇χ̃‖L2(kT,t;L2(Ω)) ≤ c
′
7‖v′‖W 1/2,1/42 (S1×(kT,t))

≤ c′8‖v′‖W 1,1/22 (Ω×(kT,t))

= c′8(‖v′‖L2(kT,t;H1(Ω)) + ‖v
′‖L2(Ω;H1/2(kT,t)))

≤ ε1/2‖v′‖L2(kT,t;H2(Ω))
+ ε−1/2c′9d2 + c

′
8‖v′‖L2(Ω;H1/2(kT,t)),

where c′1, . . . , c
′
9 are constants from corresponding imbedding theorems.

Let c′i ≤ c4, i = 1, . . . , 9. Using (4.14) and (4.13) we obtain (4.9). �

Let us consider the problem

(4.15)

v1,x2 − v2,x1 = χ in Ω′,

v1,x1 + v2,x2 = −h3 in Ω′,
v′ · n′ = 0 on S′1,

where Ω′ = Ω ∩ {plane : x3 = const ∈ (−a, a)}, S′1 = S1 ∩ {plane : x3 = const ∈
(−a, a)} and x3, t are considered as parameters.

Lemma 4.5. Let the assumptions of Lemmas 4.1 and 4.4 be satisfied. Then

‖v′‖V 12 (Ω×(kT,t)) ≤ cd2‖h‖L∞(kT,t;L3(Ω)) + ϕ(d1, d2)(d1 + d2)(4.16)

+ c‖v′‖L2(Ω;H1/2(kT,t)) + cK1(k, T ),

where

(4.17) K1(k, T ) = ‖g‖L2(kT,(k+1)T ;L6/5(Ω)) + ‖F3‖L2(kT,(k+1)T ;L6/5(Ω))
+ ‖f3‖L2(S2×(kT,(k+1)T )) + ‖h(kT )‖L2(Ω) + ‖χ(kT )‖L2(Ω),
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and we skip the dependence on c1, c2, c4.

Proof. For solutions to problem (4.15) we have the estimate

(4.18)
∫ a
−a
‖v′(x3)‖2V 12 (Ω′×(kT,t)) dx3 ≤ c(‖χ‖

2
V 02 (Ω×(kT,t))

+ ‖h‖2V 02 (Ω×(kT,t))).

Taking (4.18), estimate (4.1) and using (4.1) and (4.9) with sufficiently small ε
we obtain (4.16). �

Let us consider problem (1.4) in the form

(4.19)

vt − divT(v, p) = −v′ · ∇v − v3h+ f in Ω(k+1)T ,

div v = 0 in Ω(k+1)T ,

v · n = 0 on S(k+1)T ,

n · D(v) · τα + γv · τα = 0, α = 1, 2, on S(k+1)T ,
v|t=kT = v(kT ) in Ω.

Lemma 4.6. Let the assumptions of Lemmas 4.1 and 4.4 hold. Let h ∈
L10/3(Ω× (kT, (k + 1)T )), f ∈ L2(Ω× (kT, (k + 1)T ), v(kT ) ∈ H1(Ω), k ∈ N0.
Then for solutions to problem (4.19) the following inequality is valid

(4.20) ‖v‖W 2,12 (ΩkT,t) + ‖∇p‖L2(ΩkT,t) ≤ϕ(d1, d2)[H(k, T ) +K2(k, T )]
2

+ c(‖f‖L2(ΩkT,t) + ‖v(kT )‖H1(Ω)),

where c does not depend on T , and H, K2 are defined by (4.23) and (4.24),
respectively. Moreover, k ∈ N0.

Proof. From [23, Lemma 3.7] we have

‖v′‖L10(ΩkT,t) ≤ c5‖v
′‖V 12 (ΩkT,t),

hence

‖v′ · ∇v‖L 5
3
(ΩkT,t) ≤ ‖v′‖L10(ΩkT,t)‖∇v‖L2(ΩkT,t)

≤ d2‖v′‖L10(ΩkT,t) ≤ c5d2‖v
′‖V 12 (ΩkT,t),

‖v3h‖L5/3(ΩkT,t) ≤ ‖v3‖L10/3(ΩkT,t)‖h‖L10/3(ΩkT,t)

follows.
In view of the above estimates we obtain for solutions to (4.19) the inequality

(4.21) ‖v‖W 2,15/3(ΩkT,t) + ‖∇p‖L5/3(ΩkT,t) ≤ c6d2(c5‖v
′‖V 12 (ΩkT,t)

+ ‖h‖L10/3(ΩkT,t)) + c6(‖f‖L5/3(ΩkT,t) + ‖v(kT )‖W 4/55/3 (Ω)),

where ΩkT,t = Ω× (kT, t) and c6 is the constant appearing in estimation of the
nonstationary Stokes system corresponding to (4.19). In view of Lemma A.4
constant c6 does not depend on T .
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Employing (4.16) in the r.h.s. of (4.21) and using the interpolation

‖v′‖L2(Ω×H1/2(kT,t)) ≤ ε‖v
′‖W 2,15/3(ΩkT,t) + c(1/ε)d2

we obtain from (4.21) for sufficiently small ε the inequality

(4.22) ‖v‖W 2,15/3(ΩkT,t) + ‖∇p‖L5/3(ΩkT,t) ≤ cd2H(k, T ) + cK2(k, T ),

where c does not depend on T , with

K2(k, T ) =K1(k, T ) + ϕ(d1, d2)(d1 + d2)(4.23)

+ ‖f‖L5/3(ΩkT,t) + ‖v(kT )‖W 4/55/3 (Ω),

where K1 is defined by (4.17) and

(4.24) H(k, T ) = ‖h‖L∞(kT,t;L3(Ω)) + ‖h‖L10/3(ΩkT,t).

From (4.22) and (4.16) we have

(4.25) ‖v‖W 2,15/3(ΩkT,t) + ‖v
′‖V 12 (ΩkT,t) ≤ ϕ(d1, d2)[H(k, T ) +K2(k, T )].

By imbedding theorems we obtain

‖v′ · ∇v‖L2(ΩkT,t) ≤‖v
′‖L10(ΩkT,t)‖∇v‖L5/2(ΩkT,t)(4.26)

≤ c‖v′‖V 12 (ΩkT,t)‖v‖W 2,15/3(ΩkT,t)
≤ cϕ(d1, d2)[H(k, T ) +K2(k, T )]2

and

‖v3h‖L2(ΩkT,t) ≤‖v3‖L5(ΩkT,t)‖h‖L10/3(ΩkT,t)(4.27)

≤ c‖v‖W 2,15/3(ΩkT,t)‖h‖L10/3(ΩkT,t)

≤ cϕ(d1, d2)[H(k, T ) +K2(k, T )]H(k, T ),

where c does not depend on T (see Lemma A.3). In view of (4.26) and (4.27)
we derive (4.20). �

Now we consider problem (3.15).

Lemma 4.7. Let the assumptions of Lemma 4.6 be satisfied. Let h(kT ) ∈
H1(Ω), g ∈ L(kT, (k + 1)T ;L6/5(Ω)), f3 ∈ L2(kT, (k + 1)T ;L2(S2)), k ∈ N0.
Then solutions to problem (3.15) satisfy the inequality

(4.28) ‖h‖W 2,12 (ΩkT,t) + ‖∇q‖L2(ΩkT,t)
≤ c[ϕ(d1, d2)(H +K2)8 + ‖f‖4L2(ΩkT,t) + ‖v(kT )‖

4
H1(Ω)]

· ‖h‖L2(ΩkT,t) + c(‖g‖L2(ΩkT,t) + ‖h(kT )‖H1(Ω)),
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where t ∈ (kT, (k + 1)T ] and c does not depend on T .

Proof. For solutions to problem (3.15) we have

(4.29) ‖h‖W 2,12 (ΩkT,t) + ‖∇q‖L2(ΩkT,t) ≤ c7(‖v · ∇h‖L2(ΩkT,t)
+ ‖h · ∇v‖L2(ΩkT,t) + ‖g‖L2(ΩkT,t) + ‖h(kT )‖H1(Ω)),

where c7 does not depend on T in view of Lemma A.4.
Given v ∈W 2,12 (Ω(k+1)T ) we have

‖v·∇h‖L2(ΩkT,t) ≤ ‖v‖L10(ΩkT,t)‖∇h‖L 5
2
(ΩkT,t)(4.30)

≤ c‖v‖W 2,12 (ΩkT,t)(ε
1/4‖h‖W 2,12 (ΩkT,t) + cε

−3/4‖h‖L2(ΩkT,t))

≤ ε1/41 ‖h‖W 2,12 (ΩkT,t) + cε
−3/4
1 ‖v‖4

W 2,12 (Ω
kT,t)‖h‖L2(ΩkT,t),

where c does not depend on T in view of Lemmas A.3 and A.4.
Similarly, we have

‖h·∇v‖L2(ΩkT,t) ≤ ‖∇v‖L10/3(ΩkT,t)‖h‖L5(ΩkT,t)(4.31)

≤ c‖v‖W 2,12 (ΩkT,t)(ε
1/4‖h‖W 2,12 (ΩkT,t) + cε

−3/4‖h‖L2(ΩkT,t))

≤ ε1/42 ‖h‖W 2,12 (ΩkT,t) + cε
−3/4
2 ‖v‖4

W 2,12 (Ω
kT,t)‖h‖L2(ΩkT,t),

where c does not depend on T by Lemmas A.3, A.4.
Using (4.30) and (4.31) in (4.29), assuming that ε1, ε2 are sufficiently small

and (4.20) holds we obtain (4.28). �

Let us introduce the notation

(4.32)

X(kT, t) = ‖h‖W 2,12 (ΩkT,t),

d(kT, t) = ‖g‖L2(kT,t;L6/5(Ω)) + ‖f3‖L2(kT,t;L2(S2)) + ‖h(kT )‖L2(Ω),
K3(kT, t) =ϕ(d1, d2)K22 (kT, t) + ‖f‖L2(ΩkT,t) + ‖v(kT )‖H1(Ω),
K4(kT, t) = ‖g‖L2(ΩkT,t) + ‖h(kT )‖H1(Ω).

The above quantities are denoted by X(kT ), d(kT ), K3(kT ), K4(kT ) for t =
(k + 1)T .

Lemma 4.8. Assume that the quantities d(kT ), Ki(kT ), i = 2, 3, 4, are fi-
nite. Assume that d(kT ) is sufficiently small. Then there exists a constant
A(k, T ) such that

(4.33) X(kT, t) ≤ A(k, T ).

Proof. We shall denote by c constants independent of T . Since

‖∇v‖L2(kT,(k+1)T ;L3(Ω)) ≤ c‖v‖W 2,15/3(ΩkT )
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we have by Lemma 4.2 and (4.22) that

(4.34) ‖h‖L2(ΩkT,t) ≤ exp(cd2H +K2)d(kT ).

Using that H(kT, t) ≤ cX(kT, t) we obtain from (4.28) the inequality

(4.35) X(kT, t) ≤ c[ϕ(d1, d2)X8(kT, t) +K43 (kT, t)]
· exp(cd2X(kT, t) +K2(kT, t))d(kT, t) +K4(kT, t).

To show that there exists a constant A such that X(kT, t) ≤ A(k, T ) we have to
satisfy the inequality

(4.36) c[ϕ(d1, d2)A8 +K43 ] exp(cd2A) exp(K2)d(kT ) +K4 ≤ A.

Inequality (4.36) holds for d(kT ) sufficiently small and A sufficiently large (A >
K4). In this case estimate (4.33) holds. �

From [15] we have

Remark 4.9. To simplify (4.36) we estimate K2 and K3 by ϕ(d1, d2)K and
ϕ(d1, d2)K2, respectively, where

K(kT, t) = ‖g‖L2(kT,t;L6/5(Ω)) + ‖F3‖L2(kT,t;L6/5(Ω))
+ ‖f3‖L2(SkT,t2 ) + ‖f‖L2(ΩkT,t) + ‖v(kT )‖H1(Ω) + d1 + d2.

Then (4.36) takes the form

(4.37) ϕ(d1, d2)[A8 +K8] exp(cd2A) exp(ϕ(d1, d2)K)d(kT ) +K4 ≤ A.

To show the existence of A satisfying (4.37) we use the method of successive
approximations

(4.38) An+1 = ϕ[A8n +K
8] exp(cd2An) exp(ϕK)d+K4.

The sequence {An} converges and

(4.39) lim
n→∞
An = A ≤ (η + 1)K4

for any η > 0, if d is so small that

(4.40) d ≤ 1
cd2ϕ[(η + 1)8K84 +K8] exp(cd2(η + 1)K4) exp(ϕK)

.

Choosing η large we have A large but then d must be correspondingly small.
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5. Existence

To prove the existence of solutions to problem (1.4) we construct the map-
pings

(5.1)

vt − divT(v, p) = −λṽ · ∇ṽ + f in Ω(k+1)T ,

div v = 0 in Ω(k+1)T ,

v · n = 0 on S(k+1)T ,

νn · D(v) · τα + γv · τα = 0, α = 1, 2, on S(k+1)T ,
v|t=kT = v(kT ) in Ω,

and

(5.2)

ht − divT(h, q) = −λ(ṽ · ∇h̃+ h̃ · ∇ṽ) + g in Ω(k+1)T ,

divh = 0 in Ω(k+1)T ,

h · n = 0, νn · D(h) · τα + γh · τα = 0, α = 1, 2, on S(k+1)T1 ,

hi = 0, i = 1, 2, h3,x3 = 0 on S(k+1)T2 ,

h|t=kT = h(kT ) in Ω,

where λ ∈ [0, 1] and ṽ, h̃ are considered as given functions.
Moreover, we assume that h̃ = ṽ,x3 , g = f,x3 , h(kT ) = v(kT ),x3 . Differen-

tiating (5.1) with respect to x3 and subtracting from (5.2) we obtain h = v,x3 .
Problems (5.1), (5.2) determine the mappings

Φ1: (ṽ, λ)→ (v, p), Φ2: (ṽ, h̃, λ)→ (h, q).

Let Φ = (Φ1,Φ2). In Section 4 we found a priori estimate for a fixed point of Φ
for λ = 1.

For λ = 0 we have a unique existence of solutions to problems (5.1) and (5.2).

Let us introduce the space

M(Ω(k+1)T ) = L2r(kT, (k + 1)T ;W 26η/(3+η)(Ω)), η ≥ 2, r ≥ 2.

We shall find restrictions on r, η such that

Φ:M(Ω(k+1)T )×M(Ω(k+1)T )→M(Ω(k+1)T )×M(Ω(k+1)T )

is a compact mapping.
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Assume that ṽ ∈ L2r(kT, (k + 1)T ;W 16η/(3+η)(Ω)). Then

‖ṽ · ∇ṽ‖Lr(kT,(k+1)T ;Lη(Ω)) =
(∫ (k+1)T
kT

dt‖ṽ · ∇ṽ‖rLη(Ω)
)1/r

(5.3)

≤
(∫ (k+1)T
kT

dt‖ṽ‖rL6η/(3−η)(Ω)‖∇ṽ‖
r
L6η/(3+η)(Ω)

)1/r
≤ c
(∫ (k+1)T
kT

dt‖ṽ‖2rW 16η/(3+η)(Ω)

)1/r
≤ c‖ṽ‖2L2r(kT,(k+1)T ;W 16η/(3+η)(Ω))

In the same way we obtain

(5.4) ‖ṽ · ∇h̃‖Lr(kT,(k+1)T ;Lη(Ω)) + ‖h̃ · ∇ṽ‖Lr(kT,(k+1)T ;Lη(Ω))
≤ c‖ṽ‖L2r(kT,(k+1)T ;W 16η/(3+η)(Ω))‖h̃‖L2r(kT,(k+1)T ;W 16η/(3+η)(Ω)).

In view of (5.3) and (5.4) we obtain that solutions to problems (5.1) and (5.2)
belong to W 2,1η,r (Ω

kT ) (see [18]).
We use the imbeddings (see [2, Chapter 3, Section 10])

(5.5) W 2,12 (Ω
kT ) ⊃W 2,1η,r (ΩkT )

and

(5.6) W 2,12 (Ω
kT ) ⊂ L2r(kT, (k + 1)T ;W 16η/(3+η)(Ω)) ≡M(Ω

kT ),

where (5.5) holds for η ≥ 2, r ≥ 2 and (5.6) is compact for r, η satisfying the
inequality

5
2
− 3
6η/(3 + η)

− 2
2r
< 1

which takes the form

(5.7) 1 <
3
2η
+
1
r
.

Setting r = η = 2 we obtain that ṽ, h̃ ∈ L4(kT, (k + 1)T ;W 112/5(Ω)) and then
condition (5.7) takes the form

(5.8) 1 <
3
4
+
1
2
so
1
2
<
3
4
.

Hence, we have the compactness of mappings Φ1 and Φ2.
To show the continuity of mappings Φ1 and Φ2 we consider

(5.9)

{
vst − divT(vs, ps) = −λṽs · ∇ṽs + f
div vs = 0

in Ω(k+1)T ,

n · vs = 0, νn · D(vs) · τα + γvs · τα = 0 on S(k+1)T ,
vs|t=kT = v(kT ) in Ω,
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and

(5.10)

{
hst − divT(hs, qs) = −λ(h̃s · ∇ṽs + ṽs · ∇h̃s) + g
divhs = 0

in Ω(k+1)T ,

n · hs = 0, νn · D(hs) · τα + γhs · τα = 0, α = 1, 2 on S(k+1)T1 ,

hsi = 0, i = 1, 2, hs3,x3 = 0 on S(k+1)T2 ,

hs|t=kT = h(kT ) in Ω,

where s = 1, 2.
Let

(5.11) V = v1 − v2, H = h1 − h2, P = p1 − p2, Q = q1 − q2.

Then V and H are solutions to the problems

(5.12)

Vt − divT(V, P ) = −λ(Ṽ · ∇ṽ1 + ṽ2 · ∇Ṽ ),
divV = 0,

V · n|S = 0, νn · D(V ) · τα + γV · τα|S = 0, α = 1, 2,
V |t=0 = 0,

and

(5.13)

Ht − divT(H,Q) = −λ(H̃ · ∇ṽ1 + h̃2 · ∇Ṽ + Ṽ · ∇h̃1 + ṽ2 · ∇H̃),
divH = 0,

H · n|S1 = 0, νn · D(H) · τα + γH · τα|S1 = 0, α = 1, 2,
Hi|S2 = 0, i = 1, 2, H3,x3 |S2 = 0,
H|t=kT = 0.

Assume that λ 6= 0. Then for solutions of (5.12) we have

‖V ‖M(Ω(k+1)T ) = ‖V ‖L2r(kT,(k+1)T ;W 16η/(3+η)(Ω))(5.14)

≤ c ‖V ‖W 2,12 (Ω(k+1)T ) ≤ c‖V ‖W 2,1η,r (Ω(k+1)T )

≤ c
2∑
s=1

‖ṽs‖L2r(kT ;(k+1)T ;W 16η/(3+η)(Ω))

· ‖Ṽ ‖L2r(kT ;(k+1)T ;W 16η/(3+η)(Ω))

≤ c(A)‖Ṽ ‖M(Ω(k+1)T ),

where r ≥ 2, η ≥ 2 and satisfy either (5.7) or (5.8).
Similarly we have

(5.15) ‖H‖M(Ω(k+1)T ) ≤ c(A)(‖Ṽ ‖M(Ω(k+1)T ) + ‖H̃‖M(Ω(k+1)T )),

where A is the constant from Lemma 4.8.
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Inequalities (5.14) and (5.15) imply the continuity of mapping Φ. Continuity
with respect to λ is evident. Hence by the Leray-Schauder fixed point theorem
we have the existence of solutions to problem (1.1) such that v ∈W 2,12 (Ω(k+1)T ),
∇p ∈ L2(Ω(k+1)T ). This concludes the proof of Theorem A.

6. Global existence

To prove the global existence of solutions to problem (1.1) we have to show
that the constant A appearing in Lemma 4.8 does not depend on k. For this
purpose we have to show that, for any k ∈ N0,

‖v((k + 1)T )‖H1(Ω) ≤ ‖v(kT )‖H1(Ω),(6.1)

‖h((k + 1)T )‖H1(Ω) ≤ ‖h(kT )‖H1(Ω).(6.2)

To show (6.1) we need

Lemma 6.1. Assume that there exists a local solution to problem (1.4) in the
interval [kT, (k + 1)T ]. Then there exist constants c′1, c

′
3, c

′
4 independent of T

such that

(6.3) ‖v((k + 1)T )‖2H1(Ω) ≤ c
′
3e
−c′1(k+1)T+c

′
4ϕ(A(k,T ))

∫ (k+1)T
kT

‖f(t)‖2L2(Ω)e
c′1t dt

+ c′3e
−c′1T+c

′
4ϕ(A(k,T ))‖v(kT )‖2H1(Ω).

Assume that

(6.4) ‖f(t)‖L2(Ω) ≤ ‖f(kT )‖L2(Ω)e
−δ(t−kT ),

t ∈ (kT, (k + 1)T ], δ > 0. Then (6.3) implies

‖v((k + 1)T )‖2H1(Ω) ≤ c
′
3e
−2δT+c′4ϕ(A(k,T ))‖f(kT )‖2L2(Ω)(6.5)

+ c′3e
−c′1T+c

′
4ϕ(A(k,T ))‖v(kT )‖2H1(Ω).

Proof. To prove the lemma we use problem (1.4) in the form

(6.6)

vt − divT(v, p) = −v · ∇v + f,
div v = 0,

v · n|S = 0, n · T(v, p) · τα + γv · τα|S = 0, v|t=kT = v(kT ).

Multiplying (6.6) by divT(v, p) and integrating the result over Ω yields

(6.7)
∫
Ω
vt · divT(v, p) dx−

∫
Ω
|divT(v, p)|2 dx

= −
∫
Ω
v · ∇v · divT(v, p)dx+

∫
Ω
f · divT(v, p) dx.
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Integrating by parts the first integral leads to∫
Ω
vi,tTij(v, p),xj dx =

∫
Ω
(vi,tTij(v, p)),xj dx−

∫
Ω
vi,xjtTij(v, p) dx(6.8)

=
∫
S

vi,tnjTij(v, p) dS −
∫
Ω
vi,xjtDij(v) dx

=
∫
S

(vταtταi + vntni)njTij(v, p) dS −
1
2

∫
Ω
Dij(vt)Dij(v) dx

= − γ
∫
S1

vταtvτα dS1 −
1
4
d

dt

∫
Ω
|D(v)|2 dx,

where we used that vτα = v · τα, vn = v ·n, v = vτατα+ vnn in a neighbourhood
of S,

D(v) = {Dij(v)}i,j=1,2,3, T(v, p) = {Tij(v, p)}i,j=1,2,3
and the summation convention over the repeated indices is assumed: i, j = 1, 2, 3,
α = 1, 2.
Using (6.8) in (6.7), and applying the Hölder and the Young inequalities to

the integrals on the r.h.s. of (6.7), we obtain

(6.9)
d

dt

(
1
4

∫
Ω
|D(v)|2 dx+ γ

∫
S1

|v · τα|2 dS1
)
+
1
2

∫
Ω
|divT(v, p)|2 dx

≤
∫
Ω
|v · ∇v|2 +

∫
Ω
f2 dx.

Using Lemma A.5 and the Korn inequality in Lemma 3.2 we obtain

d

dt

(
1
4

∫
Ω
|D(v)|2 dx+ γ

∫
S1

|v · τα|2 dS1
)

(6.10)

+ c′1

(
1
4

∫
Ω
|D(v)|2 dx+ γ

∫
S1

|v · τα|2 dS1
)

≤ c′2‖v‖2L∞(Ω)
(
1
4

∫
Ω
|D(v)|2 dx+ γ

∫
S1

|v · τα|2 dS1
)
+ c′2‖f‖2L2(Ω),

where c′1, c
′
2 do not depend on t.

Let

(6.11) X(t) =
1
4
‖D(v)‖2L2(Ω) + γ‖v · τα‖

2
L2(S1).

Then from (6.10) we have

(6.12)
d

dt
(X(t)ec

′
1t−c

′
2

R t
kT
‖v(t′)‖2L∞(Ω) dt

′
) ≤ c′2‖f‖2L2(Ω)e

c′1t−c
′
2

R t
kT
‖v(t′)‖2L∞(Ω) dt

′
,

where t ∈ (kT, (k + 1)T ]. Integrating (6.12) with respect to time yields

(6.13) X(t) ≤ e−c
′
1t+

R t
kT
αdt′c′2

∫ t
kT

‖f‖2L2(Ω)e
c′1t
′−

R t′
kT
αdt′′ dt′

+ e−c
′
1(t−kT )+

R t
kT
αdt′X(kT ),
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where α = c′2‖v(t)‖2L∞(Ω).
First we consider the case

(6.14) ‖f(t)‖2L2(Ω) ≤ ‖f(kT )‖
2
L2(Ω)e

−2δ(t−kT )

Then (6.13) implies

(6.15) X(t) ≤ e2δkT−c
′
1t+

R t
kT
αdt′‖f(kT )‖2L2(Ω)

∫ t
kT

e(c
′
1−2δ)t

′
dt′

+ e−c
′
1(t−kT )+

R t
kT
αdt′X(kT ).

Hence

(6.16) X(t) ≤ e−2δ(t−kT )+
R t
kT
α(t′) dt′ 1

c′1 − 2δ
‖f(kT )‖2L2(Ω)

+ e−c
′
1(t−kT )+

R t
kT
αdt′X(kT ).

Setting t = (k + 1)T and using the Korn inequality we obtain from (6.16) the
relation

(6.17) ‖v((k + 1)T )‖2H1(Ω) ≤ c
′
3e
−2δT+

R (k+1)T
kT ‖v(t)‖2L∞(Ω) dt

1
c′1 − 2δ

‖f(kT )‖2L2(Ω)

+ c′3e
−c′1T+

R (k+1)T
kT ‖v(t)‖2L∞(Ω) dt‖v(kT )‖2H1(Ω).

In view of Theorem A and the equivalence of X(t) and ‖v(t)‖H1(Ω) we ob-
tain (6.5).
Assume that (6.14) does not hold. Then (6.13) takes the form

(6.18) X(t) ≤ c′2e−c1t+
R t
kT
αdt′
∫ t
kT

‖f(t′)‖2L2(Ω)e
c′1t
′
dt′

+ e−c
′
1(t−kT )+

R t
kT
αdt′X(kT ).

Setting t = (k + 1)T , using (6.11) and Theorem A we obtain (6.3). �

To show (6.2) we need

Lemma 6.2. Assume that f3|S2 = 0. Assume that there exists a local solution
to problem (1.4) in the interval [kT, (k+1)T ]. Then there exist constants c′1, c

′
2,

c′3 such that

(6.19) ‖h((k + 1)T )‖2H1(Ω) ≤ c
′
3e
−c′1(k+1)T+c

′
4ϕ(A(kT ))

·
∫ (k+1)T
kT

‖g(t)‖2L2(Ω)e
c′1t dt+ c′3e

−c′1T+c
′
4ϕ(A(kT ))‖h(kT )‖2H1(Ω).

Assume that, for t ∈ (kT, (k + 1)T ], δ > 0,

(6.20) ‖g(t)‖L2(Ω) ≤ ‖g(kT )‖L2(Ω)e
−δ(t−kT ).
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Then

(6.21) ‖h((k + 1)T )‖2H1(Ω) ≤ c
′
3e
−2δT+c′4ϕ(A(k,T ))‖g(kT )‖2L2(Ω)

+ c′3e
−c′1T+c

′
4ϕ(A(k,T ))‖h(kT )‖2H1(Ω).

Proof. Let us consider problem (3.15). Multiplying (3.15)1 by divT(h, q)
and integrating over Ω yields

(6.22)
∫
Ω
ht · divT(h, q)dx−

∫
Ω
|divT(h, q)|2 dx

= −
∫
Ω
(v · ∇h+ h · ∇v)divT(h, q) dx+

∫
Ω
f · divT(h, q) dx.

Repeating the considerations from (6.8) we have∫
Ω
ht · divT(h, q) dx = − γ

∫
S1

hτα,thτα dS1

− 1
4
d

dt

∫
Ω
|D(h)|2 dx+

∫
S2

h3,tT33(h, q) dS2,

where the last term equals∫
S2

h3,t(2h3,x3 + q) dS2 =
∫
S2

h3,tq dS2 =
∫
S2

h3,tf3 dS2.

We do not know how to cope with this term. Therefore, we assume that

(6.23) f3|S2 = 0.

Then (6.22) implies

(6.24)
d

dt

[
1
4

∫
Ω
|D(h)|2 dx+ γ

∫
S1

|h · τα|2 dS1
]
+ ‖divT(h, q)‖2L2(Ω)

≤ (‖v‖L∞(Ω)‖∇h‖L2(Ω) + ‖∇v‖L3(Ω)‖h‖L6(Ω))‖divT(h, q)‖L2(Ω)
+ ‖g‖L2(Ω)‖divT(h, q)‖L2(Ω).

From (6.24) we have

(6.25)
d

dt

[
1
4

∫
Ω
|D(h)|2 dx+ γ

∫
S1

|h · τα|2 dS1
]
+
1
2

∫
Ω
|divT(h, q)|2 dx

≤ c(‖v‖2L∞(Ω) + ‖∇v‖
2
L3(Ω))‖h‖

2
H1(Ω) + ‖g‖

2
L2(Ω).

Using Lemma A.5 and the Korn inequality yields

(6.26)
d

dt
X + c′1X ≤ c′2(‖v‖2L∞(Ω) + ‖∇v‖

2
L3(Ω))X + c

′
2‖g‖2L2(Ω),

where

(6.27) X =
1
4
‖D(h)‖2L2(Ω) + γ‖hτα‖

2
L2(S1),

and c′1, c
′
2 do not depend on t.
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Using that∫ (k+1)T
kT

(‖v(t)‖2L∞(Ω) + ‖∇v(t)‖
2
L3(Ω)) dt ≤ ϕ(A(k, T )),

and repeating the considerations from the proof of Lemma 6.1 we conclude the
proof of Lemma 6.2. �

To prove global existence of solution to problem (1.1) we have to show in-
equalities (6.1) and (6.2) for any k ∈ N0. For this purpose we use Lemmas 6.1
and 6.2. Let us introduce the assumptions

Assumption 6.3. Assume that

(6.28) c′3e
−c′1(k+1)T+c

′
4ϕ(A(T ))

∫ (k+1)T
kT

‖f(t)‖2L2(Ω)e
c′1t dt

+ e−c
′
1T+c

′
4ϕ(A(T ))‖v(0)‖2H1(Ω) ≤ ‖v(0)‖

2
H1(Ω),

and

(6.29) c′3e
−c′1(k+1)T+c

′
4ϕ(A(T ))

∫ (k+1)T
kT

‖g(t)‖2L2(Ω)e
c′1t dt

+ e−c
′
1T+c

′
4ϕ(A(T ))‖h(0)‖2H1(Ω) ≤ ‖h(0)‖

2
H1(Ω).

Assumptions 6.4. Assume that

(6.30)
‖f(t)‖L2(Ω) ≤ ‖f(kT )‖L2(Ω)e

−δ(t−kT ),

‖g(t)‖L2(Ω) ≤ ‖g(kT )‖L2(Ω)e
−δ(t−kT ),

for δ > 0, t ∈ (kT, (k + 1)T ], k ∈ N0. Assume also

(6.31) c′3e
−2δT+c′4ϕ(A(T ))‖f(kT )‖2L2(Ω) + c

′
3e
−c′1T+c

′
4ϕ(A(T ))‖v(0)‖2H1(Ω)

≤ ‖v(0)‖2H1(Ω),

(6.32) c′3e
−2δT+c′4ϕ(A(T ))‖g(kT )‖2L2(Ω) + c

′
3e
−c′1T+c

′
4ϕ(A(T ))‖h(0)‖2H1(Ω)

≤ ‖h(0)‖2H1(Ω),

for any k ∈ N0.

Proof of Theorem B. Take k = 0. Then A(0, T ) = A(T ) and in view of
Assumptions 6.3 and 6.4 we obtain

(6.33)
‖v(T )‖H1(Ω) ≤ ‖v(0)‖H1(Ω),
‖h(t)‖H1(Ω) ≤ ‖h(0)‖H1(Ω).
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Take k = 1. Then in view of (6.33) we can repeat the proof of Theorem A in
the interval [T, 2T ] and we obtain that A(1, T ) = A(T ). Then Assumptions 6.3
and 6.4 imply

(6.34)
‖v(2T )‖H1(Ω) ≤ ‖v(T )‖H1(Ω) ≤ ‖v(0)‖H1(Ω),
‖h(2T )‖H1(Ω) ≤ ‖h(T )‖H1(Ω) ≤ ‖h(0)‖H1(Ω).

Hence, repeating the above considerations we prove Theorem B. �

A. Appendix

Let us consider the problem

(A.1)

ut −∆u = 0 in ΩT ,
u|S = ϕ on ST ,

u|t=0 = 0 in Ω,

where Ω ⊂ R3 is a bounded domain.
From [26] we have for solutions to problem (A.1) the estimate

(A.2) ‖u‖Lq(0,T ;Lp(Ω)) ≤ a1‖ϕ‖Lq(0,T ;Lp(S)), p, q ∈ [1,∞],

holds, where a1 is a constant.

Lemma A.1. The constant a1 does not depend on T .

Proof. From [26] we have

(A.3) ‖u‖Lq(0,T ;Lp(Ω)) ≤ c
∫ T
0

1
τ3/2

(∫ d
0
xpne
−px2n/(4τ) dxn

)1/p
dτ

· ‖ϕ‖Lq(0,T ;Lp(Ω)),

where d ≥ diamΩ and c does not depend on T .
We express the above integral in the form∫ 1
0
dτ
1
τ3/2

(∫ d
0
xpne
−px2n/(4τ) dxn

)1/p
+
∫ T
1
dτ1/τ3/2

(∫ d
0
xpne
−px2n/(4τ) dxn

)1/p
≡ I1 + I2,

where

I1 ≤
∫ 1
0
dτ
1
τ3/2

(∫ ∞
0
xpne
−px2n/(4τ) dxn

)1/p
≡ I ′1.

Changing variables yn = xn/
√
τ , dxn =

√
τdyn we get

I ′1 =
∫ 1
0
dττ1/2p+1/2−3/2

(∫ ∞
0
ypne
−py2n dyn

)1/p
≤ c(p)

∫ 1
0
dττ1/2p−1 ≤ c(p).
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Next

I2 ≤
∫ T
1
dτ
1
τ3/2

(∫ d
0
dp dxn

)1/p
= d1+1/p

∫ T
1

dτ

τ3/2
≤ 2d1+1/p

(
1− 1√

T

)
≤ 2d1+1/p,

which concludes the proof. �

Lemma A.2. The constant a2 in the imbedding

(A.4) ‖u‖L10(ΩT ) ≤ a2‖u‖V 12 (ΩT )

does not depend on T .

Proof. First we show that the constant a′ from the imbedding

(A.5) ‖u‖Lq(0,T ;Lp(Ω)) ≤ a
′‖u‖V 02 (ΩT )

does not depend on T .
We follow the considerations from [12, Chapter 2, Section 3]. To apply the

interpolation inequality (3.1) from [12, Chapter 2, Section 3] we have to extend
u outside of Ω in such a way that the extended function ũ vanishes outside
a compact set. Then the interpolation inequality holds without a lower order
term on the r.h.s. Hence, we extend u by the Hestenes–Whitney method in such
a way that ũ|Ω = u, supp ũ = Ω̃ and Ω̃ is a compact set. Moreover, ‖ũ‖H1(eΩ) ≤
c′1‖u‖H1(Ω), ‖ũ‖L2(eΩ) ≤ c

′
2‖u‖L2(Ω), where the constants c′1, c′2 depend on Ω. For

ũ we have the interpolation

‖ũ‖Lp(eΩ) ≤ c
′
3‖∇ũ‖αL2(eΩ)‖ũ‖

1−α
L2(eΩ), α =

3
3
− 3
p
≤ 1,

where c′3 depends on Ω̃.
Next, we have

‖ũ‖Lq(0,T ;Lp(Ω)) ≤ c
′
3

(∫ T
0
‖ũx‖αqL2(eΩ) dx

)1/q
sup
t
‖ũ‖1−α
L2(eΩ).

Setting αq = 2 and applying the Young inequality yields

‖ũ‖Lq(0,T ;Lp(eΩ)) ≤ c
′
4‖ũ‖V 02 (eΩT ),

where c′4 depends on Ω̃ only.
In view of the definition of the extension we obtain

(A.6) ‖u‖Lq(0,T ;Lp(Ω)) ≤ ‖ũ‖Lq(0,T ;Lp(eΩ)) ≤ c
′
4‖ũ‖V 02 (eΩT ) ≤ c

′
5‖u‖V 02 (ΩT )

with constant c′5 independent of T .
Let u ∈ V 12 (ΩT ). By (A.5) we have

(A.7) ‖u‖Lq(0,T ;W 1p (Ω)) ≤ c
′
5‖u‖V 12 (ΩT ).
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To show that u ∈ Lq(0, T ;Lσ(Ω)) we have to satisfy the relations
3
p
+
2
q
=
3
2
,
3
p
− 3
σ
≤ 1 so p = 3σ

3 + σ

Hence
3 + σ
σ
+
2
q
=
3
2

Choosing q = σ we obtain σ = 10, so the lemma is proved. �

From [1, Chapter 5, 5.14] we have

Lemma A.3. Imbeddings

(A.8) ‖∇αu‖Lp(ΩT ) ≤ a3‖u‖W 2,1σ (ΩT ),

σ < p, α = 0, 1, hold with constant a3 independent of T .

Let us consider the problem

(A.9)

vt − divT(v, p) = f in ΩT ,

div v = 0 in ΩT ,

v · n = 0 on ST ,

n · D(v) · τα + γv · τα = 0, α = 1, 2, on ST ,
v|t=0 = v0 in Ω.

Lemma A.4. Given f ∈ Lr(ΩT ), v0 ∈ W 2−2/rr (Ω) there exists a solution to
problem (A.9) such that v ∈W 2,1r (ΩT ), ∇p ∈ Lr(ΩT ) and

(A.10) ‖v‖W 2,1r (ΩT ) + ‖∇p‖Lr(ΩT ) ≤ a4(‖f‖Lr(ΩT ) + ‖v0‖W 2−2/rr (Ω)),

where a4 does not depend on T .

Proof. We use [21, Chapter 3, Theorem 3.1.1]. �

Let us consider the elliptic problem

(A.11)

− divT(v, p) = f in Ω,

div v = 0 in Ω,

v · n = 0 on S,

n · T(v, p) · τα + γv · τα = 0, α = 1, 2, on S.

Lemma A.5. Let f ∈ L2(Ω), S ∈ C2. Then there exists a solution to problem
(A.11) such that v ∈ H2(Ω) and ∇p ∈ L2(Ω) and the following estimate

(A.12) ‖v‖H2(Ω) + ‖∇p‖L2(Ω) ≤ c‖f‖L2(Ω)

holds. Moreover, we have

(A.13) ‖D(v)‖2L2(Ω) + γ
2∑
α=1

‖v · τα‖2L2(S) ≤ c‖f‖
2
L2(Ω).
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