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ABSTRACT. The homotopy Conley index along heteroclinic solutions of cer-
tain parabolic evolution equations is zero under appropriate assumptions.
This result implies that the so-called connecting homomorphism associated
with a heteroclinic solution is an isomorphism. Hence, using Z-coefficients
it can be viewed as either 1 or —1 — depending on the choice of genera-
tors for the homology Conley index. We develop a method to choose such
generators, and compute the connecting homomorphism relative to these
generators.

1. Introduction

The homotopy Conley index along heteroclinic solutions of certain parabolic
evolution equations is zero under appropriate assumptions (see [6]). These as-
sumptions generalize the setting in which the Morse—-Smale—Witten chain com-
plex on finite-dimensional manifolds is constructed.

This result implies that the so-called connecting homomorphism associated
with a heteroclinic solution is an isomorphism. Hence, using Z-coefficients it
can be viewed as either 1 or —1. To be more precise, suppose we are given
a semiflow 7 and a heteroclinic solution u(t) with u(t) — e* as t — +oo. We
are only interested in the case where e™ and e~ are hyperbolic equilibria with
adjacent Morse indices, that is, m(e*) + 1 = m(e™). It is well-known that
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for a hyperbolic equilibrium e with Morse-index m(e), the homology Conley
index (1) with coefficients in Z satisfies

Z if ¢ =m(e),

Holm {e}) ~ { 0 if ¢ # m(e).

Of course, considering only one solution, we can choose generators such that
the connecting homomorphism d,: Hy(m,{e™}) — Hy_1(m, {e*}) is 1 (or —1).
However, given two heteroclinic solutions w;(¢) and us(¢) connecting the same
pair of equilibria, it is not clear whether their connecting homomorphisms agree.

Suppose that there exist a stable manifold W#*(e™) and an unstable man-
ifold W*(e~) which intersect transversally. Then the signs of connecting ho-
momorphisms can be expressed depending on previously chosen orientations for
TW¥(et) and TW¥(e™) (see [3], [10]). However, it seems that the aforemen-
tioned proofs cover only gradient flows. Note that we also do not require a global
orientation.

Our approach is to compute the connecting homomorphism for a given hete-
roclinic solution independently of the other solutions. The connecting homomor-
phism is determined by special triples of closed subspaces, the so-called FM-index
triples. Suppose we are given FM-index triples (N1, Na, N3) and (M7, Ms, M3)
for two distinct heteroclinic solutions connecting the same pair of equilibria.
(N1, N3) and (M;, M3) (resp. (Na, N3) and (Ma, M3) are then both FM-index
pairs for the repeller {¢~} (resp. the attractor {e*}).

Recall that the categorial Conley index is a subcategory of the homotopy
category of pointed spaces, whose objects are certain FM-index pairs representing
the index. We call the unique, designated morphism between to FM-index pairs
inner morphism. A more detailed exposition can be found in Section 2 or in [2],
which is used as a reference.

(N1/Na2, No/Ny) and (M, /My, My/Ms) are objects of the categorial Conley

index (2), so there is a unique inner morphism

(oS (Nl/NQ,NQ/NQ) - (Ml/M2>M2/M2)
(resp. BZ (NQ/N37N3/N3> — (MQ/M37M3/M3))

in the homotopy category of pointed spaces.

Let dn,q (vesp. dar,q) denote the g-th connecting homomorphism which is de-
fined by (N1, Na, N3) (resp. (M, M2, Ms)). Now, the two FM-index triples (resp.
the two heteroclinic solutions) determine the same connecting hommomorphism

(1) We will follow [2], but one can also assume that Hy(m,e) = Hy(N1 /N2, N2/N2), where
(N1, N2) is a strongly admissible FM-index pair for {e} relative to .
(2) provided cl(Ny \ N2) and cl(M; \ M2) are strongly admissible.
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if and only if

5 q
Hy(N1/Na, Na/Na) —— H, 1 (N3 /N3, N3/N3)

HQ(Q)J lqu(B)

I’Iq(]\41/‘1\427 MQ/MQ) T ‘[?[,],1(]\42/]\437 M3/M3)

is commutative for all ¢ € Z. Passing the above diagram to the singular homology
of the the categorial Conley index, this means that

<6N,q>

Hnled)  Hpatne)

<6M,q>

is commutative.

We aim to express connecting homomorphisms in terms of integers, that is,
relative to a choice of generators. Roughly speaking, typical steps when one
computes the homology index of an isolated invariant set are the application
of homeomorphisms or continuous changes of the semiflow considered. Unfortu-
nately, it seems that almost every such change — even the smallest one — modifies
every index pair representing the categorial Conley index. Therefore, one needs
to choose generators in a way that is persistent under (at least) small changes
of the semiflow.

In this paper, for n € NU{0} we denote by D™ the closed Euclidean unit ball
and by S™ the Euclidean unit sphere. Notice that RY = {0} Cc R, D° := {0},
and S~!:=0.

Now, let e be a hyperbolic equilibrium, let n denote the Morse index of e,
and let f be a continuous mapping which maps a neighbourhood of 0 in R™ into
a neighbourhood of e. It is clear that, given an arbitrary strongly admissible FM-
index pair (N1, N3) for (m, {e}), one has f(Ax) € Ny for all z € D™ C R™ and all
A € 10, oo[ sufficiently small. If it holds additionally that for every x € D™\ {0},
there exists an s € RT with f(A\z)ms € Na, then f is called a seed. Every
seed f induces for every strongly admissible FM-index pair (N, Na) for (7, e)
a morphism (D"/S"~1 [S"71]) — (N;/Na,[Nz]) in the homotopy category of
pointed spaces. We will show that these induced morphisms commute with the
inner morphisms of the categorial Conley index, that is, they do not depend on
the FM-index pair chosen.

Subsequently, we will derive conditions under which a seed induces an iso-
morphism (f) (the Conley index orientation) and conditions under which two
seeds induce the same isomorphism. Some of these conditions are rather tech-
nical and can be found in Section 3. However, for a large class of parabolic
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evolution equations (%), it turns out that, in some sense, the choice of a basis
for the tangential space of the local unstable manifold of e is a seed. Moreover,
two such bases induce the same isomorphism if and only if they have the same
orientation in the traditional sense (Proposition 4.7). Therefore, we call these
isomorphisms orientations.

We define a connected simple system S™, the only object of which is
(D™/S™=1 [S™~1]), and the only morphism is the identity on D™ /S™~!. Now, we
can understand (f): S™ — C(w, {e}) as a morphism of connected simple systems.

There is a natural choice (Definiton 6.14) of ismorphisms p,:Z — Hy(S9),
q € Z, which is unique up to the choice of ug. Choosing orientations for the
attractor and the repeller and using p,, the connecting homomorphism will be
expressed as the multiplication by a number 6 € Z. Of course, 6 could be
defined using an arbitrary family of isomorphisms s, but then our formulas
for the connecting homomorphism would depend on the Morse indices of the
equilibria.

So far, we have sketched the first part of this paper. In Section 6 and 7, we
will apply these seed induced orientations to the problem of computing the sign
of connecting homomorphisms. We will start with classes of linear skew product
semiflows and relate the number # introduced above to the linear skew product
semiflow. These are exactly the linear skew product semiflows considered in [6].
They are typically (4) defined by equations of the following kind:

& =1-22

y+ Ay = F(x)y.

The first equation is an ordinary differential equation on the real interval |—2, 2,
A is a sectorial operator satisfying certain assumptions on its spectrum, and F'
maps the interval [—2, 2] continuously (or sufficiently continuously) into £(X%X),
where X is a Banach space and X the a-th fractional power space defined with
respect to A in the sense of [5]. (u(t),v(t)) is a solution of the equation above
(resp. its associated semiflow) if u(t) is a solution of & = 1 — 22 and v(t) is a mild
solution of § + Ay = F(u(t))y.

We will make some additional assumptions so that there are finitely many
eigenvectors of A — F(£1) which belong to the eigenvalues with positive real
part. One is then able to show that a family F for which these eigenvectors
(precisely the subspace of X they span) are independent of X\ induces a family
of linear skew product semiflows for which 6, as introduced above, is constant.
Hence, one can compute 6 for the simplest case and extend the result to less
restrictive assumptions on F.

(3) This is the prototypical example; the result is formulated in a more general form.
(%) There is one technical generalization.
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In [6], we related every heteroclinic solution to a linear skew product semiflow.
In this paper, we proceed backwards and generalize the technical result for linear
skew product semiflows to a formula for the connecting homomorphism for the
heteroclinic solution.

We will now demonstrate how the abstract results above can be applied to
reaction diffusion equations. Let Q@ C RY be a bounded domain and let 99
be of class C2. Let 2 < p < oo and f:Q x R — R. Suppose that for almost
all x € Q, there is a partial derivative f,(x,u) which is continuous in « and

that ess sup sup |fu(z,u)| < oo for all r € RT. Assume further that f and
€ |ul<lr

(x,u) — fu(z,u) are Carathéodory functions.

We consider the problem:

ug(x,t) = Au(z,t) + f(z,u(z,t)), t>0, z€Q,
u(z,t) =0, t>0, z €.

Let A, denote the closure of —A:{u € C?*(Q):ujpo = 0} — LP(Q) =: X in
W22(0) and define the Nemitskif (superposition) operator f € C*(C(Q), LP()) by

(Flu)(@) == f(z,u(z)) z€Q

so that (Df(§)n)(x) = fu(z,&(z))n(x) almost everywhere.
For k sufficiently large, A,+kI is a positive sectorial operator having compact
resolvent. Letting & € X, it follows that all eigenvalues of A — Df(g) are real.
Let p > max{2, N}, A := A,, and v:R — X* be a heteroclinic mild solu-

tion of
(1.1) i+ Az = f(x)

and suppose that v(t) — e as t — +oo in X (resp. C(Q)). It follows that
v € CHR, LP(Q)). Choosing 0 < o < 1 large enough, we can further assume

that there is a continuous inclusion X C C(2) (see [5, Theorem 1.6.1]).

THEOREM 1.1 ([6]). Letu be a heteroclinic mild solution of (1.1) with u(t) —
et ast— 00 in X (resp. C(Q) or LP(Q)) and suppose that
(a) et, e” are hyperbolic equilibria,
(b) the Morse indices satisfy m(e™) = m(e™) + 1,
(c) all eigenvalues of A — D f(e*) are simple,
(d) eM(u(t) —e*) 4 0 for some A € R, and
(e) every full bounded in X (resp. C(R2) or LP(Q)) mild solution of

~

Y+ Ay = Df(u(t))y

s a multiple of .
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Then the homotopy Conley index h(m, ) of w:= cl{u(t) : t € R} is well-defined
and trivial, that is, h(m,u) = 0, where w denotes the semiflow which is induced
by mild solutions of (1.1).

Suppose that for every r € R there exist constants § > 0 and C € R* such
that

s
esssup  sup | fu(z,ur) — fulz,uz)| < Clug — usg|”.
z€Q  |ugl,|us|<r

Then for every 1 < ¢ < oo, DJ: C(Q) — L(LY(Q),LY(RQ)) is locally Holder
continuous, assumption (d) in Theorem 1.1 holds.

Suppose that u is a solution of 7 for which the assumptions of Theorem 1.1
hold. For each of the equilibria e~ and e™, there are A — D f(e™)-invariant
(resp. A— D f(et)) subspaces E~(e™) (resp. E~(e™)) associated with {Reo (A4 —
Df(e™)) <0} (resp. {Rec(A — Df(et)) < 0}).

By EF = E; ® E5, we mean that E; and E5 are closed linear subspaces of
a normed space E with E1NFEs = {0} and E = E;+F5. The canonical projection
P:E, ® E; — Fj is given by P(e; @ e3) := €.

Provided that the assumptions of Theorem 1.1 hold, we obtain that

dimE (e7)=dimE (et)+1=:n+1 for some n € N.

Let {z1,...,2,11} be abasis for E~(e™) consisting of eigenvectors of A—D f(e™)
and let {y1,...yn} denote an (arbitrary) basis for E~(e™). These bases define

toplinear isomorphisms ®_;:R"™t — E~(e7), ®_;:R"® — span{zy,...,2; 1,
Tit1y.--sTni1}, and 1:R™ — E~(e™), where we set
n+1

(D—l(/jlv s 7/7n+1) = Z ﬁkxk7
k=1

o~

(b(ﬁla s 7/71'7,) = q)fl(/jla s 7/7i717/7i+1’ s 7/7n+1)7
n
O1(fir, oy fin) = Y Y-
k=1

Now, o_1(i1) :== e~ + ®_1(1) (resp. o01(;) := e™ + ®1(j1)) defines a seed for
(m,e”) (resp. (m,et)). Both seeds induce orientations, that is, they induce
isomorphisms of connected simple systems, (o_1):S"™t — C(m, {e~}) (resp.
(01): 8™ — C(m,{eT})).

Under the assumptions of Theorem 1.1, it holds that ||u(t) — e~ ||;1 (u(t)—e™)
converges to an eigenvector £x; of A — Df(e”) as t — —o0.

We can further assume that there is an eigenvector n of A — Df(et) with
[lu(t) — e+||;1(u(t) —et) = nast— oco. n belongs to an eigenvalue A > 0. If F
is an A— D f(e") invariant subspace of X such that X = E~(e')@span{n} @& F,
then, for large ¢t € R, there is a decomposition of X, which defines a family
P(t): E~(eT)@span{u(t)}®F — E~(e) of canonical projections. Furthermore,
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let IT; denote the semigroup associated with the semiflow 7, that is, IT;(x) = zwt,
t € R*. It follows from our assumptions that, for every ¢t € R, II; is continuously
differentiable.

We now consider a linear operator R™ — R™:
C(t,A,u) == ®7 o P(t + A) o DI (u(t)) o ®.

It describes the geometrical connection from E~(e™) to E~(e*) given by linea-
rization of 7 along w. Let d(u) := lim sgndet C(t, A, u).
(t,t+A)—(—00,00)
THEOREM 1.2. Suppose that e~ and e are hyperbolic equilibria. Then for
every heteroclinic solution u(t) which satisfies:

(a) u(t) — et ast — +oo,
(b) |u(t) — e_||;1(u(t) —e ) > v ast — —oo, v € {—1,1}, and
(c) the assumptions of Theorem 1.1,

it holds that 6(u) is well defined and
9q0 Hylo—1)opg=v" (_I)H_i +6(u) - Hg—1(01) 0 pg—1.

Here, 0y Hy(m,{e"}) = Hy_1(m,{e"}) denotes the q-th connecting homomor-
phism associated with u, which is the connecting homomorphism associated with

(u®)U{e™, e}, {et} {e7}).

The theorem is an immediate consequence of Theorem 7.4.

2. Preliminaries

2.1. Notation. Although most of the notation is more or less standard,
a couple of symbols should at least be mentioned. Rt (resp. R™) denotes the
set of all non-negative (resp. non-negative) real numbers. W* and W* denote
unstable respectively stable manifolds, the precise meaning is given when they
are used. o is used to designate the spectrum of an operator. The open (resp.
closed) ball with radius r and center x is denoted by B, (z) (resp. B,[z]). If X
is a set, then #X denotes the cardinality of X.

Given normed spaces X and Y, and a continuous linear operator F &€
L(X,Y), |[F| xy is used sometimes to make the norm unambiguous. ISO(X,Y)
denotes the set of all F' € £(X,Y') which are toplinear isomorphisms. The notion
of fractional power spaces follows [5]. If F € £(X®, X?), then |F|, 5 denotes
the operator norm.

Finally, if X, Y are topological spaces, f: X — Y is a homeomorphism, and
7 is a (local) semiflow on X, then f[n] is the semiflow on ¥ which is obtained
by conjugacy, that is, u is a solution of 7 if and only if f ow is a solution of f[r].
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2.2. Conley index. The purpose of this section is to give a short overview
over the most important concepts of Conley index theory for semiflows on metric
spaces. A more detailed exposition can be found in [2] and [9].

Let B be a topological space and A C B. Let (A, B) := (A, B) if B # () and
(A, B) := (AU {x},{*}) (°) (endowed with the sum topology) otherwise. Now
let A/B denote the set of equivalence classes in A where a,a € A are related if
they are equal or {a,a} C B. A/B is equipped with the quotient topology.

Let 7 be a local semiflow defined on a metric space X. A subset S C X
is called inwvariant if for every x € S there exists a full solution u:R — S of 7
through = that is, u(0) = z.

Let Y C X, (x,)n a sequence in Y, and (t,), a sequence in Rt such that
t, — oo and z,7[0,t,] C Y. Y is called w-admissible if the sequence of endpoints
xp 7ty is relatively compact for every such pair of sequences. We say that m does
not explode in Y if for every x € Y either znt is defined for all ¢t € R™ or there
is a tg € R* such that z7[0, o] is defined and xwtg ¢ Y. Y is called strongly
m-admissible if it is m-admissible and 7 does not explode in Y.

Now let Z,Y C X. Z is called Y -positively invariant if it holds that x7[0,¢] C
Z whenever z € Z, xr[0,t] is defined and x7[0,t] C Y.

Z is called an exit ramp for Y if for every x € Y with z|0,¢] defined and
¢ Y, there is a to € [0, t] such that x7[0,t9] C Y and a7ty € Z.

DEFINITION 2.1 (Definition 2.4 in [2]). A pair (N1, N2) is called an FM-indez
pair for (m,S) if:
(a) Nj and Nj are closed subsets of X with No C Ny and Ny is Nj-positively
invariant;
(b) Ny is an exit ramp for Ny;
(¢) S is closed, S C intx(N; \ Nz) and S is the largest invariant set
in clx (N \ Na).

Assume that there exists a strongly m-admissible isolating neighbourhood N
for S, that is, N C X is a closed and strongly m-admissible neighbourhood of §
such that S is the largest invariant set in V. Then the homotopy Conley index
h(m,S) is defined to be the homotopy type of (N1/Na, {[N2]}) where (N1, N3) is
an FM-index pair for (m, S) such that clx(N; \ N2) is strongly m-admissible.

Let u(t) satisfy the assumptions of Theorem 1.1 and let 7 denote the semiflow
on X induced by mild solutions of (1.1). Then S := @ := clx{u(t) : t € R} isan
isolated invariant set admitting a strongly m-admissible isolating neighbourhood.
In particular, the homotopy Conley index h(w,u) is well-defined under these

assumptions.

(5) We assume that * ¢ A.
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Furthermore, (m,u,e™,e™) is an attractor-repeller decomposition of @. Sup-
pose we are given an arbitrary attractor-repeller decomposition (m, S, A, A*).
A triple (N7, Na, N3) is an FM-indez triple for (w,u, A, A*) if (N1, N3) is an FM-
index pair for (7, ) and if (Na, N3) is an FM-index pair for e*. As a consequence,
the sequence

(2.1) A(Na/N3)/A{[Ns]}——A(N1 /N3)/A{[Ns]} —2—A(N1 /Na) / A{[No]}

is weakly exact. Here, A denotes the singular chain functor, which passes a topo-
logical space to its singular chain complex. Generally, a sequence of chain maps

Clii)CgLCg

is called weakly exact if poi = 0, keri = 0, and [z] — p(z) induces an iso-
morphism H,(Cs/imi) — Hy(Cs). There is a covariant functor which passes
weakly exact sequences of chain maps to long exact sequences in singular homo-
logy. Applying this functor to (2.1), one obtains a long exact sequence

Og11

—Hyy1 (N1 /N, {[Na]}) = Hy (Na /N3, {[Ns]}) — Hy (N1 /N3, {[Ns]}) —

Since these sequences are rather lengthy, we will abbreviate them sometimes by

Og11
4)Hq+1[Nl/Ng]‘)Hq[NQ/Ng]g)Hq[Nl/Ng]4}

The boundary operator (9y)4ez is called the connecting homomorphism asso-
ciated with the weakly exact sequence or, if appropriate, the attractor-repeller
decomposition. In the context of a heteroclinic solution u, the connecting homo-
morphism associated with u will denote the connecting homomorphism of .

We will frequently use the notion of S-continuity. It has been defined in [9,
Definition I.12.1]. Let A be a metric space and (7, Ky )xea be a family for which
the following holds:

(1) For every A € A, my is a local semiflow on X and K C X.

(2) For every A € A, there is a strongly 7y-admissible isolating neighbour-
hood N, for K relative to my.

(3) Whenever \,, = Xin A, then 7y, — m\, N, is a strongly 7, -admissible
isolating neighbourhood for K, relative to my, for all n sufficiently
large, and N, is (7, )n-admissible.

These conditions are equivalent to the original definition.

2.3. Categories of connected simple systems. For the convenience
of the reader, we will recall a few concepts from [2]. A connected simple system is
a small category such that, given any two objects, there is exactly one morphism
between them.
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Now, let K be an arbitrary category, and define another category [K]. The
objects of [K] are all subcategories of K which are connected simple systems. Let
L be an object of [K]. In this context, a morphism of L will be called an inner
morphism. A morphism between Ky and Ko in [K] is a family

(fa,B) AcObj(K,), BeObj(K2)

of morphisms in K such that

fa,B

A——B

L]

A'——B
fA/,B/

/

is commutative where the vertical arrows denote the (unique) inner morphisms
in Ky respectively Ko (here, we do not follow [2] exactly).

Let K1 and K2 be objects of [K], A (resp. B) be an object of K1 (resp. Ks3)
and f be a morphism between A and B. Then there is exactly one morphism F'
of K with f = F(A, B); this morphism is denoted by [f].

Let 7T OP denote the category of pointed topological spaces and H7T the cor-
responding homotopy category, that is, morphisms of HT are equivalence classes
of morphisms in 7OP, which are continuous, base-point preserving mappings.

As shown in [2], there is a singular homology functor on [H7]. The ¢-th
singular homology is denoted by fIq or H, for short.

2.4. Conley indices as a category. Recall that in [2] the categorial Con-
ley-Morse index is defined as a connected simple system, the objects of which
are certain F'M-index pairs of an invariant set admitting a strongly admissible
isolating neighbourhood.

Let (X,d) be a metric space, m a (local) semiflow on X, and S an iso-
lating invariant set admitting a strongly m-admissible isolating neighbourhood.
Then there is an FM-index pair (N7, N3) for (7, .S) with the additional property
that cl(N7 \ N2) is strongly m-admissible. In this case, we say that (Ny, Na)
is a strongly m-admissible isolating neighbourhood for (7, K). Note that, in
general, we neither need nor make the stronger assumption that Ny is strongly
m-admissible.

Now, the Conley index C(m, S) of (7, S) is an object of [HT] (see [2]). The ob-
jects of C(m, S) are all pointed spaces of the form (N1 /Na, {[N2]}) where (N1, No)
is a strongly admissible FM-index pair for (7, S). If (N1, Na) C (My, M) are
strongly admissible FM-index pairs for (7, S), then the inclusion induced (see [9])
morphism (Ny/Na, {[N2]}) — (M1/Maz,{[M2]}) is a morphism of C(r, S).

We will use Hy(w, S) := f[q (C(m,S)) to denote the homology Conley index of
(m,S) as defined in [2, Definition 4.3]. The notation of 7 is sometimes omitted.
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Let ()Z' , o?) be another metric space, 7 a local semiflow on X, and S be an isolating
invariant set admitting a strongly m-admissible isolating neighbourhood. Then,
given a morphism

[f]:C(m,S) = C(7,S),

there is a unique induced morphism
Hy(f) = Hy([f]): Hy(m, S) = Hy (%, 5).

2.5. Linearizable semiflows. Let X be a Banach space and let 7’ be
a global semiflow on X generating a Cp-semigroup of linear operators, that is,
for every t € RT the map T'(t): X — X, T(t) := xn't, is linear. We will call such
a semiflow linear.

Suppose there is a direct sum X = X; @ X5 of invariant subspaces, X is
finite-dimensional, T'(t) can be uniquely extended to t € R~ to form a Cp-group
on X1, and there are constants M,§ € R \ {0} such that

|IT(t)z|| < Me®||z||, z€Xi,teR™,

2.2
(2:2) IT#)z|| < Me™%z|, =€ Xq,teRT.

These are the assumptions of [9, Theorem I.11.1]. Letting V*(z) and V~(z)
be defined as in the proof of this theorem, there exists a p € R* such that
Ny :={z € X:V*t(z) <pand V™ (z) < p} and Ny := {z € N;: VT (x) = p}
defines a strongly 7'-admissible FM-index pair (N7, Na).

Suppose that Y C X is an open neighbourhood of 0, 7 a semiflow on U,
and {0} an isolated invariant set relative to m admitting a strongly m-admissible
isolating neighbourhood.

DEFINITION 2.2. Let P := P;: X — X; denote the projection with ker P =
Xo. 7 is called strongly linearizable (at 0) if there exists an S-continuous family
(mx,{0})xe[o,1] such that:

(a) m =7 and

(b) mo is a linear semiflow for which the assumptions above hold,;

(c) for every A € [0,1], there exists a neighbourhood U = Uy of 0 such
that ||z,| "' Pz, — 0 whenever ,, € Invy (U)\ {0} is a sequence with
z, — 0 as n — oo.

7’ := mq is called a linearization of 7.

Roughly speaking, the above notion of being strongly linearizable holds for
hyperbolic equlibria of the parabolic evolution equations considered in this paper.

PROPOSITION 2.3. Suppose that the semiflow m on U C X is given by mild
solutions of a semilinear parabolic equation & + Ax = f(x) such that:

(a) A is sectorial and has compact resolvent;
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(b) f:U — X is locally Lipschitz continuous; f(0) = 0, f has a Fréchet
derivative D f(0) at 0;
(¢c) L:=A—Df(0) is hyperbolic.

Then 7 is strongly linearizable.

PrOOF. For A € [0,1], let fi(z) := (1 — A)(f(x) — Df(0)z) and 7y be the
semiflow defined by mild solutions of & + Lz = fy(z). Note that m; = 7w and
Jo=0.

Then, (7x,{0})re0,1) is an S-continuous family [9, Theorem I1.3.5]. As be-
fore, let X = X3 @ X5, where X; belongs to {o(l) < 0} and X to {Ro (L) > 0}.
This decomposition of X is the same for all A € [0,1] since Dfx(0) = 0 for all
A € [0,1]. Let P(0): X — X; and PT(0): X — X, denote the associated
projections.

Let A € [0,1] be arbitrary but fixed. For p > 0, set

Upr = Up = {z € X*:|P7(0)(@)ll, + [PT(0) ()], < p}-

It follows from [5, Theorem 5.2.1] that Inv*(U,) C S provided that p is small
enough. Here, S denotes the local stable manifold as defined in [5, Theorem
5.2.1]. Tt is tangent to Xo, which means that ||:En||;1P(:rn) = |\an;1(xn -
Pt(0)(z,,)) — 0 whenever z,, is a sequence in S\ {0} with x,, — 0 in X*.

This proves that 7y is a sequence which satisfies Definition 2.2, so 7 is indeed
strongly linearizable. |

DEFINITION 2.4. Let f(x) := x—a be defined in a neighbourhood of a in X *.
Then 7 is called strongly linearizable in a if f[n] is strongly linearizable.

3. Orientations and seeds

Throughout this section, let X be a metric space, e € X, and 7 a local
semiflow defined in a neigborhood of e in X such that {e} is an isolated invariant
set admitting a strongly m-admissible isolating neighbourhood.

For n € NU {0}, 8™ is an object of [HT] (a connected simple system),
which has itself only one object, namely (D"/S"~1, {[S"!]}), and exactly one
morphism: the identity id: (D"/S™~1 {[S"71]}) — (D"/S"~ 1, {[S"1]}).

DEFINITION 3.1. An (n-)orientation is an ismorphism o: S"—C(w, S) in [HT].

We will now develop a method which is based on continuous mappings R —
X to obtain orientations or, depending on the point of view, to describe them.
These mappings are called seeds, and they may or may not induce orientations.
Before defining them, we will introduce a few additional notational shortcuts:
A/B denotes the pair (A/B,[B]), that is, the explicit notation of the basepoint
is omitted in order to keep certain diagrams readable. For every FM-index pair
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(N1, No) for (m,{e}), define Ny ° := Ny *(Ny) := {& € Ny : 3t € [0,s], ant €
No} and Ny ™ := Ny(Ny) := {& € Ny : 3t € RT, znt € Ny}, that is,

Ny = |J Nj ¥ (see also [2, Proposition 4.6]).
seR+

DEFINITION 3.2. Let n € NU {0}, U C R”, f:U — X continuous with
f(0) = e, and for every strongly m-admissible FM-index pair (N7, Na) let there
exist a A € RY such that f*(z) := f(\z) is defined for all z € D" and f*(x) €
Ny for all x € D™\ {0}. Then f is called a seed for (m,e).

It is not a priori clear whether seeds exist.

LEMMA 3.3. Let (Ny,Ns) be a strongly w-admissible FM-index pair for
(m,{e}), A\ € R*, and f be a seed such that f*(x) is defined for all z € D"
and fA(D") C Ny. Let Q := {g: D" — Nj:g is continuous and g(0) = e} be
equipped with the mazimum metric. Then there is an s € R™ and a neighbour-
hood Uyx of fl/\D" in Q such that g(D™,S"~1) C (N1, N5 ®) for all g € Ugxr.

PRrROOF. Let 7(z,9) := sup{t € RT : g(z)nt € cl(Ny \ Na)}. We have
7(z, f*) < oo for all x € S~ ! because f is a seed.

Let z € S~ and € € ]0,1] with f*(z)m(7(x) +¢) € X \ cl(N; \ No). Since
X \cl(N1\ N2) is an open set, there exist neighbourhoods V, of x in D™ and U, ¢x
of f‘)bn € Q such that g(z)m(7(x) +¢) & cl(N1 \ Na) for all (z,9) € Vo x Uy g,
showing that 7(£,9) < 7(x) + & < 7(x) + 1 for all (§,g9) € Vo x U, 4».

Due to the compactness of S"~!, there are z1,...,z, € S" ! such that
Sl c U V. Letting Upr == Uy, g, it follows that 7(z,g) <
k=1,....,n k=1,....,n

| max 7(zk, fA) + 1 =: s for all (z,9) € S"~ ! x ﬁfx. Hence, for every (z,g) €

Sn=t x ﬁfx we have g(x) € Ny and g(z)mr ¢ Ny for some r € [0, s], showing
that g(x) € Ny °. O

LEMMA 3.4. Let f:U — X, U C R", be continuous with f(0) = e, and sup-
pose that there exist a strongly m-admissible FM-index pair (N1, N2) for (m,{e})
and a A € RY such that f>(z) is defined for allz € D™ and fA(D™\{0}) C Ny .
Then f is a seed.

PROOF. Let (M7, Ms) be a strongly m-admissible FM-index pair for (7, {e})
and let x € D™\ {0}. By our assumptions, there exists a strongly m-admissible
FM-index pair (Ny, N2) for (7, {e}) and a A € RT with fA(D"\ {0}) C N, .
The set N := cl(Ny \ N2) is an isolating neighbourhood for (m, {e}), and (N1, No)
:= (N1 N N,N3 N N) is again a strongly admissible FM-index pair.

By the continuity of f and because e € int N, there is a \e 10, A] such that
fX(D”) C Ny. We have Ny \ Ny = Ny \ Na, showing that fX(D" \ {0}) € Ny,

It follows from [2, Lemma 4.8] that there are an s € R™ and a strongly
m-admissible FM-index pair (L1, Lo) for (m,{0}) such that L, is an isolating
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neighbourhood for (7, {e}) and
(Ml,MQ) C (Ml,M;S) D) (Ll,LQ) C (ﬁl,]’\?{s) D) (Nl,ﬁg).

We can choose A € |0, A] such that fX(D") C L.

For every z € D™\ {0}, it follows that fx(:g)wt ¢ Ny D Ly for some t € RT
because N; is an isolating neighbourhood and fx(x) € Ny for all z € D™\ {0}.
Hence, there exists an r € [0,¢] with fX(:c)m’ € Ly, showing that fX(:c) €
My . ]

DEFINITION 3.5. Let (N7, N2) be a strongly m-admissible FM-index pair for
(m,{e}), f a seed, and A € RT such that f*(x) is defined for all x € D" and
SADMN\A{0}) € Ny, f = fn, n,:D"/S"™' — Ni/N; denotes the unique
morphism in H7T for which

Ny /Ny * +—=— Ny /N;
fAT /
!
Dn/sn—l
commutes whenever f2(S"71) C Ny °, s € R,

The subscript of f, although important, is often omitted when the FM-index
pair is clear from the context.

DEFINITION 3.6. Let f be a seed for (m,e), and let (f, 7, e):S™ — C(w, {e})
denote the morphism in [H7] for which

(fme) (D" /8" ALS" ), (N1 /Na {[N2]})) = Fv,

whenever (Np, No) is a strongly admissible FM-index pair for (m,{e}). Since
e = f(0) by the assumption of f being a seed, we will also write (f,x).

LEMMA 3.7. Let (N1,Na) be a strongly admissible FM-index pair for
(m,{e}). Then f: D"/S"~' — Ny /Ny is well-defined.

PROOF. There are two parameters involved in Definition 3.5, s and A. First-
ly, we will consider s. Given 7,5 € R with fA(S"1) € N, C Ny °, there is
a commutative diagram

Ny /Ny ® +—=— Ny/N; " +=— Ny /Ny

NP e

Dn/snfl

showing that r and s induce the same morphism f.
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Secondly, it follows from Lemma 3.3 that, for every p € |0, \] there are an
s € RT and a neighbourhood U of f|HD" in Q such that

Ny /Ny® +=— N, /N,
(] < ) /
i
Dn/snfl
is defined for all g € U and commutative whenever g is homotopic to [f*]. Since

fE(D™) c f#(D™) C N for all i < p, one has f* € U for all i < u large
enough. Hence, p — FNI,N2 is locally constant on ]0, A], which is connected. O

Using [9, Proposition 1.8.2], it is easy to give a direct formula for f. Let f be
a seed for (m,e), (N1, N3) be a strongly admissible FM-index pair for (m,{e}),
and A € RT be sufficiently small that f*(D") is defined and f*(D") C Nj.
Then, f = [g]x7 where g: D"/S"~1 — N /N>,
(lel) { [fAx)ms] A (x)w[0, 5] is defined and fA(x)7[0,s] C Ny \ N,
x]) =

[N2] otherwise.

LEMMA 3.8. Let Q :={g: D™ — X : g is a seed for (m,e)} be equipped with
the maximum metric. Then g — g, is constant on path components of €.

PROOF. Let A — gy, [0,1] — Q be continuous. It is sufficient to show that
g — g is locally constant.

Let (N7, N3) be a strongly admissible FM-index pair for (w,{e}) and Ao €
[0,1]. There exists a p > 0 such that

gé\to(Dn) - int(N1 \ NQ)
Hence, there is a neighbourhood U of g, in €2 such that
h'u(Dn) C int(N1 \ Ng)

for all h € U. By Lemma 3.3, there is another neighbourhood UcCU of gx, 1IN
Q and an s € R™ such that

B (S™1) C Ny®

forallh € U. The continuity of A — g now implies that there is a neighbourhood
of V of Ao in [0, 1] such that gy € U for all A € V, so for A € V
g
/”\)
D /Sn1 Ny/N5*
\____'/
X

is defined and commutative. This implies that gy is constant on V. (|
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LEMMA 3.9. Let (N1, Nz) and (My, M3) be strongly admissible FM-index
pairs for (m,{e}) and [ a seed. Then

M1 /MQ L} Nl /NQ
fI /
f
Dn/sn—l
commutes, where a denotes the inner morphism of the categorial Conley indez.

PROOF. In view of [2, Lemma 4.8], it is sufficient to prove our claim in the
special case (M7, My) C (N1, Na). It follows immediately from the definitions of
M5 ® and Ny ° that My ° C Ny ° for all s € RT.

By Lemma 3.3, we may choose s € R and A € [0,1] such that

Ml/MQ ;) Nl/N2

cl Jc

(3.1) My /My * —=— Ni/N;*

1)

Dn/snfl T> Dn/snfl
1
is defined and commutative. Consequently, composing the vertical arrows,

Ml/MQ —>C NI/N2

J Tf

Dn/snfl - N Dn/snfl
commutes by Definition 3.5. |

PROPOSITION 3.10. Let (71)renufoc} be a family of semiflows such that
Tk = Too 1= 7 and let (N1 00, No.oo), (N17w,ﬁ2)m) be strongly To.-admissible
FM-index pairs for (m,{€}) such that N1 is a strongly admissible isolating
neighbourhood for (me,{e}). Further, let (N1 k, Nak)ken, (]\N/'LMJ\N/'Q’;G);CGN be
families of strongly m-admissible FM-index pairs for (my, {e}) such that

(N1k, Nai) € (N1.00s Naoo) © (N1, Nag) € (N1 oo, Naoo)

for all k € N. Finally, let f: D™ — X be a common seed, that is, for every
k € NU{oo} it holds that f is a seed for (mp,e). Then there is an ng € N such
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that
Ny/Naoy, Ni1/Nay

A

Dn/snfl

is commutative for all k,1 € NU{oco} with k,1 > ny.

LEMMA 3.11. In addition to the hypothesis of Proposition 3.10 let X € ]0, 1]
such that f>(D™) C Ny and r € RY. Then:

(a) M := My, :={(x,s) € S" 1 x[0,7] : f*(z)7[0,5] C Ni.oo} is compact.
(b) g:=gx:[0,7] X D™ = N1 00/N2, oo,

f@)ms  fA@)T0]0, 8] is defined and fA(x)7]0, 5] C Ny oo,
g(s,z) =< "~ .
[N2,so]  otherwise,

18 continuous.
(c) There is a 7 € R such that g([0,r] x S"~1) C Ny /N2 oo for all
k € NU{oo} sufficiently large.

PROOF. (a) S"~1 x [0,r] is compact, so it suffices to prove that M is closed.
Let (2, sk) — (0,80) in M and s € [0, so[. It follows that for all k¥ € N large
enough s > s, S0 TS € NLOO and zomws € Nlm. Hence, by the closedness of
1\71’00, we have zo7[0, sg] C Nl,oo, and thus (xg, sg) € M.

(b) This follows from [9, Proposition 1.8.1].

(c) Let M := {(f*x),s) : (z,5) € M}, z € =(M), and note that 7(M) C
N’l’oo C Ny for all k € N. By the assumption that N o is a (strongly admis-
sible) isolating neighbourhood of {e} relative to m, there is a t = ¢, € RT such
that fA(z)mt € X \ Ni. Otherwise, there would be a full solution of 7 lying
entirely in N3 o (using the strong admissibility), contradicting the assumption
of Ni, being an isolating neighbourhood.

Hence, there are ny = no(xz) and a neighbourhood U, of z in m(M) such
that Upmpt € X \ Nioo C X \ N1y for all & > ng. Consequently, for every
xz € Uy, there is an r € [0,t;] with zm,r € Naj. The compactness of 7r(]\7)
implies that there are z1,...,xx5 € W(M) with 7r(]\7) c U Ug. Wecan

i=1,..,

choose 7:= max t,, and ng := max_ mng(z;).

i=1,..., i=1,...,
For every (s,x) € D(g) one has either g(s,z) € m(M) or g(s,z) = [Na.o0], 50
9(s,2) € Ny /N2 o for all k > no. O

PROOF OF PROPOSITION 3.10. Let 7 € RT be given by Lemma 3.11, and
assume that f(S"~1) € Ny 3, for A € [0,1] and s € RT. It follows that there is

o0
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an ng € N such that for all £ > ng

A ~ ~
pr/snt L Ny /NG

id C
n n—1 g(s,-) N N7
D /S - >N1,00/N2,OO
id C

Dn/sn—l g(s, ") N17k/N£;_

id g(O,A) id
TS
Dr/§n1 Nuw/N; T
Y
f)\

commutes in H7 . This shows that
Ny /Na i — NI,OO/NQ,OO -~ Ny /Ms,
\ fT /
f f
Dn/sn—l
commutes for all k,1 > ng. It follows from Lemma 3.9 that

C

Ni/Nog SN N1.oo/Na oo < Nig/Noy
\ /
Dn/snfl
is commutative and thus also
Nl,k/ﬁzk < Nl,oo/NQ,oo % Ni g /Nak
\ J /
f f
Dn/snfl’
where = indicates an isomorphism. Finally, we conclude that

J\~71,k/1\~72,k EESEN ]\~71,00/N2,oo < Ny 1/Na,

Sl A
D /s

commutes for all k,1 > nyg.
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THEOREM 3.12. Let A be a connected metric space and let (mwx,{e})rea be
an S-continuous family such that there exists a common seed f: D™ — X. If
there exists a Ao € A such that (f,mx,,€) is an isomorphism, then (f,7x,e) is

an isomorphism for all A € A.

PROOF. Let x: A — {0,1} be defined by

1 (f,m\,e€) is an isomorphism,
X(A) ==

0 otherwise.

It follows from [9, Theorem 1.12.3] and Proposition 3.10 that y is locally constant
on A, which is a connected metric space. |

4. Orientation for fixed points of linearizable semiflows

Throughout this section, let X be a Banach space and w, 7’ be strongly
linearizable semiflows defined in a neighbourhood of 0. Moreover, suppose that
7’ is a linear semiflow, and let n = dim X;. Recall that the subspaces X; =
P, X depends on the semiflow w. We will use the notation introduced in the
Preliminaries section.

LEMMA 4.1. Let f: D™ — X be continuous, f(0) =0, and 0 < 6 € RT such
that

(4.1) [1Pr o f()|| > 0] f ()|
for allz # 0 in a sufficiently small neighbourhood of 0. Then f is a seed for (r,0).

PROOF. Suppose that f is not a seed. By Definition 2.2, there exists a neigh-
bourhood U of 0 such that

(4.2) HynH_lPW(yn) —0

whenever v, is a sequence in Inv*(U) \ {0} with z,, — 0 as n — oo.

Let (N7, N3) be a strongly admissible FM-index pair with Ny € U. By
Lemma 3.4, there is a sequence 0 # x, — 0 such that f(z,) € Inv'(N;) C
Invt(U) for all n € N.

We have f(z,) # 0 for all n € N by (4.1). Since 7 is strongly linearizable, it
follows from (4.2) that

1f ()l ™" Pr o f(wn) = 0,

a contradiction to (4.1). O

REMARK 4.2. (4.1) holds if f(z) € X; for all x € X. Moreover, (4.1) also
holds if f has a Fréchet-derivative D f(0) at 0 with ker(P o Df(0)) = {0}.
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COROLLARY 4.3. Let f: D™ — X5 be continuous and injective with f(0) = 0.
Further, let A be a connected metric space and let (wy)xen be an S-continuous
family of strongly linearizable semiflows with X, = X1 (mwy) being constant. Then
f is a seed for (mx,0) for all A € A. Furthermore, if there is a Ao € A such that
(fs7xg,0) is an isomorphism, then (f,mx,0) is an isomorphism for all A € A.

PROOF. f is a seed for every my by Lemma 4.1 and the remark thereafter.
Thus, the claim follows from Theorem 3.12. |

PROPOSITION 4.4. Let (N1, N3) be a strongly n’'-admissible FM-index pair
for (n',{0}), and let f: D™ — X; be injective and continuous with f(0) = 0.
Then f:D"/S™"' — N;/Ns is an isomorphism in the homotopy category of
pointed spaces.

FIGURE 1. Homotopy of a seed
PROOF. It is shown in the proof of [9, Theorem 1.11.1] that there exists an
isolating block B = By & By with
Bi={re X, :Vt(x) <1}, By={xeXy:V (z) <1}

and B~ = 0B; @ By. B1/JB; is a strong deformation retraction of B/B~, that
is, the inclusion induced mapping

(B1/B1,[Bi]) —— (B/B~,[B7])

is an isomorphism in the homotopy category of pointed spaces.

There exists a A € ]0,1] such that f* is injective and f*(D") C int B;.
Moreover, there is a continuous functional p: D"\{0} — R* with f*(z)7’(p(z)) €
0B for all x € D™\ {0} (see [9, Lemma 3.8]).

Define g¢: [0,1] x D™ — X; by

(2) = M) (pw(z) p(x)), = #0,
=900, z =0,
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where k: D™ — [0,1] is continuous, x(z) = 1 for all x € S"~!, and there is
a neighbourhood U of 0 in D™ with x(z) = 0 for all z € U. This is illustrated
in Figure 1: the grey area shows the image of f*, the arrows indicate the flow
on B;. Lemma 4.1 and the remark thereafter imply that g(u, -) is a seed for

every u € [0,1]. Tt follows from Lemma 3.8 that f = g(0, -) = g(1, ).
Both spaces, D"/S™"~! and B;/0B; are homeomorphic to S™. Let h be
induced by the following commutative diagram in the category of pointed spaces,

where the vertical arrows denote isomorphisms:

(Dn/s71,0) 224 (B, /0By, 0)

(8™, 0) Ee— (8™, 0)

o € 8™ can be chosen arbitrary as long as the morphisms are basepoint-preser-
ving.

We now have h=!({o}) = {o}. Since x(x) = 0 in a neighbourhood of 0,
and by the injectivity of f, there is an open neighbourhood of V' of o in S™
such that hjy is injective. h(V') is open by the invariance of domain, so h is
a local homeomorphism at o. Therefore, degh = £1 by [4, Proposition 2.2.30].
It follows that [h]y7 is an isomorphism (see [12, Theorem VIII.10.1]). Therefore,
f=1[g9(1, -)]xr is also an isomorphism. O

It is now straightforward to formulate the following

PROPOSITION 4.5. Let f: D™ — X1, f(0) =0, be injective and continuous.
Then f is a seed for (w,0), and (f,m,0) is an orientation for (m,0).

PROOF. Since 7 is strongly linearizable, there is an S-continuous family
(mx,{0}) with m = 7 and 7’ := 7 being linear.

It follows from Proposition 4.4 that (f, 7', 0) is an isomorphism. Using Corol-
lary 4.3 and the definition of strong linearizability, one obtains that (f,,0) is
also an isomorphism. O

COROLLARY 4.6. Let f: D™ — X with f(0) = 0. Assume that the Fréchet-
deriative D f(0) exists and PoDf(0):R™ — X1 is an isomorphism. Then f and
PoDf(0) are seeds for (m,0), and (f,7,0) = (P o Df(0),n,0) are orientations.

Proor. By Lemma 4.1, gy: D" — X,
ga(x) == Af(z) + (1 = A)(P o Df(0))z,

is a seed for every A € [0,1]. We have g9 = f, g1 = P o Df(0), so it follows from
Lemma 3.8 that gy is constant.
Finally, (P o Df(0),7,0) is an orientation by Proposition 4.5. O
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One might expect that an orientation is only a choice of a basis for Xj.
The relationship between orientations (induced by the above seeds) and bases
is established by the following proposition, which states that compatible bases

induce the same orientation and vice versa.

PROPOSITION 4.7. Let @1, P2 € L(R™, X1) be ismorphisms. Then (®q,,e)
= (®y, 7, €) if and only if det 5 1 > 0.

Let E and F be finite-dimensional normed spaces. For A, B € ISO(E, F) let
A ~ B (homotopic) if and only if there exists a family (Cx)xep,1] in ISO(E, F)
such that
(1) Co = 4;
(2) C1 = B;
(3) A+~ C, is continuous.
Tt is well known [8, Proposition 9.36] that A ~ B if and only if det A - det B > 0.

PrOOF. The case n = 0 is trivial, so we may assume that n > 1. Suppose
that det ®;'®; > 0. Then, there exists H € C([0,1],ISO(R™, X;)) such that
H(0, ) = ®; and H(1, -) = ®s.

It follows from Lemma 4.1 that H (A, -) is a seed for all A € [0, 1] and from
Lemma 3.8 that (®1,7,0) = (P2, 7,0).

In order to prove the only-if part, it is sufficient to show that there are ®q,
Oy with (@, 7,0) # (Py,m,0). Let &1 € ISO(R™, X;) be arbitrary and define
Dy (z1,...,2n) = P1(—2x1,29,...,2,) so that detq);lq)l = —1. Further, let
(N1, N2) be a strongly m-admissible FM-index pair for (m,{0}), A € ]0,1], and
s € R such that ®3(D™, S~ 1) C (Ny, N5 %),

Setting a(x1,...,2,) := (—x1,2a,...,z,), it follows that

<I>)‘
Dm/S"=t —— Ny /Ny

(4.3) al "
D /st

is a commutative diagram in the category of pointed topological spaces. Hence,
passing (4.3) to singular homology, we obtain —1 = H, (o)) = H, (CITQ)*1 oH, (CITi‘)
(see [4, Section 2.2] for the computation of Hy(«a)). This shows that (®,,m,0) #
(®g,m,0). O

5. The effect of homeomorphisms

DEFINITION 5.1. For every ¢ € Z, let pq: Z — Hy(S?) be an isomorphism
and p = (f14)4ez. Then, given an arbitrary morphism f: Hy,[S9T*] — H,(S7),
k € Z, there is a unique number 0(f) := 6(f,u,q, k) such that f o g =
O(f, 1, q, k) - pig-
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Until further notice, we will work with a fixed but arbitrary collection p of
isomorphisms.

Let X and Y be Banach spaces and let m be a strongly linearizable local
semiflow on X. As in the previous section, let X; = X;(m) be defined as in
the definition of strong linearizability and choose n := dim X;. Let U C X be
a neighbourhood of 0 in X, V C Y and f:U — V a homeomorphism. Using
orientations 01: 8™ — C(m,{0}) and 02: 8™ — C(f[n],{f(0)}), the action of f
can be described by its induced action f* on §™, whose singular homology can
be expressed by a number 0 € Z.

DEFINITION 5.2. Let o1, 02 be orientations for (m,0), resp. (f[x], f(0)).
f* = f5 0, (we drop the subscript when no confusion can arise) denotes the
unique morphism in H7 for which

ST —2 5 ¢(m, {0})

A

S" — = C(f[n].{f(0)})

is commutative. Moreover, let 0((f)) := 0((f), p, 01,02) := 0(Hn(f5, ,,)s 1,7, 0).

In general, the morphism H,(f*) depends on o; and o;. However, if we
assume that X =Y, f(0) =0, f is Fréchet-differentiable in 0, and D f(0) is an
isomorphism, then H,(f*) depends only on D f(0):

PROPOSITION 5.3. Suppose that D f(0) = idx, and let 0: D™ — X7 be injec-
tive and continuous with o(0) = 0. Then:

(a) o is a seed for m and f[r];

(b) {o,7) and (o, f[x]) are orientations;

(¢) 0((f), (0, m), 0, fIr])) = 1.

PROOF. Letting g,(z) := r(f~too(z))+(1—r)o(x), there is a neighbourhood
U of 0 in R™ such that

1Pgr(@)[| = [P(o(2))]| = [|P(f(o(2)) = o(x))]| = %HO(:B)H >0

for all x € U \ {0} and all r € [0, 1].

It follows from Lemma 4.1 that g, is a seed for (w,0) for all » € [0, 1] which
induces an orientation (g,,7) by Proposition 4.5. In view of Lemma 3.8, (g, )
does not depend on r.

Moreover, since g, is a seed for (m,0), f o g, is a seed for (f[r],0). We thus

have (o, f[x]) = {f o g1, f[x]) = {f © g0, f7]) = {f o 0, f[m]).
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We need to show that
s e, o)

(5.1) MJ yﬁ

8" = C(fll. {0}

is commutative.
Let (N1, N2) be a strongly m-admissible FM-index pair for (m,{0}). Then
there are A € ]0,1] and s € RT such that

A
D" /8§m Tt — 2y Ny /Ny

1 I

pr/srt W J(N1)/f(Ny™)
is commutative in TOP. Since o is a seed for f[r], we can assume without loss
of generality (choosing A and s large enough) that

pr/snt 2 NN

o I

D" /87— f(N)/ F(N; )

is defined. It commutes because (f o o, f[r]) = (o, f[7]) as we have already seen.
Since f induces an isomorphism N1 /Ny ° — f(N1)/f(Ng %) in HT, it follows
that (o, f[7]) = (f o o, f[n]) is an orientation. O

6. Orientations for linear skew product semiflows

For the convenience of the reader, we give a short overview of [6], on which the
second part of this paper relies. We begin with an abstract setting for the proof
of Theorem 1.2. Subsequently, we introduce a class of linear skew product semi-
flows, which are crucial for the calculation of the connecting homomorphisms.

Let H be a real Hilbert space, and let Ag: D(Ay) C H — H be a sectorial
operator such that:

(1) Apg has compact resolvent;
(2) Ap is densely defined;
(3) RA>0forall A€ o(An).

Let X be a real Banach space with continuous inclusion X C H, and let

ADA CX —X
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be a sectorial operator such that:

(1) A is densely defined;
(2) A has compact resolvent;
(3) Ax = Apux for all z € D(A).
Fix a € [0,1], let X* denote the a-th fractional power space [5], and let
fecCt(U, X)), where U C X is open.

We consider mild solutions of the Cauchy problem
(6.1) T+ Az = f(x),

which induce a local semiflow on X* ([5, Theorem 3.3.3], [1, Theorem A.3]).
This semiflow is denoted by 7y, respectively m whenever the meaning is clear.

Now, let e™, et be hyperbolic equilibria of (6.1), and assume that the spec-
trum of A — Df(e®) consists of simple and real eigenvalues. Furthermore, let
uw:R — X% be a solution of m with u(t) — e™ as t — oo, and suppose that
eM|lu(t) —eT||, 4 0 as t — oo for some A € R*. Then by [6, Theorem 3.2],
one has ||u(t) — e+||;1(u(t) —et) — nast — oo, where 7 is an eigenvector
of A—Df(e™).

Let E denote the A-invariant complement of span{n} in X, and for 8 € [0, 1],
let £ := EN X” be equipped with the X#-norm || - ll5-

Using [6, Theorem 4.1], it now follows that there exist a neighbourhood U of
clu(R) and a diffeomorphism G:U — V C R x E* such that G[r] is a semiflow
whose solutions are mild solutions of

&= gl(xvy)v
y + Ay = gQ(xvy)a

that is, if (u(t),v(¢)), t € [0,T7], is a solution of G[x], then (t) = g1(u(t),v(t))
for all ¢, and v(¢) is a mild solution of

g+ Ay = go(u(t),y),

where A denotes the restriction of A to EL.

By the choise of G, we can further assume that G(e*) = (£1,0) and G(u(t))
n [—1,1] x {0} for all ¢ € R. The semiflow G[n] is defined by the condition that
G o @ is a solution of G| if and only if @ is a solution of 7 with u(R) C U.

Next, we introduce a new name: m; := G[r]. Scaling in y yields a fami-
ly (mx)aejo,1) of semiflows, where (u(t),v(t)) is a solution of my if and only if
(u(t), Av(t)) is a solution of 1. One can show [6, Proposition 5.15] that 7 has
a limit 7y, where (u(t),v(t)) is a solution of 7y if and only if (u(¢),0) is a solution
of 71 and v(¢) is a mild solution of

g+ Ay = go(u(t), y).
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At this stage, we need an additonal assumption, namely that [—1,1] x {0} is
an isolated invariant set relative to 1. There are well-known conditions ensuring
this, for instance the transversal intersection of the global stable manifold of et
and the global unstable manifold of e~, but the isolation of [—1,1] x {0} is
sufficient for our purposes. We can conclude that (7, [~1,1] x {0})r¢0,1] is an
S-continuous family.

For the rest of this section, we will deal with semiflows like 7y, which are
called linear skew product semiflows.

6.1. Linear skew product semiflows.

DEFINITION 6.1. Let F' be a Banach space and let a < b be real numbers.
A linear skew product semiflow (see also [11]) on (]a, b[, F') is a semiflow 7 = (£, @)
on |a,b[ x F, where

(x,y)mt = (x&t, ®(z,t)y) for all (¢, z,y) € D(w).

Here, ¢ is a flow on Ja, b[ and for every (z,t) € D(&) we have ®(x,t) € L(F, F).
Let SK(]a, b], F') denote the set of all linear skew product semiflows on (]a, b[, F')
and let 7 € SK := SK([a,b],F) C SK(]a,b[, F) if there exists an ¢ > 0 and
am € SK(Ja —¢,b+ e[, F) with (z,y)nt = (z,y)7t whenever the left side is
defined.

Given a decomposition F' = F; ® F5 into closed subspaces and semiflows 71 =
(&, 1) € SK([a,b], F1), m3 = (§,Dq) € SK(&, 3), define m & mo € SK([a,b], E)
by m @7y = (§, P1DD2), where (D1 D P2) (¢, ) (11 By2) = P1(t, )y1 D Pa(t, 2)yo.

We consider linear skew product semiflows which are generated by semilinear
parabolic equations and are normalized on the zero-section, that is, the semiflow
m=m(A,F) € SK([-2,2],X?%) is induced by mild solutions of

t=1-—22,

6.2
(62) U+ Ay = F(2)y.

Unfortunately, the right-hand side of the above equation is not necessarily locally
Lipschitz continuous if one assumes only that F' is a continuous family of linear
operators. Therefore, the term mild solution is used as follows: (u(t),v(t)) is
called a mild solution of (6.2) if u(t) is a solution of the first equation, that is,
u(t) = 1 —u(t)?, and v(t) is a mild solution of § + Ay = F(u(t))y.

Suppose that

e X is a Banach space;

e A is sectorial linear operator which is densely defined on X and has
compact resolvent;

e X denotes the a-th fractional power space (see [5]);
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and
(1) F:[-2,2] = L(X XY) is sufficiently continuous, that is, there are
—2=19 <. <z, =2 € [-2,2] such that for every interval [x;, z;41],
i €{0,...,n— 1}, there is an F' € C([x;, zi41], £(X*, X°)) such that
F(z) = F(z) for every @ € |z, zi41];
(2) —1,1 & {z0,...,xn}.
The linear skew product semiflow defined by (6.2) depends continuously on
the right-hand side F.

PROPOSITION 6.2 [6, Corollary 6.4]. Let F,, — Fy € L®([~2,2], £(X®, X)),
n € N, and suppose that F,,, n € NU {0}, are sufficiently continuous. Then:
(a) (A, Fy,) is a semiflow for allm € NU{0};
(b) m(A, F,,) = w(A, F) and
(c) every closed set N C ]—2,2[ x X which is bounded with respect to
| - llgxxo is strongly w(A, F,)-admissible.

We will consider classes SK;, ¢ € {—1,0,1,2}, of linear skew product semi-
flows. Higher indices indicate stronger restrictions. Let us make the following ad-
ditional assumptions: A and (A— F(1)) are hyperbolic and have simple eigenval-
ues, all of which are real; let 7 = 7(4, F), and let E*(r,e) := E*(e) := PX(0)X,
e € {—1,1} denote the associated subspaces of X, where PF,(0) := PF(0) :=
P*(0) is the projection onto the subspaces which belong to the positive respec-
tively negative part of the spectrum of L := A— F(e). E*® := E* N X" denotes
the respective subspace of X .

(6.2) implies that there are exactly two equilibria, namely (—1,0) and (1,0),
and both are hyperbolic.

DEFINITION 6.3. Let SKq := SKo(o, X, A) C SK([—2,2], X*) denote the set
of linear skew product semiflows with = € SK; if and only if

(a) 7 is induced by mild solutions of (6.2), which satisfies the assumptions
above;

(b) K :=[-1,1] x {0} is an isolated invariant set relative to m;

(¢) dimE~ (1) =dim E~(—1) < cc.

DEFINITION 6.4. Let [—1,1] C Ja,b[ C [-2,2] and let h:[a,b] — [-2,2]
be a homeomorphism such that h(—1) = —1, h(1) = 1. Let 7 € SK_; =
SK_1([a,b], a, X, A) C SK([a, b], X*) denote the set of all semiflows 7 for which
there exists an h with the properties above and a ™ € SKq such that (hou(t),v(t))
is a solution of 7 whenever (u(t),v(t)) is a solution of 7.

In the sequel, we are interested in signs of connecting homomorphisms and
need a condition which guarantees that these signs do not change under perturba-
tions. Therefore, we introduce a relation between linear skew product semiflows:
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DEFINITION 6.5. Let mg, 1 € SKg. Then 7y ~ my if and only if there exists
a homotopy, that is, an S-continuous family (mx,[—1,1] X {0})xe[o,1 such that
for all A € [0,1]

(a) m € SKo, and
(b) E~(m,—1) and E~ (7, 1) are constant.

Let SK; C SKq denote the subset of all semiflows 7w(A, F) where F' is locally
constant in a neigbourhood of {—1,1}, that is, there exists a § > 0 such that
for all € ]—1 — 9, —1 + ] we have F(z) = F(—1) and for all z € ]1 — 4,1 + 4]
F(z) = F(1).

LEMMA 6.6 ([6, Lemma 6.10]). For every w(A,F) € SKo, there is a Ao €
[0,1] such that (A, F) ~ w(A, Fy\) € SKy for all X € [0, \], where we set
F(-1) ifze[-1-\ -1+,
Fyx(z):=4q¢ F(1) ifxze[l=-X\1+4+2],
F(x)  otherwise.

Let SKy C SK; denote the subset of all those semiflows which satisfy the
following stronger restriction (compared to the definition of SK;): There exists
a d > 0 such that F(z) = F(-1) for all x € [-2,—1+ §[ and F(z) = F(1) for
all z €]1—-4,2].

LEMMA 6.7 ([6, Lemma 6.11]). For every w(A,F) € SKi, it holds that
(A, F) ~ (A, F) € SKo, where we set

F(-1) if —2<az< -1,
F(z):={ F(z) if —1<z<1,
F(1) ifi<z<2

For m = (§,®) € SKa, we can define an invariant subbundle U (the exact

terminology can be found in the appendix). After the definition of U, we will

show that this subbundle determines the sign of connecting homorphisms.
Let E~ := E~ (m,—1) and define U(z) € L(E—, X%) by

U(l‘)y =Y, .I‘G[—Q,—l—F(S], yEE_.
We continue along [—2, 2] by following the semiflow, that is,
U(z) =U(-1+0)P(-1+46,t,), xz€[-1+641-1]

where (—1 + 0)&t, = x defines t,.

P (0)oU(1—9) is a bijection, so, given yg € E~ (1), there is a w € E~(—1)
with P (0)oU(1 —§)w = yo. Choose a basis {n;:i =1...dim E~ (1)} for E~(1)
such that each 7; is an eigenvector of L := A — F(1).
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Further, let A\; < 0 denote the real eigenvalue \; which corresponds to 7;,
that is, e L'y, = e~ 'n,. For each i € {1,...,dim E~}, there is an n € E*(1)
with n; +n;" € U(1 = 6)E~(—1). Let y; € E~ be given by U(1 — 8)y; = n; +n;"
and define

Ux)y; =i + e A Eemtia)pd e 1 —6,1[, i=1...dimE".

Finally, let
Ux)y := llm1 U@R)y, =z=e€ll,2], yeE™.
T—

U is m-invariant (°), so there is a linear skew product semiflow 7y = (£, ®y) €
SK([—2,2], E7) such that

U(z&t)@(z,t)y = Py (z, t)U(z)y
whenever z£[0,t] C ]—2,2][.
6.2. Conley index orientations for linear skew product semiflows.

LEMMA 6.8. Let m = (£,®) € SK_1([a,b],a, X, A) and let ¥_1,¥; €
L(R"™, X), such that P~,(m,0)¥_1 and P; (7,0)¥; are isomorphisms. Then:

(a) o—1(z,y) == (-1,9_1y), (x,y) € |-1/2,1/2[ x R", is a seed for (m,
(—1,0)), and
(b) 01(y) :=(1,T1y), y € R, is a seed for (m,(1,0)).

If # € SKj, then the semiflow is linear in the sense of Section 2 in a neigh-
bourhood of each of the equilibria (+1,0). In this case, Proposition 2.3 implies
that 7 is strongly linearizable (Definition 2.4) in each of the equilibria, so we can
invoke Proposition 4.5, which states that oy are seeds.

However, the notion of being strongly linearizable relies on the existence
of some kind of tangential space for stable sets. We have not established such
a result for SKy, so we will circumvent this problem by using the more elementary
Lemma 3.4 and the concrete structure of our linear skew product semiflows.

PROOF. Suppose that 7 = 7(A4, F).

(a) Let U := By/3[(—1,0)] C [-2,2] x X, and let (N1, N2) be a strongly
m-admissible FM-index pair for (m,(—1,0)) with N; € U. Since Invt(U) C
{0} x Et*(—-1), it follows that o_q(z,y) € N5 *° for all (z,y) € D(o_1) \ {0}.
Now, Lemma 3.4 implies that o_ is a seed for (7, (—1,0)).

(b) Let X7 := {0} x X and (N1, N3) be a strongly m-admissible FM-index
pair for (m,(1,0)) with Ny C B1[(1,0)] C R x X*. Then (X; N Ny, X7 N Na)

(6) Here, we identify U with its image.
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is a strongly m-admissible FM-index pair for (7,0), where 7 is induced by mild
solutions of the linear equation

z,=0 x € {0},
y+Ay=F(l)y, yeX“
It follows from Corollary 4.6 that o1 is a seed for (7, 0), that is, there is a A € R

such that o}(y) = o(Ay) € N, ™ for all y € R™\ {0}. As before, applying
Lemma 3.4 proves that o7 is a seed for (, (—1,0)). O

Until further notice, let u be given by Definition 5.1, 7 € SK_;, ¥_; €
ISO(R™, E~(—1)), ¥; € ISO(R™, E~ (1)), and 0; and o_; be defined by Lem-
ma 6.8.

DEFINITION 6.9.

|

(W) = 9(7Ta My \Il—la \Ill) = H(Hn—1<01>71 o an o Hn<0_1>,,LL,7”L, 1)

where 9,: Hy(m,{(—1,0)}) — (7,{(1,0)}) denotes the ¢-th connecting homor-
phism of the long exact attractor-repeller sequence in singular homology which
is associated with (, [—1,1] x {0},{(1,0)},{(—=1,0)}).

LEMMA 6.10. Let m — Too be a sequence in SKq such that the assumptions
of [2, Theorem 7.3] hold whenever N is a bounded neighbourhood of [—1,1] x {0}.
Suppose that (o_1, 7, (—1,0)) (resp. (01,7, (1,0))) is an orientation for all k €
N U {oo} sufficiently large. Then () = 0(7s) for all k € N sufficiently large.

PROOF. By [2, Theorem 7.3], there are strongly admissible FM-index triples
(N1, Nog, Na i), (Nig, No g, Nag) for (mg, [=1,1] x {0}, {(1,0)},{(—1,0}) and
(My, My, Ms), (My, My, Ms) for (mse, [—1,1] x {0},{(1,0)},{(=1,0)}) such that
for all k£ € N sufficiently large

(NL/@,NQ,!@,Ns,k) C (MMM%MB) C (N1k, Nogy N3 i) C (M1, My, Ms).

We can assume that M7 is bounded in X so that it is strongly 7w.-admissible by
Proposition 6.2.
It follows from Proposition 3.10 that

D /S" T Ny Na

(6.3) idl lc

Dn+1/sn ?) Ml/MQ
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and

l)n/Sni1 L N27k/N37k

(6.4) idl J,C

.Dn/»sfn_1 ?} MQ/M?,
o1

are commutative for all k£ € N sufficiently large.

Moreover, there is a commutative ladder

Og41
—— Hy1[N1 x /N3 g] —— Hy1[N1k/Nog] —— Hy[No /N3] ——

I I I

8(1
——— Hyy1 [My /M) ——— Hyr[My/Ms] —— H[My/M;] ——

where d, and 5q denote the respective ¢-th connecting homomorphism.
It follows that 0(my) = 0(7s,) for all k sufficiently large. O

PROPOSITION 6.11. (o,,7,(r,0)) is an orientation for every m € SKq, v €
{—1,1}. Moreover, for all w9, € SKy, it holds that 6(my) = 0(m1) whenever
mo ~ 1 in the sense of Definiton 6.5.

PROOF. First, assume that 7 € SKy, let v € {—1,1}, m = n for v = 1 and
m =n+1 for v = —1. Then there is a neighbourhood U of (v, 0) in |]—2,2[ x X
such that the restriction of 7 to U is induced by mild solutions of

t=1-—22,

g+ Ay = F(v)y.

It follows from Corollary 4.6 that {(o,,7) is an orientation.

Now, let 7 € SKy. By Lemma 6.6, there is an S-continous family (7y,{(v,0)})
such that m; € SK;, mop = 7, and E~(my,v) are constant. Hence, o, is a seed
for (mx, (v,0)) for every A € [0,1]. It follows from Theorem 3.12 that (o,, ) is
an orientation for (m, {v}), proving the first claim.

In order to show the second claim, let 7,7y € SKg with mg ~ 7y, that is,
there exists an S-continuous family (7x, [—1, 1]x{0})xe[o,1) such that £~ (my, —1)
and E~(my,1) are constant. Therefore, we can choose ¥; and ¥_; such that
o—_1 (resp. 01) induces orientations for (my, —1) (resp. (mx, 1)) for all A € [0,1].

Suppose that §(my) is not constant. Then there is a sequence A, — Ao
in [0,1] with 6(7,) # 0(7s), where we set 7, := 7mx,, n € NU {co}. This is
a contradiction to Lemma 6.10, showing that 0(m) = 0(m1). O

n?
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6.3. The unstable subbundle. For every m € SK;, we have defined an
invariant subbundle U of [—2,2] x X®. Let (N7, N2, N3) be an arbitrary FM-
index pair for (m,[—1,1] x {0},{(1,0)},{(—1,0)}). Due to the invariance of U,
(My, My, M3) := (N1 N U, NoNU,N3NU) is an FM-index pair for 7ip, ¢y (recall
that we have already defined a semiflow 77, which denotes the restriction of 7
to U.

The inclusion (My, My, M3) C (N1, Na, N3) induces a commutative ladder in
singular homology, namely

—_— Hq[Ml,M3] —_— Hq[M17M2] —_— qul[M27M3} —_—

(65) {c ,{c ZJC

—_— Hq[Nl,Ng] e Hq[N17N2} e Hq_l[Ng,Ng] Em—

LEMMA 6.12. For every m € SKs, (0,, Timv), ¥ € {—1,1}, induces an orien-
tation f07" (71" imU>» {(V7 O)})

PROOF. F(z)is constant for all z in a neighbourhood Ny; of £1. Therefore,
U(x1) = E~(£1), and so 0_1 and 01 can be defined by Lemma 6.8. It follows
from Corollary 4.6 that (o,,, (v,0)) is an orientation for every v € {—1,1}. O

Lemma 6.12 guarantees that 5(7r| imu) is defined and so we may formulate
the following:

PROPOSITION 6.13. For every € SKy it holds that 6(r) = 0(7|imv ).

PROOF. Let v € {—1,1} and (N1, N2) be an arbitrary strongly admissible
FM-index pair for (m,{(v,0)}). Then (N7y NU, Ny NU) is a strongly admissible
FM-index pair for (7im v, {(v,0)}).

By Lemma 6.12, there is an s € RT and a A € [0,1] such that o}(S™"!) C
N;°NU C Ny %, where m =n for v =1 and m = n+ 1 for v = —1. Therefore,

0)\

Dm/S§m=t 5 (N1NU)/(Ny;°NU)

C
o)

Ny /Ny*

is commutative in 7OP and thus in HT,

D™ /Sl % (N, N U) /(N N U)

T

N1 /No
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Now, let (N1, No, N3) be a strongly admissible FM-index triple for (r,[—1, 1]
x{0},{(1,0)},{(—1,0)}). It follows that H, (i) and Hy(l) (defined in (6.5)) are
isomorphisms since 0, is an isomorphism by Proposition 6.11 respectively Lem-
ma 6.12. Therefore, the commutativity of (6.5) implies that 6(|i ) = 0(7) as
claimed. O

The definition sgny | ¢, U := sgndet U (U(-1)"1W_; gives U a sign.
We define the inverse of an injective and continuous homorphism A € L(FE, F)
on im A C F. The definition of sgn U makes sense because

im¥V_; =F (-1)=imU(-1) and im¥; =FE"(1)=imU(1).

Alternatively, one can read the inverses in the above equation as left inverses.
In this case, sgng_, g, U is well-defined and agrees with the first definition.

Recall that the definition of 6 requires a choice of generators pu = (f4)q4ez-
Consider the following system

t=1-—22,

U=y,

of ordinary differential equations on |—2,2[ x R™. They define a semiflow y,,
which is obviously a linear skew product semiflow, that is, x, € SKa([—2, 2], R™).
Let Uy, denote the subbundle U which is defined with respect to x, (in fact,
Uy, =[-2,2] xR").

DEFINITION 6.14. Let fig: Z — Ho(S°) be arbitrary, and let p = (u,)qez be
such that o = g and for all n € N

Q(Xn, 122 idg» ’ idR") = S8idpn idgn UXn .

It is clear that p is well-defined, and the following proposition shows that
the definition makes sense.

PROPOSITION 6.15. For every m € SKa, for every ¥_; € ISO(R™, E~(-1)),
and for every ¥y € ISO(R™, E~ (1)), it holds that

9(71’, (/J’q)qEZa \I’—lv \Ill) =Sghy_, v, U 7& 0.

PROOF. By [6, Proposition 6.23], there is an isomorphism of trivial bundles
V =V, such that X := V= lry] ~ xn.

As usual, let 07 and o_; be given by Lemma 6.8. They are seeds for an
orientation for (—1,0) respectively (1,0). Moreover, 0_; := (—1,0) + idgn is
a seed for (X, (—1,0)) and 07 := (1,0) + idg~ is a seed for (X, (1,0)).
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Let a be defined by

(o-1)

Sntl C(’”\imU?{(*laO)})

O‘T T(UOV)

S+ — C(% {(~1,0)})
and 3 by
sn a C(mjmus {(1,0)})
BT T(UoV)
sn (%, {(1,0)}).

(01)
It follows from Proposition 4.7 and Corollary 4.6 that

1 0
a = sgndet (

0 U=loU(~1)o V(—l)) =sgndet U} o U(—1) o V(—1)

and
B =sgndet U7 o U(1) 0 V(1).
Since sgndet V(1)oV(—1) = sgndet V(1)oV (1) (by homotopy, V is a continuous
family of isomorphisms), it follows that foa~! = sgiy_, v, U, where we denote
the mappings by their mapping degree.
In singular homology, the respective attractor-repeller sequences define a com-
mutative diagram:

Hq+1<7T|imU7{(7laO)}> Do Hq<7r|imUa{(1aO)}>
Hq+1<UoV)T THq(UoV)
Her (X, {(=1,0)}) " Hy (X {(1,0)})

It follows from Proposition 6.11 and the choice of p that O(X, p, idgn, idgn) =
0(Xn, t, idgn, idgn ) = 1. We obtain a commutative diagram

a(77 im )
Hpor (S™) 2571, (8™)

Hyyr (S™H) —— H,(S™),

showing that 0(7 ) = af =sgny_, ¢, U. O
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6.4. Geometric orientation. Let ¥_; € ISO(R", E~(—1)) and ¥; € L €
ISO(R™, E~ (1)) be arbitrary but fixed as in the previous section. We will define
a geometric orientation for every m € SKy and then show that this geometric
orientation is well-defined for every = € SKq and coincides with the (Conley
index) orientation of the previous section.

DEFINITION 6.16. For every m = (§,®) € SK_q, let sgnm € {—1,1} denote
the unique number for which

sgnm :=sgn(m,V_q,¥q) := lim sgndet U1 PO (z, t)W_q,
g gn(m Uy, Up)i= Qi s8 1 POz, 1)y

where P = P; (0) denotes the unique projection P: X — E~ (1) with ker P =
ET(1).

Note that for every ¢ € RT, the spaces E~ (1) and ET*(1) (resp. E~(—1)
and ET%(1)) are ®(1,t)-invariant (resp. ®(—1,¢)-invariant) subspaces.

LEMMA 6.17. Let m = (A, F) € SK; and § > 0 such that

F(‘r):F(il)7 T e [717714»6]7
F(zx)=F(), =x€l[l-41].
Then
sgn = sgndet U PO(—1+ §,t0)¥_1 # 0,
where (—1+0)&tg = 1—0. In particular, sgn is well-defined for every m € SKj.
PROOF. Letx € ]—1,1[and ¢t € R" such that z € |1, —1+4] and z&t > 1—4.
Then there are t_1,t; € RT such that z&t; = —1+ 6, and (1 — §)&ty = x€t. We
have
P@(.’L‘,t) = Po(1 — (5,t1)q)(—1 + 9, to)q)(fll‘, t_1)
= P(p(l — 5, tl)P(b(*l + 5, to)q)(l‘, t_l).
PO(1 — 6,t1)P(—1+ 6,t0)P((—1 4+ 0)E(—At—1),At_1)¥_; is an ismorphism for
all A € [0, 1]. Otherwise, there would be a0 £y € E~(—1),an z € |—1,—1 4+ 4],
and a t € RT with Z¢&t > 1 — 6 and ®(Z,t)y € ET(1). This implies that there
exists a full bounded solution through (Z,¥), which contradicts the isolation of
[—1,1] x {0} relative to 7 (see [6, Lemma 6.8]).
We have shown that

sgndet U P®(z, 1)V _; = sgndet P®(1 — 6,t)P  P®(—1+6,t0)T_;.

A similar argument applies to P®(1—4, s) P. It is an isomorphism for all s € [0, #1]
and homotopic to the identity on (E~ (1), E~ (1) \ {0}), showing that

sgndet U P® (2, 1)V _ ) = sgndet U7 PO(—1 + 6, t0)¥;. O
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The following proposition relies on Proposition 6.15.
PROPOSITION 6.18. Let m € SKy. Then sgnm = 0(r) # 0.

PROOF. Recall that for every m € SK; there is a § = d(7) > 0 such that

F(z) = F(-1), z€[-1,-1+70],
F(z)=F(1), ze[l-d1],

and we have U(z) = E~(—1) for all x € [-2, -1 + 4].
Initially, suppose that m € SKy. Let x € |-1,—-1+ [, t € RT, and ny =
(&, ). We have

(6.6) Oz, )y = U(a€t) Py (z,t)U () 'y

for all y € E—(-1).
Moreover, we have sgndet @y (zg,t9) = 1 since @y (x,t) € ISO(E~(-1),
E~(-1)) for all (z,t) € D(®y). It follows from (6.6) that

(6.7) sgndet U7 P®(x,t)¥_; = sgndet U7 PU(x&t)U (z) 1.

Taking (6.7) to the limit (x,x&t) — (—1,1), we obtain sgn 7 = sgn U, proving in
conjunction with Proposition 6.15 that sgnm = sgn U = 0().

Lemma 6.6 states that for every mg € SK; there is a m; € SKs with my ~ 71.
It follows immediately from the differential equation given there that sgnmy =
sgn 7. Moreover, Proposition 6.11 implies that §(my) = (). This proves the
claim for every m € SKj. ]

LEMMA 6.19. Let U, 4, v € {—1,1}, be a sequence of homomorphisms in
LR™, X)) with ¥, — U, o € ISOR™, E~(v)) as k — oo. Then, for every
m = (& ®) € SKg, one has

6.8 lim sgndet(PV, )~ PO(x, )T _
(68) (r7r5t7k)—>(—1+,1,oo)g (P¥) (@, )W _1

= a(ﬂ-a \Il—l,ooz \Ill,oo) 7é 0.

PROOF. Let zp — —1in [—1,1], t;, € RT with a3ty — 1, mo = n(A, F) €
SKo, and 7y, := 7w(A, F) with
F(-1) if —24a, <z <z,
Fip(z) =< F(1) if &ty < <2 — (xkty),
F(z)  otherwise.
We have Fy, — F as k — oo in L*>([-2,2],L(X* X)). Moreover, there is

a strongly admissible isolating neighbourhood for [—1,1] x {0} relative to 7, so
we can choose kg € N such that [—1,1] x {0} is an isolated invariant set relative
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to 7 for all k > ky. Consequently, one has 7, € SK; for all kg < k < co. We
can assume without loss of generality that PW, j is an isomorphism for k£ > k.

If (u(t),v(t)), t € [0,T], is a solution of my with zj < u(t) < xRty for all
t € [0,T7], then it is also a solution of 7. Hence, it follows from Lemma 6.17
and Proposition 6.18 that for all kg < k < oo

sgn det(P\I!Lk)*lPCI)(xk, tk)\I’—l,k = g(ﬁk, \Il—l,k, P\Ill,k)~

As shown in the proof of Proposition 6.11, every 7w € SK; is strongly lineariz-
able in the sense of Definition 2.2 in each of its equilibria. Thus, it follows from
Corollary 4.6 and Proposition 4.7 that there is a k1 > kg such that

g(ﬂk,\P_Lk,P\I/Lk) = 0(my, U_ 100, ¥100) forallky <k<oo.
Finally, in view of Lemma 6.10, there is a ko > k; such that
0(7, U_ 100, ¥100) = o(m, U_100,¥100) forall ke <k <oo. O
An immediate consequence of Lemma 6.19 is

COROLLARY 6.20. sgn7 is well-defined for every m € SKy and we have
0(m) = sgn(m).

COROLLARY 6.21. Let m = (¢
0

well-defined and we have sgnm =
me SK_q.

,®) € SK_1([a,b],, X, A). Then sgnm is
(m). Moreover, Lemma 6.19 holds for every

PROOF. According to Definition 6.4, there is a semiflow 7™ = (E, ®) € SK
such that (h(u(t)),v(t)) is a solution of T whenever (u(t),v(t)) is a solution of 7.
This shows immediately that sgnz is well-defined and sgnw = sgn7. It is

also clear that
l)n/Sni1 L)[\;&/NQ
idl lhxid
Dn/Snil T>M1/M2
01

is commutative whenever (Ny, N) is a strongly m-admissible FM-index pair for
(TF, {(1,0)}) and (M],MQ) = (h X ld)(Nl,NQ)

Since h is necessarily strictly monotone increasing,
gn(x) = Ah xid)oo_1(z) + (1 — No_1(x)

satisfies gx(x) # (—1,0) for all z € D™\ {0}. Given an arbitrary A € [0, 1], it
is a straightforward extension of Lemma 6.8 that gy is a seed for (w, {(—1,0)})
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and (7, {(—1,0)}). Hence, by Lemma 3.8,

D /sm Ty NN,

DnJrl/Sn pp— Ml/M2
o1

commutes in HT for all A € [0, 1], where (N7, N3) is a strongly admissible FM-
index pair for (m, {(—=1,0)}) and (M7, M2) = (h x id)(Ny, Na).

Therefore, we have 6(r) = 0(7). The left-hand side of (6.8) is unaffected
by h, showing that the formula still holds. O

7. Heteroclinic solutions

Recall the assumptions of the beginning of the the previous section. In
particular let u: R — X be a solution of (6.1) with u(t) — e* as t — 4o0. It
follows that |Ju(t) — e+||;1(u(t) —eT) = ne X! ast— oco. nis an eigenvector
of A — Df(e™) which belongs to an eigenvalue A > 0.

Let E C X be an A-invariant and A — Df(e*) invariant subspace (7) with
X =FE®{n}. By E = E; ® Ey, we mean that F; and Fy are closed linear
subspaces of E with 1 N Ey = {0} and F = E; + E5. The canonical projection
P:FE ®Ey; — E is given by P(e; ® ez) :=e;.

Due to the hyperbolicity of A — Df(e™), there is a decomposition £ =
E=(-1)®E*(-1), where E~(—1) (resp. ET(=1)NX"')isa A—Df(e*) invariant
subspace and the restriction A~ of A — Df(et) to E~(—1) (resp. AT of A —
Df(et) to ET(—1)) satisfies Ro(A~) < 0 (resp. Ro(AT) > 0).

In view of [6, Theorem 4.1], we can assume that:

(1) G(e™) = (1,0), G(e™) = (=1,0);
(2) G(u(t)) €]-1,1] x {0} for all t € R;
(3) DG(z)y = (0,y) for all y € E and for all z in a neighbourhood of e*.

Let 71 := G[m], and let the family of semiflows (7x)e0,1] be defined by scal-
ing in y as explained in the the previous section. It follows from [6, Theorem 5.12]
that (mx,[—1,1] x {0})re[0,1] is S-continuous. Note that mo € SK_;.

DEFINITION 7.1. Let {x1,...,2n41} be a basis for Ey(e”) consisting of
eigenvectors of A — Df(e”), let {y1,...,yn} be a basis for Ex(e"), and let
U_y:=(x1,...,2n41) and ¥y := (y1, ..., ys) denote the corresponding matrices,

which we understand as isomorphisms R"*! — E¢ (e7) (resp. R™ — Ex(e™)).
Let P(t) denote the canonical projection

P(t): E=(+1) @ span{u(t)} ® ET(+1) — E~(+1).

(") This can always be achieved by choosing A appropriately.
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P(t) is well defined for large ¢t € R. Define
v(u) == v(u, ¥_1) = (=1)"sgnv,

U= (T, s e 1, Tig 1y - Tn1)
and

lim sgndet WL P(t + A) DI (u(t) ¥

s i=v(u)- (t,t+A)—(—00,00)

where (u(—t) —e™)||lu(—t) — e*H;l — 17:v1||m2H;1 as t — oo and Iz := zwt.
It is clear that sgnu depends on the isomorphisms ¥_; and ¥y, that is,
sgnu = sgn(u, ¥_1,¥q).

u = cl{u(t):t € R} is an isolated invariant set, and (@,{e*},{e"}) is an
attractor-repeller decomposition ({e*} denotes the attractor). There is a long
exact sequence in singular homology associated with the attractor-repeller de-
composition. Let (94)qez denote the family of connecting homomorphisms of this
sequence, that is, Oy11: Hyy1(m, {e_1}) = Hy(m, {e1}) for all ¢ € Z.

DEFINITION 7.2. Let 6 be given by Definition 5.1, p by Definition 6.14,
and let

~ ~

9(77,’&) = 8(77’“7 \I/,]_, \Ill) = H(Hn</0\l> ©0On+1© Hn+1 </0\71>auan +1, 1)7
where we set

O—l(y) =e + \I/—l(y)a Y€ Rn+13
041(y) ==t + U pa(y), yeR™

It follows from Proposition 2.3 that 7 is strongly linearizable at e* and e~
so Proposition 4.5 implies that 0;, ¢ € {—1,1}, induces an orientation. Thus, 6
is defined.

Let p1:Rx E — R (resp. po:Rx E — E), p1(z,y) := x (vesp. pa(z,y) :=vy),
denote the projection onto the first (resp. second) component.

PROPOSITION 7.3. a(w,m U, Uy) = v(u, ¥_1)-0(mo, U_q, \Tll), where we set
U_i:=py0DG(e )0V,
and
(7.1) Uy :=py0 DG(et) o 0.

Note that our assumptions at the beginning of this section imply that
(0,%1y) = (DG(et) o ¥y)y for all y € R™.
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o_1(z,y):=(—1+ x,\f'l(y)), (z,y) € R x R™,

o1(y) = (1,1 (y)),

as in Lemma 6.8 and consider the following commutative diagram

Hy 1 (m, {e-1})

Hy1(B-1
Hp1(G)

Hy1(B-1

[

[

Hpy1(B-1)

7, {(=10)})

H, (id)

L {(=10)})

Hn11(GBZY)

y € R™,

On+1

Hn<Bl>
Hy, (B[]
H,, (id)
H,(Bi[r]

H,(GB")

H,(~,

fei})

{(1,0)})

{10}

Hyy1(my, {(=1,0)}) —5—— Hn(m1, {(1,0)}),

where we set
B_i(e” +z):=(-1,0) + DG(e" )z, Bi(et + ) :=(1,0) + DG(e1)z.

0g: Hy(m1,{(=1,0)}) = Hy_1(m1,{(1,0)}) is the connecting homomorphism as-
sociated with (71, [—1,1] x {0}, {(1,0)},{(-1,0)}).
Applying orientations, we obtain for i € {—1,1}

z Ak Hp(m {e'})
1 Hp (B1)
HnL<Bioai>OH7n .
Z Hp(Bi[r],{(i,0)})
a H,, (id) Hpm(G)
H?n<0i>oll/7n b .
Z Hp(Bi[r],{(i,0)})
-Bi Hn,(GBh)
H,,{(0i)opm .
Z a HM<7T17{(170)}>

where we set

n+1 ifi=—1,

m =
{ ifi=1.

It follows from Proposition 5.3 that f_; = 81 = 1. We thus have (relative to
these orientations)

n

~

O(m,u,0-1,01) = cx_10(0p41),
where we set () 1= O(Hy,(01) " 000 Hppr{o_1),v,n+1,1).
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One has a1 = 1 because By 0 07 = 01. By Proposition 4.7 we further have

a1 =sgndet(U; o DG(e_1) o (1,V_,)),

where (1,W_1)(y1,42) = (y1, U_152).
Since (u(t) — e~ )|Ju(t) —e’||;1 — ﬁxiniH;l in X* as t — —oo, one has
DG(e™) (x| ") = (1,0), so written as matrices (3)

‘I’:%DG(ef)fl((laO)»‘T/—l) ~ (V€;,€1,...,6€—1,E41,. . Entl).

Here, ((1,0), U_1)(21, ..., &ns1) i=21-(L,0)+U_1 (22, ..., Tns1), 6 = U_1a3k
denotes the k-th unity vector in R"*! and given C,D € ISO(R"*!,
R"H1), we write C ~ D if and only if detCdet D > 0. This shows that
a1 = (=1)*T = v(u).

It follows from [6, Proposition 5.15] that (mx,[—1,1] x {0})x¢[0,1] is S-conti-
nuous and for every A € [0, 1], ([-1,1], {1}, {—1}) is an attractor-repeller decom-
position relative to mx. Let 6 1: Hnq1(mx, {(=1,0)}) = H,(mx,{(1,0)}) denote
the associated connecting homomorphism in singular homology.

We will show that A — 5(57); 1) = 6, is locally constant. Otherwise, there
is a sequence A, — Ao in [0,1] such that 6 := (6*) # 6(6%) =: . It follows
from [2, Theorem 7.3] that for all k large enough, there are strongly admissible
FM-index triples (Nl,k7N2,k7N3,k:) and (Nl,k,ﬁg,k,ﬁg’k) for m, = T g k €
N U {0} such that the following diagram (the rows of which are a part of the
respective long exact attractor repeller sequence in homology)

k

4
Hoyi1 [N /Nog) —— Hy[No 1o /N3 1]

I I

Hqy41[N1,0/Nao] o H,[N2,o/ N3 0]
q+1

is defined, commutative, and its vertical arrows denote isomorphisms (°).
Now, Proposition 3.10 implies that 6 = 6y for all £ € N sufficiently large,
a contradiction, and so 0(m, ¥_1,¥;) =0y = 0, = 0(6py1). O

THEOREM 7.4. sgnu := sgn(u, V_1, V) is well-defined and

sgnu - Hy(o1) opg if ¢ =n,

Og+10 Hyy1(0-1) 0o pigy1 =
o " < ) o 0 otherwise.

(®) Wi, yn)(@1, . Tn) (=T Y1+ 4 T - Yu for (z1,...,20) ER™
(?) The respective inclusion induced morphism in the homotopy category of pointed spaces
is a homotopy equivalence and therefore induces an isomorphism in singular homology.
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Note that the seeds 041 and the sign of u depend on W;. The assumptions
on G at the beginning of this section are used throughout the following proof
without further notice.

PROOF. Let v(t) := p;oGou(t). Lemma 5.16 in [6] relates the semigroup II;
to the linear skew product semiflow 7y = (¢, @), namely
p2DTIA(v(1)) = ®(u(t), A)pa,
where we set I,z := G(z&t)I1,G(z) ™! = zmt. Recall that Definition 6.16 relies
on the canonical projection
P:E~(-1)® ET(~1) = E~(-1).
Let P(t) be given by Definition 7.1. Translating to R x E, we obtain
P(t) := DG(u(t))P(t)DG (u(t))~".
We have
P(t)DG(u(t)) " (z,y) = P(t)Tu(t) + Py
for some T € R, so we can drop the notation of ¢ that is, P = ]3(15), where ¢ is

large (so that P(t) is defined) but, apart from that, arbitrary.
Defining

Uy, = DG(u(t)) ¥, Uy := DG(et) Wy,
U_y, = DG(u(t))V, U_y = DG(e7)Y,
we further have \TIM = \Tll for all ¢ € R with [¢| sufficiently large, and \T/,Lt —

U_qast— —o0o.
It follows from Corollary 6.21 that

(7.2) sgndet(paW1) " P®(v(t), A)paW 1, — O(m, U_1, W) # 0

as (t,t + A) = (—00,00).
For fixed parameters ¢ and A, one has

P& (v(t), A)pz = P DIA(v(t)),
so it follows from (7.2) that
sgn det ‘i/flﬁ DﬁA(U(t)){IVLM — O(mo, U_1, W) #0.

We have
U P DA (v(t))W_y 4 = U7 P(£) DIA (v(t)) T,
showing that sgn(u, ¥_1, ¥;) is defined. Using Proposition 7.3, one obtains

~

sgn(u, ¥_1,¥1) = 0(m,u, ¥_q, ¥y).

Resolving the definition of ) completesthe proof. O
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8. Appendix

Although one could certainly use the notion of a vector bundle as defined
in [7], this would create a large overhead due to formalism since the structure of
the vector bundles used here is relatively simple.

Let [a,b] C R be fixed and let E, F' denote arbitrary Banach spaces. We will
write £ = F; @ Fs if and only if F; and Fs are closed linear subspaces of E with
E = E,+ FE; and E;NE; = {0}. Given a linear subspace F; C F, another linear
subspace Fs is called a topological complement if and only if E = Fy @& Es. In
particular, such a complement exists if £ is closed and either dim F; < oo or
codim F; < oo.

DEFINITION 8.1. A (trivial) bundle is the Cartesian product [a,b] x E
equipped with the product metric.

Taking (trivial) bundles as objects of a category B = B([a, b]), one needs to
define morphisms:

DEFINITION 8.2. A morphism in B is a continuous mapping G:[a,b] —
L(E,F). G is called a splitting if for every x € [a,b], G(z)E has a topologi-
cal complement in F.

Given bundles [a,b] x E and [a,b] x E and a morphism F between them, F
can be applied to [a,b] x E in the following way: F(z,n) = (z, F(z)n).

If Fy, F» are morphisms, then (F; o Fy)(x) := Fi(x) o Fo(x) is again a mor-
phism. In particular, a morphism F' is an isomorphism iff for every = € [a, b
F(z) € L(E, F) is an isomorphism and iff the induced mapping F is a homeo-

morphism.

LEMMA 8.3. Let G € C([a,b], L(E,F)) and suppose that G(xzg) is an iso-
morphism in L(E,F). Then there is a neighbourhood U of xy in [a,b] such that

1

G(x) is an isomorphism for all x € U. Moreover, G(x)™* is continuous in x for

allz e U.

COROLLARY 8.4. G € C([a,b], L(E, F)) is an isomorphism if and only if for
every x € [a,b] G(z) is an isomorphism in L(E,F).

DEFINITION 8.5. A subset U C [a, b] x F' is called a subbundle if there exists
another bundle [a, b] X E and a splitting monomorphism G : [a,b] x E — [a,b] x F’
such that U = G([a,b] x E).

LEMMA 8.6. G:[a,b] x E — U is a homeomorphism, and the norms on the
fibers are equivalent, that is, there are constants m, M € R™ such that 0 # m
and ml|nl| g < [|G(@)nllp < Mlinllg for all (z,n) € [a,b] x E.

Given a splitting monomorphism U: [a,b] X E — [a,b] x F, one can speak
of a subbundle, identifying U with its image U([a,b] x E). Then the fibers are
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given by U(z) := U(z)E for x € [a,b]. If V C [a,b], then we write U(V) :=
U {z} x U(z).

TeV

LEMMA 8.7. Let U:[a,b] X E — [a,b] x F' be a subbundle, let xq € [a,b] and
let P:F — Ul(xg) be a continuous projection onto U(xg). Then there exists a
neighbourhood V' of xo in [a,b] such that p:U(V) — V xU(xy), p(z,y) = (x, Py),
18 a homeomorphism and the norms on the fibers are equivalent, that is, there
are constants m, M € RY such that 0 # m and m|n|| < ||Pn|| < M|n|| for all
(x,n) e U(V).
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