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CONLEY INDEX ORIENTATIONS

Axel Jänig

Abstract. The homotopy Conley index along heteroclinic solutions of cer-

tain parabolic evolution equations is zero under appropriate assumptions.

This result implies that the so-called connecting homomorphism associated
with a heteroclinic solution is an isomorphism. Hence, using Z-coefficients

it can be viewed as either 1 or −1 – depending on the choice of genera-
tors for the homology Conley index. We develop a method to choose such

generators, and compute the connecting homomorphism relative to these

generators.

1. Introduction

The homotopy Conley index along heteroclinic solutions of certain parabolic

evolution equations is zero under appropriate assumptions (see [6]). These as-

sumptions generalize the setting in which the Morse–Smale–Witten chain com-

plex on finite-dimensional manifolds is constructed.

This result implies that the so-called connecting homomorphism associated

with a heteroclinic solution is an isomorphism. Hence, using Z-coefficients it

can be viewed as either 1 or −1. To be more precise, suppose we are given

a semiflow π and a heteroclinic solution u(t) with u(t) → e± as t → ±∞. We

are only interested in the case where e+ and e− are hyperbolic equilibria with

adjacent Morse indices, that is, m(e+) + 1 = m(e−). It is well-known that

2010 Mathematics Subject Classification. Primary 37B30; Secondary 37D15.

Key words and phrases. Conley index theory, Morse decompositions, reaction diffusion
equations.

171
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for a hyperbolic equilibrium e with Morse-index m(e), the homology Conley

index (1) with coefficients in Z satisfies

Hq〈π, {e}〉 ≈

{
Z if q = m(e),

0 if q 6= m(e).

Of course, considering only one solution, we can choose generators such that

the connecting homomorphism δq:Hq〈π, {e−}〉 → Hq−1〈π, {e+}〉 is 1 (or −1).

However, given two heteroclinic solutions u1(t) and u2(t) connecting the same

pair of equilibria, it is not clear whether their connecting homomorphisms agree.

Suppose that there exist a stable manifold W s(e+) and an unstable man-

ifold Wu(e−) which intersect transversally. Then the signs of connecting ho-

momorphisms can be expressed depending on previously chosen orientations for

TWu(e+) and TWu(e−) (see [3], [10]). However, it seems that the aforemen-

tioned proofs cover only gradient flows. Note that we also do not require a global

orientation.

Our approach is to compute the connecting homomorphism for a given hete-

roclinic solution independently of the other solutions. The connecting homomor-

phism is determined by special triples of closed subspaces, the so-called FM-index

triples. Suppose we are given FM-index triples (N1, N2, N3) and (M1,M2,M3)

for two distinct heteroclinic solutions connecting the same pair of equilibria.

(N1, N2) and (M1,M3) (resp. (N2, N3) and (M2,M3) are then both FM-index

pairs for the repeller {e−} (resp. the attractor {e+}).
Recall that the categorial Conley index is a subcategory of the homotopy

category of pointed spaces, whose objects are certain FM-index pairs representing

the index. We call the unique, designated morphism between to FM-index pairs

inner morphism. A more detailed exposition can be found in Section 2 or in [2],

which is used as a reference.

(N1/N2, N2/N2) and (M1/M2,M2/M2) are objects of the categorial Conley

index (2), so there is a unique inner morphism

α: (N1/N2, N2/N2)→ (M1/M2,M2/M2)

(resp. β: (N2/N3, N3/N3)→ (M2/M3,M3/M3))

in the homotopy category of pointed spaces.

Let δN,q (resp. δM,q) denote the q-th connecting homomorphism which is de-

fined by (N1, N2, N3) (resp. (M1,M2,M3)). Now, the two FM-index triples (resp.

the two heteroclinic solutions) determine the same connecting hommomorphism

(1) We will follow [2], but one can also assume that Hq〈π, e〉 = Hq(N1/N2, N2/N2), where

(N1, N2) is a strongly admissible FM-index pair for {e} relative to π.
(2) provided cl(N1 \N2) and cl(M1 \M2) are strongly admissible.
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if and only if

Hq(N1/N2, N2/N2)
δN,q

//

Hq(α)

��

Hq−1(N2/N3, N3/N3)

Hq−1(β)

��

Hq(M1/M2,M2/M2)
δM,q

// Hq−1(M2/M3,M3/M3)

is commutative for all q ∈ Z. Passing the above diagram to the singular homology

of the the categorial Conley index, this means that

Hq〈π, {e−}〉

〈δN,q〉
))

〈δM,q〉

55
Hq−1〈π, {e+}〉

is commutative.

We aim to express connecting homomorphisms in terms of integers, that is,

relative to a choice of generators. Roughly speaking, typical steps when one

computes the homology index of an isolated invariant set are the application

of homeomorphisms or continuous changes of the semiflow considered. Unfortu-

nately, it seems that almost every such change – even the smallest one – modifies

every index pair representing the categorial Conley index. Therefore, one needs

to choose generators in a way that is persistent under (at least) small changes

of the semiflow.

In this paper, for n ∈ N∪{0} we denote by Dn the closed Euclidean unit ball

and by Sn the Euclidean unit sphere. Notice that R0 = {0} ⊂ R, D0 := {0},
and S−1 := ∅.

Now, let e be a hyperbolic equilibrium, let n denote the Morse index of e,

and let f be a continuous mapping which maps a neighbourhood of 0 in Rn into

a neighbourhood of e. It is clear that, given an arbitrary strongly admissible FM-

index pair (N1, N2) for (π, {e}), one has f(λx) ∈ N1 for all x ∈ Dn ⊂ Rn and all

λ ∈ ]0,∞[ sufficiently small. If it holds additionally that for every x ∈ Dn \ {0},
there exists an s ∈ R+ with f(λx)πs ∈ N2, then f is called a seed. Every

seed f induces for every strongly admissible FM-index pair (N1, N2) for (π, e)

a morphism (Dn/Sn−1, [Sn−1]) → (N1/N2, [N2]) in the homotopy category of

pointed spaces. We will show that these induced morphisms commute with the

inner morphisms of the categorial Conley index, that is, they do not depend on

the FM-index pair chosen.

Subsequently, we will derive conditions under which a seed induces an iso-

morphism 〈f〉 (the Conley index orientation) and conditions under which two

seeds induce the same isomorphism. Some of these conditions are rather tech-

nical and can be found in Section 3. However, for a large class of parabolic
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evolution equations (3), it turns out that, in some sense, the choice of a basis

for the tangential space of the local unstable manifold of e is a seed. Moreover,

two such bases induce the same isomorphism if and only if they have the same

orientation in the traditional sense (Proposition 4.7). Therefore, we call these

isomorphisms orientations.

We define a connected simple system Sn, the only object of which is

(Dn/Sn−1, [Sn−1]), and the only morphism is the identity on Dn/Sn−1. Now, we

can understand 〈f〉:Sn → C(π, {e}) as a morphism of connected simple systems.

There is a natural choice (Definiton 6.14) of ismorphisms µq:Z → Hq(Sq),
q ∈ Z, which is unique up to the choice of µ0. Choosing orientations for the

attractor and the repeller and using µq, the connecting homomorphism will be

expressed as the multiplication by a number θ ∈ Z. Of course, θ could be

defined using an arbitrary family of isomorphisms µq, but then our formulas

for the connecting homomorphism would depend on the Morse indices of the

equilibria.

So far, we have sketched the first part of this paper. In Section 6 and 7, we

will apply these seed induced orientations to the problem of computing the sign

of connecting homomorphisms. We will start with classes of linear skew product

semiflows and relate the number θ introduced above to the linear skew product

semiflow. These are exactly the linear skew product semiflows considered in [6].

They are typically (4) defined by equations of the following kind:

ẋ = 1− x2,

ẏ +Ay = F (x)y.

The first equation is an ordinary differential equation on the real interval ]−2, 2[,

A is a sectorial operator satisfying certain assumptions on its spectrum, and F

maps the interval [−2, 2] continuously (or sufficiently continuously) into L(Xα,X),

where X is a Banach space and Xα the α-th fractional power space defined with

respect to A in the sense of [5]. (u(t), v(t)) is a solution of the equation above

(resp. its associated semiflow) if u(t) is a solution of ẋ = 1−x2 and v(t) is a mild

solution of ẏ +Ay = F (u(t))y.

We will make some additional assumptions so that there are finitely many

eigenvectors of A − F (±1) which belong to the eigenvalues with positive real

part. One is then able to show that a family Fλ for which these eigenvectors

(precisely the subspace of X they span) are independent of λ induces a family

of linear skew product semiflows for which θ, as introduced above, is constant.

Hence, one can compute θ for the simplest case and extend the result to less

restrictive assumptions on F .

(3) This is the prototypical example; the result is formulated in a more general form.
(4) There is one technical generalization.
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In [6], we related every heteroclinic solution to a linear skew product semiflow.

In this paper, we proceed backwards and generalize the technical result for linear

skew product semiflows to a formula for the connecting homomorphism for the

heteroclinic solution.

We will now demonstrate how the abstract results above can be applied to

reaction diffusion equations. Let Ω ⊂ RN be a bounded domain and let ∂Ω

be of class C2. Let 2 ≤ p < ∞ and f : Ω × R → R. Suppose that for almost

all x ∈ Ω, there is a partial derivative fu(x, u) which is continuous in u and

that ess sup
x∈Ω

sup
|u|≤r

|fu(x, u)| < ∞ for all r ∈ R+. Assume further that f and

(x, u) 7→ fu(x, u) are Carathéodory functions.

We consider the problem:

ut(x, t) = ∆u(x, t) + f(x, u(x, t)), t > 0, x ∈ Ω,

u(x, t) = 0, t > 0, x ∈ ∂Ω.

Let Ap denote the closure of −∆: {u ∈ C2(Ω):u|∂Ω = 0} → Lp(Ω) =: X in

W 2,p(Ω) and define the Nemitskĭı (superposition) operator f̂ ∈ C1(C(Ω), Lp(Ω)) by

(f̂(u))(x) := f(x, u(x)) x ∈ Ω

so that (Df̂(ξ)η)(x) = fu(x, ξ(x))η(x) almost everywhere.

For k sufficiently large, Ap+kI is a positive sectorial operator having compact

resolvent. Letting ξ ∈ Xα, it follows that all eigenvalues of A−Df̂(ξ) are real.

Let p ≥ max{2, N}, A := Ap, and v:R → Xα be a heteroclinic mild solu-

tion of

(1.1) ẋ+Ax = f̂(x)

and suppose that v(t) → e± as t → ±∞ in Xα (resp. C(Ω)). It follows that

v ∈ C1(R, Lp(Ω)). Choosing 0 < α < 1 large enough, we can further assume

that there is a continuous inclusion Xα ⊂ C(Ω) (see [5, Theorem 1.6.1]).

Theorem 1.1 ([6]). Let u be a heteroclinic mild solution of (1.1) with u(t)→
e± as t→∞ in Xα (resp. C(Ω) or Lp(Ω)) and suppose that

(a) e+, e− are hyperbolic equilibria,

(b) the Morse indices satisfy m(e−) = m(e+) + 1,

(c) all eigenvalues of A−Df(e±) are simple,

(d) eλt(u(t)− e+) 6→ 0 for some λ ∈ R, and

(e) every full bounded in Xα (resp. C(Ω) or Lp(Ω)) mild solution of

ẏ +Ay = Df̂(u(t))y

is a multiple of u̇.
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Then the homotopy Conley index h(π, u) of u := cl{u(t) : t ∈ R} is well-defined

and trivial, that is, h(π, u) = 0, where π denotes the semiflow which is induced

by mild solutions of (1.1).

Suppose that for every r ∈ R there exist constants δ > 0 and C ∈ R+ such

that

ess sup
x∈Ω

sup
|u1|,|u2|≤r

|fu(x, u1)− fu(x, u2)| ≤ C|u1 − u2|δ.

Then for every 1 ≤ q ≤ ∞, Df̂ :C(Ω) → L(Lq(Ω), Lq(Ω)) is locally Hölder

continuous, assumption (d) in Theorem 1.1 holds.

Suppose that u is a solution of π for which the assumptions of Theorem 1.1

hold. For each of the equilibria e− and e+, there are A − Df(e−)-invariant

(resp. A−Df(e+)) subspaces E−(e−) (resp. E−(e+)) associated with {Reσ(A−
Df(e−)) < 0} (resp. {Reσ(A−Df(e+)) < 0}).

By E = E1 ⊕ E2, we mean that E1 and E2 are closed linear subspaces of

a normed space E with E1∩E2 = {0} and E = E1+E2. The canonical projection

P :E1 ⊕ E2 → E1 is given by P (e1 ⊕ e2) := e1.

Provided that the assumptions of Theorem 1.1 hold, we obtain that

dimE−(e−) = dimE−(e+) + 1 =: n+ 1 for some n ∈ N.

Let {x1, . . . , xn+1} be a basis for E−(e−) consisting of eigenvectors of A−Df(e−)

and let {y1, . . . yn} denote an (arbitrary) basis for E−(e+). These bases define

toplinear isomorphisms Φ−1:Rn+1 → E−(e−), Φ̂−1:Rn → span{x1, . . . , xi−1,

xi+1, . . . , xn+1}, and Φ1:Rn → E−(e+), where we set

Φ−1(µ̃1, . . . , µ̃n+1) :=

n+1∑
k=1

µ̃kxk,

Φ̂(µ̃1, . . . , µ̃n) := Φ−1(µ̃1, . . . , µ̃i−1, µ̃i+1, . . . , µ̃n+1),

Φ1(µ̃1, . . . , µ̃n) :=

n∑
k=1

µ̃kyk.

Now, o−1(µ̃) := e− + Φ−1(µ̃) (resp. o1(µ̃) := e+ + Φ1(µ̃)) defines a seed for

(π, e−) (resp. (π, e+)). Both seeds induce orientations, that is, they induce

isomorphisms of connected simple systems, 〈o−1〉:Sn+1 → C(π, {e−}) (resp.

〈o1〉:Sn → C(π, {e+})).
Under the assumptions of Theorem 1.1, it holds that ‖u(t)− e−‖−1

α (u(t)−e−)

converges to an eigenvector ±xi of A−Df(e−) as t→ −∞.

We can further assume that there is an eigenvector η of A − Df(e+) with

‖u(t)− e+‖−1
α (u(t)− e+)→ η as t→∞. η belongs to an eigenvalue λ > 0. If F

is an A−Df(e+) invariant subspace of X such that X = E−(e+)⊕span{η}⊕F ,

then, for large t ∈ R, there is a decomposition of X, which defines a family

P (t):E−(e+)⊕span{u̇(t)}⊕F → E−(e+) of canonical projections. Furthermore,
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let Πt denote the semigroup associated with the semiflow π, that is, Πt(x) = xπt,

t ∈ R+. It follows from our assumptions that, for every t ∈ R+, Πt is continuously

differentiable.

We now consider a linear operator Rn → Rn:

C(t,∆, u) := Φ−1
1 ◦ P (t+ ∆) ◦DΠ∆(u(t)) ◦ Φ̂.

It describes the geometrical connection from E−(e−) to E−(e+) given by linea-

rization of π along u. Let δ(u) := lim
(t,t+∆)→(−∞,∞)

sgn detC(t,∆, u).

Theorem 1.2. Suppose that e− and e+ are hyperbolic equilibria. Then for

every heteroclinic solution u(t) which satisfies:

(a) u(t)→ e± as t→ ±∞,

(b) ‖u(t)− e−‖−1
α (u(t)− e−)→ νxi as t→ −∞, ν ∈ {−1, 1}, and

(c) the assumptions of Theorem 1.1,

it holds that δ(u) is well defined and

∂q ◦Hq〈o−1〉 ◦ µq = ν · (−1)1+i · δ(u) ·Hq−1〈o1〉 ◦ µq−1.

Here, ∂q:Hq〈π, {e−}〉 → Hq−1〈π, {e+}〉 denotes the q-th connecting homomor-

phism associated with u, which is the connecting homomorphism associated with

(u(R) ∪ {e−, e+}, {e+}, {e−}).

The theorem is an immediate consequence of Theorem 7.4.

2. Preliminaries

2.1. Notation. Although most of the notation is more or less standard,

a couple of symbols should at least be mentioned. R+ (resp. R−) denotes the

set of all non-negative (resp. non-negative) real numbers. Wu and W s denote

unstable respectively stable manifolds, the precise meaning is given when they

are used. σ is used to designate the spectrum of an operator. The open (resp.

closed) ball with radius r and center x is denoted by Br(x) (resp. Br[x]). If X

is a set, then #X denotes the cardinality of X.

Given normed spaces X and Y , and a continuous linear operator F ∈
L(X,Y ), ‖F‖X,Y is used sometimes to make the norm unambiguous. ISO(X,Y )

denotes the set of all F ∈ L(X,Y ) which are toplinear isomorphisms. The notion

of fractional power spaces follows [5]. If F ∈ L(Xα, Xβ), then ‖F‖α,β denotes

the operator norm.

Finally, if X, Y are topological spaces, f :X → Y is a homeomorphism, and

π is a (local) semiflow on X, then f [π] is the semiflow on Y which is obtained

by conjugacy, that is, u is a solution of π if and only if f ◦u is a solution of f [π].
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2.2. Conley index. The purpose of this section is to give a short overview

over the most important concepts of Conley index theory for semiflows on metric

spaces. A more detailed exposition can be found in [2] and [9].

Let B be a topological space and A ⊂ B. Let (Ã, B̃) := (A,B) if B 6= ∅ and

(Ã, B̃) := (A ∪ {∗}, {∗}) (5) (endowed with the sum topology) otherwise. Now

let A/B denote the set of equivalence classes in Ã where a, ã ∈ Ã are related if

they are equal or {a, ã} ⊂ B̃. A/B is equipped with the quotient topology.

Let π be a local semiflow defined on a metric space X. A subset S ⊂ X

is called invariant if for every x ∈ S there exists a full solution u:R → S of π

through x that is, u(0) = x.

Let Y ⊂ X, (xn)n a sequence in Y , and (tn)n a sequence in R+ such that

tn →∞ and xnπ[0, tn] ⊂ Y . Y is called π-admissible if the sequence of endpoints

xnπtn is relatively compact for every such pair of sequences. We say that π does

not explode in Y if for every x ∈ Y either xπt is defined for all t ∈ R+ or there

is a t0 ∈ R+ such that xπ[0, t0] is defined and xπt0 6∈ Y . Y is called strongly

π-admissible if it is π-admissible and π does not explode in Y .

Now let Z, Y ⊂ X. Z is called Y -positively invariant if it holds that xπ[0, t] ⊂
Z whenever x ∈ Z, xπ[0, t] is defined and xπ[0, t] ⊂ Y .

Z is called an exit ramp for Y if for every x ∈ Y with xπ[0, t] defined and

6⊂ Y , there is a t0 ∈ [0, t] such that xπ[0, t0] ⊂ Y and xπt0 ∈ Z.

Definition 2.1 (Definition 2.4 in [2]). A pair (N1, N2) is called an FM-index

pair for (π, S) if:

(a) N1 andN2 are closed subsets of X withN2 ⊂ N1 andN2 isN1-positively

invariant;

(b) N2 is an exit ramp for N1;

(c) S is closed, S ⊂ intX(N1 \ N2) and S is the largest invariant set

in clX(N1 \N2).

Assume that there exists a strongly π-admissible isolating neighbourhood N

for S, that is, N ⊂ X is a closed and strongly π-admissible neighbourhood of S

such that S is the largest invariant set in N . Then the homotopy Conley index

h(π, S) is defined to be the homotopy type of (N1/N2, {[N2]}) where (N1, N2) is

an FM-index pair for (π, S) such that clX(N1 \N2) is strongly π-admissible.

Let u(t) satisfy the assumptions of Theorem 1.1 and let π denote the semiflow

on Xα induced by mild solutions of (1.1). Then S := u := clX{u(t) : t ∈ R} is an

isolated invariant set admitting a strongly π-admissible isolating neighbourhood.

In particular, the homotopy Conley index h(π, u) is well-defined under these

assumptions.

(5) We assume that ∗ 6∈ A.
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Furthermore, (π, u, e+, e−) is an attractor-repeller decomposition of u. Sup-

pose we are given an arbitrary attractor-repeller decomposition (π, S,A,A∗).

A triple (N1, N2, N3) is an FM-index triple for (π, u,A,A∗) if (N1, N3) is an FM-

index pair for (π, u) and if (N2, N2) is an FM-index pair for e+. As a consequence,

the sequence

(2.1) ∆(N2/N3)/∆{[N3]} i //∆(N1/N3)/∆{[N3]}
p
//∆(N1/N2)/∆{[N2]}

is weakly exact. Here, ∆ denotes the singular chain functor, which passes a topo-

logical space to its singular chain complex. Generally, a sequence of chain maps

C1
i // C2

p
// C3

is called weakly exact if p ◦ i = 0, ker i = 0, and [x] 7→ p(x) induces an iso-

morphism Hq(C2/ im i) → Hq(C3). There is a covariant functor which passes

weakly exact sequences of chain maps to long exact sequences in singular homo-

logy. Applying this functor to (2.1), one obtains a long exact sequence

//Hq+1(N1/N2, {[N2]})
∂q+1
//Hq(N2/N3, {[N3]}) //Hq(N1/N3, {[N3]}) //

Since these sequences are rather lengthy, we will abbreviate them sometimes by

//Hq+1[N1/N2]
∂q+1

//Hq[N2/N3] //Hq[N1/N3] //

The boundary operator (∂q)q∈Z is called the connecting homomorphism asso-

ciated with the weakly exact sequence or, if appropriate, the attractor-repeller

decomposition. In the context of a heteroclinic solution u, the connecting homo-

morphism associated with u will denote the connecting homomorphism of u.

We will frequently use the notion of S-continuity. It has been defined in [9,

Definition I.12.1]. Let Λ be a metric space and (πλ,Kλ)λ∈Λ be a family for which

the following holds:

(1) For every λ ∈ Λ, πλ is a local semiflow on X and Kλ ⊂ X.

(2) For every λ ∈ Λ, there is a strongly πλ-admissible isolating neighbour-

hood Nλ for Kλ relative to πλ.

(3) Whenever λn → λ in Λ, then πλn → πλ, Nλ is a strongly πλn -admissible

isolating neighbourhood for Kλn relative to πλn for all n sufficiently

large, and Nλ is (πλn)n-admissible.

These conditions are equivalent to the original definition.

2.3. Categories of connected simple systems. For the convenience

of the reader, we will recall a few concepts from [2]. A connected simple system is

a small category such that, given any two objects, there is exactly one morphism

between them.
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Now, let K be an arbitrary category, and define another category [K]. The

objects of [K] are all subcategories of K which are connected simple systems. Let

L be an object of [K]. In this context, a morphism of L will be called an inner

morphism. A morphism between K1 and K2 in [K] is a family

(fA,B)A∈Obj(K1), B∈Obj(K2)

of morphisms in K such that

A
fA,B

//

��

B

��

A′
fA′,B′

// B′

is commutative where the vertical arrows denote the (unique) inner morphisms

in K1 respectively K2 (here, we do not follow [2] exactly).

Let K1 and K2 be objects of [K], A (resp. B) be an object of K1 (resp. K2)

and f be a morphism between A and B. Then there is exactly one morphism F

of K with f = F (A,B); this morphism is denoted by [f ].

Let T OP denote the category of pointed topological spaces and HT the cor-

responding homotopy category, that is, morphisms of HT are equivalence classes

of morphisms in T OP, which are continuous, base-point preserving mappings.

As shown in [2], there is a singular homology functor on [HT ]. The q-th

singular homology is denoted by Ĥq or Hq for short.

2.4. Conley indices as a category. Recall that in [2] the categorial Con-

ley-Morse index is defined as a connected simple system, the objects of which

are certain FM -index pairs of an invariant set admitting a strongly admissible

isolating neighbourhood.

Let (X, d) be a metric space, π a (local) semiflow on X, and S an iso-

lating invariant set admitting a strongly π-admissible isolating neighbourhood.

Then there is an FM-index pair (N1, N2) for (π, S) with the additional property

that cl(N1 \ N2) is strongly π-admissible. In this case, we say that (N1, N2)

is a strongly π-admissible isolating neighbourhood for (π,K). Note that, in

general, we neither need nor make the stronger assumption that N1 is strongly

π-admissible.

Now, the Conley index C(π, S) of (π, S) is an object of [HT ] (see [2]). The ob-

jects of C(π, S) are all pointed spaces of the form (N1/N2, {[N2]}) where (N1, N2)

is a strongly admissible FM-index pair for (π, S). If (N1, N2) ⊂ (M1,M2) are

strongly admissible FM-index pairs for (π, S), then the inclusion induced (see [9])

morphism (N1/N2, {[N2]})→ (M1/M2, {[M2]}) is a morphism of C(π, S).

We will use Hq〈π, S〉 := Ĥq(C(π, S)) to denote the homology Conley index of

(π, S) as defined in [2, Definition 4.3]. The notation of π is sometimes omitted.



Conley Index Orientations 181

Let (X̃, d̃) be another metric space, π̃ a local semiflow on X, and S̃ be an isolating

invariant set admitting a strongly π̃-admissible isolating neighbourhood. Then,

given a morphism

[f ]: C(π, S)→ C(π̃, S̃),

there is a unique induced morphism

Hq〈f〉 := Hq〈[f ]〉:Hq〈π, S〉 → Hq〈π̃, S̃〉.

2.5. Linearizable semiflows. Let X be a Banach space and let π′ be

a global semiflow on X generating a C0-semigroup of linear operators, that is,

for every t ∈ R+ the map T (t):X → X, T (t) := xπ′t, is linear. We will call such

a semiflow linear.

Suppose there is a direct sum X = X1 ⊕ X2 of invariant subspaces, X1 is

finite-dimensional, T (t) can be uniquely extended to t ∈ R− to form a C0-group

on X1, and there are constants M, δ ∈ R+ \ {0} such that

(2.2)
‖T (t)x‖ ≤Meδt‖x‖, x ∈ X1, t ∈ R−,
‖T (t)x‖ ≤Me−δt‖x‖, x ∈ X2, t ∈ R+.

These are the assumptions of [9, Theorem I.11.1]. Letting V +(x) and V −(x)

be defined as in the proof of this theorem, there exists a ρ ∈ R+ such that

N1 := {x ∈ X:V +(x) ≤ ρ and V −(x) ≤ ρ} and N2 := {x ∈ N1:V +(x) = ρ}
defines a strongly π′-admissible FM-index pair (N1, N2).

Suppose that U ⊂ Xα is an open neighbourhood of 0, π a semiflow on U ,

and {0} an isolated invariant set relative to π admitting a strongly π-admissible

isolating neighbourhood.

Definition 2.2. Let P := Pπ:X → X1 denote the projection with kerP =

X2. π is called strongly linearizable (at 0) if there exists an S-continuous family

(πλ, {0})λ∈[0,1] such that:

(a) π1 = π and

(b) π0 is a linear semiflow for which the assumptions above hold;

(c) for every λ ∈ [0, 1], there exists a neighbourhood U = Uλ of 0 such

that ‖xn‖−1
Pxn → 0 whenever xn ∈ Inv+

πλ
(U) \ {0} is a sequence with

xn → 0 as n→∞.

π′ := π0 is called a linearization of π.

Roughly speaking, the above notion of being strongly linearizable holds for

hyperbolic equlibria of the parabolic evolution equations considered in this paper.

Proposition 2.3. Suppose that the semiflow π on U ⊂ Xα is given by mild

solutions of a semilinear parabolic equation ẋ+Ax = f(x) such that:

(a) A is sectorial and has compact resolvent;



182 A. Jänig

(b) f :U → X is locally Lipschitz continuous; f(0) = 0, f has a Fréchet

derivative Df(0) at 0;

(c) L := A−Df(0) is hyperbolic.

Then π is strongly linearizable.

Proof. For λ ∈ [0, 1], let fλ(x) := (1 − λ)(f(x) − Df(0)x) and πλ be the

semiflow defined by mild solutions of ẋ + Lx = fλ(x). Note that π1 = π and

f0 ≡ 0.

Then, (πλ, {0})λ∈[0,1] is an S-continuous family [9, Theorem II.3.5]. As be-

fore, let X = X1⊕X2, where X1 belongs to {<σ(l) < 0} and X2 to {<σ(L) > 0}.
This decomposition of X is the same for all λ ∈ [0, 1] since Dfλ(0) = 0 for all

λ ∈ [0, 1]. Let P−(0):X → X1 and P+(0):X → X2 denote the associated

projections.

Let λ ∈ [0, 1] be arbitrary but fixed. For ρ > 0, set

Uρ,λ := Uρ := {x ∈ Xα: ‖P−(0)(x)‖α + ‖P+(0)(x)‖α ≤ ρ}.

It follows from [5, Theorem 5.2.1] that Inv+(Uρ) ⊂ S provided that ρ is small

enough. Here, S denotes the local stable manifold as defined in [5, Theorem

5.2.1]. It is tangent to X2, which means that ‖xn‖−1
α P (xn) = ‖xn‖−1

α (xn −
P+(0)(xn))→ 0 whenever xn is a sequence in S \ {0} with xn → 0 in Xα.

This proves that πλ is a sequence which satisfies Definition 2.2, so π is indeed

strongly linearizable. �

Definition 2.4. Let f(x) := x−a be defined in a neighbourhood of a in Xα.

Then π is called strongly linearizable in a if f [π] is strongly linearizable.

3. Orientations and seeds

Throughout this section, let X be a metric space, e ∈ X, and π a local

semiflow defined in a neigborhood of e in X such that {e} is an isolated invariant

set admitting a strongly π-admissible isolating neighbourhood.

For n ∈ N ∪ {0}, Sn is an object of [HT ] (a connected simple system),

which has itself only one object, namely (Dn/Sn−1, {[Sn−1]}), and exactly one

morphism: the identity id: (Dn/Sn−1, {[Sn−1]})→ (Dn/Sn−1, {[Sn−1]}).

Definition 3.1. An (n-)orientation is an ismorphism o:Sn→C(π, S) in [HT ].

We will now develop a method which is based on continuous mappings Rn→
X to obtain orientations or, depending on the point of view, to describe them.

These mappings are called seeds, and they may or may not induce orientations.

Before defining them, we will introduce a few additional notational shortcuts:

A/B denotes the pair (A/B, [B]), that is, the explicit notation of the basepoint

is omitted in order to keep certain diagrams readable. For every FM-index pair
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(N1, N2) for (π, {e}), define N−s2 := N−s2 (N1) := {x ∈ N1 : ∃ t ∈ [0, s], xπt ∈
N2} and N−∞2 := N−∞2 (N1) := {x ∈ N1 : ∃ t ∈ R+, xπt ∈ N2}, that is,

N−∞2 =
⋃

s∈R+

N−s2 (see also [2, Proposition 4.6]).

Definition 3.2. Let n ∈ N ∪ {0}, U ⊂ Rn, f :U → X continuous with

f(0) = e, and for every strongly π-admissible FM-index pair (N1, N2) let there

exist a λ ∈ R+ such that fλ(x) := f(λx) is defined for all x ∈ Dn and fλ(x) ∈
N−∞2 for all x ∈ Dn \ {0}. Then f is called a seed for (π, e).

It is not a priori clear whether seeds exist.

Lemma 3.3. Let (N1, N2) be a strongly π-admissible FM-index pair for

(π, {e}), λ ∈ R+, and f be a seed such that fλ(x) is defined for all x ∈ Dn

and fλ(Dn) ⊂ N1. Let Ω := {g:Dn → N1: g is continuous and g(0) = e} be

equipped with the maximum metric. Then there is an s ∈ R+ and a neighbour-

hood Ufλ of fλ|Dn in Ω such that g(Dn, Sn−1) ⊂ (N1, N
−s
2 ) for all g ∈ Ufλ .

Proof. Let τ(x, g) := sup{t ∈ R+ : g(x)πt ∈ cl(N1 \ N2)}. We have

τ(x, fλ) <∞ for all x ∈ Sn−1 because f is a seed.

Let x ∈ Sn−1 and ε ∈ ]0, 1] with fλ(x)π(τ(x) + ε) ∈ X \ cl(N1 \N2). Since

X\cl(N1\N2) is an open set, there exist neighbourhoods Vx of x in Dn and Ux,fλ

of fλ|Dn ∈ Ω such that g(x)π(τ(x) + ε) 6∈ cl(N1 \N2) for all (x, g) ∈ Vx × Ux,fλ ,

showing that τ(ξ, g) ≤ τ(x) + ε ≤ τ(x) + 1 for all (ξ, g) ∈ Vx × Ux,fλ .

Due to the compactness of Sn−1, there are x1, . . . , xn ∈ Sn−1 such that

Sn−1 ⊂
⋃

k=1,...,n

Vxk . Letting Ũfλ :=
⋂

k=1,...,n

Uxk,fλ , it follows that τ(x, g) ≤

max
k=1,...,n

τ(xk, f
λ) + 1 =: s for all (x, g) ∈ Sn−1 × Ũfλ . Hence, for every (x, g) ∈

Sn−1 × Ũfλ we have g(x) ∈ N1 and g(x)πr 6∈ N1 for some r ∈ [0, s], showing

that g(x) ∈ N−s2 . �

Lemma 3.4. Let f :U → X, U ⊂ Rn, be continuous with f(0) = e, and sup-

pose that there exist a strongly π-admissible FM-index pair (N1, N2) for (π, {e})
and a λ ∈ R+ such that fλ(x) is defined for all x ∈ Dn and fλ(Dn\{0}) ⊂ N−∞2 .

Then f is a seed.

Proof. Let (M1,M2) be a strongly π-admissible FM-index pair for (π, {e})
and let x ∈ Dn \ {0}. By our assumptions, there exists a strongly π-admissible

FM-index pair (N1, N2) for (π, {e}) and a λ ∈ R+ with fλ(Dn \ {0}) ⊂ N−∞2 .

The set N := cl(N1\N2) is an isolating neighbourhood for (π, {e}), and (Ñ1, Ñ2)

:= (N1 ∩N,N2 ∩N) is again a strongly admissible FM-index pair.

By the continuity of f and because e ∈ intN , there is a λ̃ ∈ ]0, λ] such that

f λ̃(Dn) ⊂ Ñ1. We have N1 \N2 = Ñ1 \ Ñ2, showing that f λ̃(Dn \ {0}) ⊂ Ñ−∞2 .

It follows from [2, Lemma 4.8] that there are an s ∈ R+ and a strongly

π-admissible FM-index pair (L1, L2) for (π, {0}) such that L1 is an isolating
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neighbourhood for (π, {e}) and

(M1,M2) ⊂ (M1,M
−s
2 ) ⊃ (L1, L2) ⊂ (Ñ1, Ñ

−s
2 ) ⊃ (Ñ1, Ñ2).

We can choose
˜̃
λ ∈ ]0, λ̃] such that f

˜̃
λ(Dn) ⊂ L1.

For every x ∈ Dn \ {0}, it follows that f
˜̃
λ(x)πt 6∈ Ñ1 ⊃ L1 for some t ∈ R+

because Ñ1 is an isolating neighbourhood and f
˜̃
λ(x) ∈ Ñ−∞2 for all x ∈ Dn\{0}.

Hence, there exists an r ∈ [0, t] with f
˜̃
λ(x)πr ∈ L2, showing that f

˜̃
λ(x) ∈

M−∞2 . �

Definition 3.5. Let (N1, N2) be a strongly π-admissible FM-index pair for

(π, {e}), f a seed, and λ ∈ R+ such that fλ(x) is defined for all x ∈ Dn and

fλ(Dn \ {0}) ⊂ N−∞2 . f := fN1,N2
:Dn/Sn−1 → N1/N2 denotes the unique

morphism in HT for which

N1/N
−s
2 N1/N2

⊃
oo

Dn/Sn−1

fλ

OO

f

99ssssssssss

commutes whenever fλ(Sn−1) ⊂ N−s2 , s ∈ R+.

The subscript of f , although important, is often omitted when the FM-index

pair is clear from the context.

Definition 3.6. Let f be a seed for (π, e), and let 〈f, π, e〉:Sn → C(π, {e})
denote the morphism in [HT ] for which

〈f, π, e〉((Dn/Sn−1, {[Sn−1]}), (N1/N2, {[N2]})) = fN1,N2

whenever (N1, N2) is a strongly admissible FM-index pair for (π, {e}). Since

e = f(0) by the assumption of f being a seed, we will also write 〈f, π〉.

Lemma 3.7. Let (N1, N2) be a strongly admissible FM-index pair for

(π, {e}). Then f :Dn/Sn−1 → N1/N2 is well-defined.

Proof. There are two parameters involved in Definition 3.5, s and λ. First-

ly, we will consider s. Given r, s ∈ R+ with fλ(Sn−1) ⊂ N−r2 ⊂ N−s2 , there is

a commutative diagram

N1/N
−s
2 N1/N

−r
2

⊃
oo N1/N2

⊃
oo

Dn/Sn−1

fλ

OO
fλ

88rrrrrrrrrr f

44iiiiiiiiiiiiiiiiiiii

showing that r and s induce the same morphism f .
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Secondly, it follows from Lemma 3.3 that, for every µ ∈ ]0, λ] there are an

s ∈ R+ and a neighbourhood U of fµ|Dn in Ω such that

N1/N
−s
2 N1/N2

⊃
oo

Dn/Sn−1

[fµ]

DD

g

ZZ

f

99ssssssssss

is defined for all g ∈ U and commutative whenever g is homotopic to [fµ]. Since

f µ̃(Dn) ⊂ fµ(Dn) ⊂ N1 for all µ̃ ≤ µ, one has f µ̃ ∈ U for all µ̃ ≤ µ large

enough. Hence, µ 7→ fµN1,N2
is locally constant on ]0, λ], which is connected. �

Using [9, Proposition I.8.2], it is easy to give a direct formula for f . Let f be

a seed for (π, e), (N1, N2) be a strongly admissible FM-index pair for (π, {e}),
and λ ∈ R+ be sufficiently small that fλ(Dn) is defined and fλ(Dn) ⊂ N1.

Then, f = [g]HT where g:Dn/Sn−1 → N1/N2,

g([x]) :=

{
[fλ(x)πs] fλ(x)π[0, s] is defined and fλ(x)π[0, s] ⊂ N1 \N2,

[N2] otherwise.

Lemma 3.8. Let Ω := {g:Dn → X : g is a seed for (π, e)} be equipped with

the maximum metric. Then g 7→ g, is constant on path components of Ω.

Proof. Let λ 7→ gλ, [0, 1] → Ω be continuous. It is sufficient to show that

g 7→ g is locally constant.

Let (N1, N2) be a strongly admissible FM-index pair for (π, {e}) and λ0 ∈
[0, 1]. There exists a µ > 0 such that

gµλ0
(Dn) ⊂ int(N1 \N2).

Hence, there is a neighbourhood U of gλ0
in Ω such that

hµ(Dn) ⊂ int(N1 \N2)

for all h ∈ U . By Lemma 3.3, there is another neighbourhood Ũ ⊂ U of gλ0
in

Ω and an s ∈ R+ such that

hµ(Sn−1) ⊂ N−s2

for all h ∈ Ũ . The continuity of λ 7→ gλ now implies that there is a neighbourhood

of V of λ0 in [0, 1] such that gλ ∈ Ũ for all λ ∈ V , so for λ ∈ V

Dn/Sn−1

gλ
((

gλ0

77
N1/N

−s
2

is defined and commutative. This implies that gλ is constant on V . �
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Lemma 3.9. Let (N1, N2) and (M1,M2) be strongly admissible FM-index

pairs for (π, {e}) and f a seed. Then

M1/M2
α // N1/N2

Dn/Sn−1

f

OO

f

99ssssssssss

commutes, where α denotes the inner morphism of the categorial Conley index.

Proof. In view of [2, Lemma 4.8], it is sufficient to prove our claim in the

special case (M1,M2) ⊂ (N1, N2). It follows immediately from the definitions of

M−s2 and N−s2 that M−s2 ⊂ N−s2 for all s ∈ R+.

By Lemma 3.3, we may choose s ∈ R+ and λ ∈ [0, 1] such that

(3.1)

M1/M2
⊂

//

⊂
��

N1/N2

⊂
��

M1/M
−s
2

⊂
// N1/N

−s
2

Dn/Sn−1

fλ

OO

id
// Dn/Sn−1

fλ

OO

is defined and commutative. Consequently, composing the vertical arrows,

M1/M2
⊂

// N1/N2

Dn/Sn−1

f

OO

id
// Dn/Sn−1

f

OO

commutes by Definition 3.5. �

Proposition 3.10. Let (πk)k∈N∪{∞} be a family of semiflows such that

πk → π∞ := π and let (N1,∞, N2,∞), (Ñ1,∞, Ñ2,∞) be strongly π∞-admissible

FM-index pairs for (π∞, {e}) such that N1,∞ is a strongly admissible isolating

neighbourhood for (π∞, {e}). Further, let (N1,k, N2,k)k∈N, (Ñ1,k, Ñ2,k)k∈N be

families of strongly πk-admissible FM-index pairs for (πk, {e}) such that

(Ñ1,k, Ñ2,k) ⊂ (Ñ1,∞, Ñ2,∞) ⊂ (N1,k, N2,k) ⊂ (N1,∞, N2,∞)

for all k ∈ N. Finally, let f :Dn → X be a common seed, that is, for every

k ∈ N ∪ {∞} it holds that f is a seed for (πk, e). Then there is an n0 ∈ N such
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that

Ñ1,k/Ñ2,k
⊂

// N1,l/N2,l

Dn/Sn−1

f

ffMMMMMMMMMM f

88rrrrrrrrrr

is commutative for all k, l ∈ N ∪ {∞} with k, l ≥ n0.

Lemma 3.11. In addition to the hypothesis of Proposition 3.10 let λ ∈ ]0, 1]

such that fλ(Dn) ⊂ N1,k and r ∈ R+. Then:

(a) M := Mλ,r := {(x, s) ∈ Sn−1 × [0, r] : fλ(x)π[0, s] ⊂ Ñ1,∞} is compact.

(b) g := gλ: [0, r]×Dn → Ñ1,∞/Ñ2,∞,

g(s, x) :=

{
fλ(x)πs fλ(x)π∞[0, s] is defined and fλ(x)π[0, s] ⊂ Ñ1,∞,

[Ñ2,∞] otherwise,

is continuous.

(c) There is a τ ∈ R+ such that g([0, r] × Sn−1) ⊂ N−τ2,k /Ñ2,∞ for all

k ∈ N ∪ {∞} sufficiently large.

Proof. (a) Sn−1× [0, r] is compact, so it suffices to prove that M is closed.

Let (xk, sk) → (x0, s0) in M and s ∈ [0, s0[. It follows that for all k ∈ N large

enough sk > s, so xkπs ∈ Ñ1,∞ and x0πs ∈ Ñ1,∞. Hence, by the closedness of

Ñ1,∞, we have x0π[0, s0] ⊂ Ñ1,∞, and thus (x0, s0) ∈M .

(b) This follows from [9, Proposition I.8.1].

(c) Let M̃ := {(fλ(x), s) : (x, s) ∈ M}, x ∈ π(M̃), and note that π(M̃) ⊂
Ñ1,∞ ⊂ N1,k for all k ∈ N. By the assumption that N1,∞ is a (strongly admis-

sible) isolating neighbourhood of {e} relative to π, there is a t = tx ∈ R+ such

that fλ(x)πt ∈ X \ N1,∞. Otherwise, there would be a full solution of π lying

entirely in N2,∞ (using the strong admissibility), contradicting the assumption

of N1,∞ being an isolating neighbourhood.

Hence, there are n0 = n0(x) and a neighbourhood Ux of x in π(M̃) such

that Uxπkt ∈ X \ N1,∞ ⊂ X \ N1,k for all k ≥ n0. Consequently, for every

x ∈ Ux, there is an r ∈ [0, tx] with xπkr ∈ N2,k. The compactness of π(M̃)

implies that there are x1, . . . , xN ∈ π(M̃) with π(M̃) ⊂
⋃

i=1,...,N

Uxi . We can

choose τ := max
i=1,...,N

txi and n0 := max
i=1,...,N

n0(xi).

For every (s, x) ∈ D(g) one has either g(s, x) ∈ π(M̃) or g(s, x) = [Ñ2,∞], so

g(s, x) ∈ N−τ2,k /Ñ2,∞ for all k ≥ n0. �

Proof of Proposition 3.10. Let τ ∈ R+ be given by Lemma 3.11, and

assume that fλ(Sn−1) ⊂ N−s2,∞ for λ ∈ [0, 1] and s ∈ R+. It follows that there is
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an n0 ∈ N such that for all k ≥ n0

Dn/Sn−1

id

��

fλ
// Ñ1,∞/Ñ

−s
2,∞

Dn/Sn−1

id

��

g(s, · )
// Ñ1,∞/Ñ2,∞

⊂

OO

⊂
��

Dn/Sn−1

id

��

g(s, · )
// N1,k/N

−τ
2,k

id

��

Dn/Sn−1

g(0, · )
**

fλ
33
N1,k/N

−τ
2,k

commutes in HT . This shows that

N1,k/N2,k Ñ1,∞/Ñ2,∞
⊃
oo

⊂
// N1,l/M2,l

Dn/Sn−1

f

ffNNNNNNNNNNN
f

OO

f

88qqqqqqqqqqq

commutes for all k, l ≥ n0. It follows from Lemma 3.9 that

Ñ1,k/Ñ2,k
⊂
//

⊂

''

Ñ1,∞/Ñ2,∞
⊂
// N1,k/N2,k

Dn/Sn−1

f

ffNNNNNNNNNNN f

88ppppppppppp

is commutative and thus also

Ñ1,k/Ñ2,k
⊂
// Ñ1,∞/Ñ2,∞

⊂
≈
// N1,k/N2,k

Dn/Sn−1,

f

ffNNNNNNNNNNN
f

OO

f

88ppppppppppp

where ≈ indicates an isomorphism. Finally, we conclude that

Ñ1,k/Ñ2,k
⊂
// Ñ1,∞/Ñ2,∞

⊂
// N1,l/N2,l

Dn/Sn−1

f

ffNNNNNNNNNNN
f

OO

f

88qqqqqqqqqqq

commutes for all k, l ≥ n0. �
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Theorem 3.12. Let Λ be a connected metric space and let (πλ, {e})λ∈Λ be

an S-continuous family such that there exists a common seed f :Dn → X. If

there exists a λ0 ∈ Λ such that 〈f, πλ0 , e〉 is an isomorphism, then 〈f, πλ, e〉 is

an isomorphism for all λ ∈ Λ.

Proof. Let χ: Λ→ {0, 1} be defined by

χ(λ) :=

{
1 〈f, πλ, e〉 is an isomorphism,

0 otherwise.

It follows from [9, Theorem I.12.3] and Proposition 3.10 that χ is locally constant

on Λ, which is a connected metric space. �

4. Orientation for fixed points of linearizable semiflows

Throughout this section, let X be a Banach space and π, π′ be strongly

linearizable semiflows defined in a neighbourhood of 0. Moreover, suppose that

π′ is a linear semiflow, and let n = dimX1. Recall that the subspaces X1 =

PπX depends on the semiflow π. We will use the notation introduced in the

Preliminaries section.

Lemma 4.1. Let f :Dn → X be continuous, f(0) = 0, and 0 < θ ∈ R+ such

that

(4.1) ‖Pπ ◦ f(x)‖ > θ‖f(x)‖

for all x 6= 0 in a sufficiently small neighbourhood of 0. Then f is a seed for (π, 0).

Proof. Suppose that f is not a seed. By Definition 2.2, there exists a neigh-

bourhood U of 0 such that

(4.2) ‖yn‖−1
Pπ(yn)→ 0

whenever yn is a sequence in Inv+(U) \ {0} with xn → 0 as n→∞.

Let (N1, N2) be a strongly admissible FM-index pair with N1 ⊂ U . By

Lemma 3.4, there is a sequence 0 6= xn → 0 such that f(xn) ∈ Inv+(N1) ⊂
Inv+(U) for all n ∈ N.

We have f(xn) 6= 0 for all n ∈ N by (4.1). Since π is strongly linearizable, it

follows from (4.2) that

‖f(xn)‖−1
Pπ ◦ f(xn)→ 0,

a contradiction to (4.1). �

Remark 4.2. (4.1) holds if f(x) ∈ X1 for all x ∈ X. Moreover, (4.1) also

holds if f has a Fréchet-derivative Df(0) at 0 with ker(P ◦Df(0)) = {0}.
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Corollary 4.3. Let f :Dn → X1 be continuous and injective with f(0) = 0.

Further, let Λ be a connected metric space and let (πλ)λ∈Λ be an S-continuous

family of strongly linearizable semiflows with X1 = X1(πλ) being constant. Then

f is a seed for (πλ, 0) for all λ ∈ Λ. Furthermore, if there is a λ0 ∈ Λ such that

〈f, πλ0
, 0〉 is an isomorphism, then 〈f, πλ, 0〉 is an isomorphism for all λ ∈ Λ.

Proof. f is a seed for every πλ by Lemma 4.1 and the remark thereafter.

Thus, the claim follows from Theorem 3.12. �

Proposition 4.4. Let (N1, N2) be a strongly π′-admissible FM-index pair

for (π′, {0}), and let f :Dn → X1 be injective and continuous with f(0) = 0.

Then f :Dn/Sn−1 → N1/N2 is an isomorphism in the homotopy category of

pointed spaces.

0

Figure 1. Homotopy of a seed

Proof. It is shown in the proof of [9, Theorem I.11.1] that there exists an

isolating block B = B1 ⊕B2 with

B1 = {x ∈ X1 : V +(x) ≤ 1}, B2 = {x ∈ X2 : V −(x) ≤ 1}

and B− = ∂B1 ⊕B2. B1/∂B1 is a strong deformation retraction of B/B−, that

is, the inclusion induced mapping

(B1/∂B1, [B1])
⊂
// (B/B−, [B−])

is an isomorphism in the homotopy category of pointed spaces.

There exists a λ ∈ ]0, 1] such that fλ is injective and fλ(Dn) ⊂ intB1.

Moreover, there is a continuous functional ρ:Dn\{0} → R+ with fλ(x)π′(ρ(x)) ∈
∂B1 for all x ∈ Dn \ {0} (see [9, Lemma 3.8]).

Define g: [0, 1]×Dn → X1 by

g(µ, x) :=

{
fλ(x)π′(µκ(x) ρ(x)), x 6= 0,

0, x = 0,
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where κ:Dn → [0, 1] is continuous, κ(x) = 1 for all x ∈ Sn−1, and there is

a neighbourhood U of 0 in Dn with κ(x) = 0 for all x ∈ U . This is illustrated

in Figure 1: the grey area shows the image of fλ, the arrows indicate the flow

on B1. Lemma 4.1 and the remark thereafter imply that g(µ, · ) is a seed for

every µ ∈ [0, 1]. It follows from Lemma 3.8 that f = g(0, · ) = g(1, · ).
Both spaces, Dn/Sn−1 and B1/∂B1 are homeomorphic to Sn. Let h be

induced by the following commutative diagram in the category of pointed spaces,

where the vertical arrows denote isomorphisms:

(Dn/Sn−1, 0)
g(1, · )

//

≈
��

(B1/∂B1, 0)

≈
��

(Sn, o)
h

// (Sn, o)

o ∈ Sn can be chosen arbitrary as long as the morphisms are basepoint-preser-

ving.

We now have h−1({o}) = {o}. Since κ(x) = 0 in a neighbourhood of 0,

and by the injectivity of f , there is an open neighbourhood of V of o in Sn

such that h|V is injective. h(V ) is open by the invariance of domain, so h is

a local homeomorphism at o. Therefore, deg h = ±1 by [4, Proposition 2.2.30].

It follows that [h]HT is an isomorphism (see [12, Theorem VIII.10.1]). Therefore,

f = [g(1, · )]HT is also an isomorphism. �

It is now straightforward to formulate the following

Proposition 4.5. Let f :Dn → X1, f(0) = 0, be injective and continuous.

Then f is a seed for (π, 0), and 〈f, π, 0〉 is an orientation for (π, 0).

Proof. Since π is strongly linearizable, there is an S-continuous family

(πλ, {0}) with π1 = π and π′ := π0 being linear.

It follows from Proposition 4.4 that 〈f, π′, 0〉 is an isomorphism. Using Corol-

lary 4.3 and the definition of strong linearizability, one obtains that 〈f, π, 0〉 is

also an isomorphism. �

Corollary 4.6. Let f :Dn → X with f(0) = 0. Assume that the Fréchet-

derivative Df(0) exists and P ◦Df(0):Rn → X1 is an isomorphism. Then f and

P ◦Df(0) are seeds for (π, 0), and 〈f, π, 0〉 = 〈P ◦Df(0), π, 0〉 are orientations.

Proof. By Lemma 4.1, gλ:Dn → X,

gλ(x) := λf(x) + (1− λ)(P ◦Df(0))x,

is a seed for every λ ∈ [0, 1]. We have g0 = f , g1 = P ◦Df(0), so it follows from

Lemma 3.8 that gλ is constant.

Finally, 〈P ◦Df(0), π, 0〉 is an orientation by Proposition 4.5. �
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One might expect that an orientation is only a choice of a basis for X1.

The relationship between orientations (induced by the above seeds) and bases

is established by the following proposition, which states that compatible bases

induce the same orientation and vice versa.

Proposition 4.7. Let Φ1,Φ2 ∈ L(Rn, X1) be ismorphisms. Then 〈Φ1, π, e〉
= 〈Φ2, π, e〉 if and only if det Φ−1

2 Φ1 > 0.

Let E and F be finite-dimensional normed spaces. For A,B ∈ ISO(E,F ) let

A ∼ B (homotopic) if and only if there exists a family (Cλ)λ∈[0,1] in ISO(E,F )

such that

(1) C0 = A;

(2) C1 = B;

(3) λ 7→ Cλ is continuous.

It is well known [8, Proposition 9.36] that A ∼ B if and only if detA ·detB > 0.

Proof. The case n = 0 is trivial, so we may assume that n ≥ 1. Suppose

that det Φ−1
2 Φ1 > 0. Then, there exists H ∈ C([0, 1], ISO(Rn, X1)) such that

H(0, · ) = Φ1 and H(1, · ) = Φ2.

It follows from Lemma 4.1 that H(λ, · ) is a seed for all λ ∈ [0, 1] and from

Lemma 3.8 that 〈Φ1, π, 0〉 = 〈Φ2, π, 0〉.
In order to prove the only-if part, it is sufficient to show that there are Φ1,

Φ2 with 〈Φ1, π, 0〉 6= 〈Φ2, π, 0〉. Let Φ1 ∈ ISO(Rn, X1) be arbitrary and define

Φ2(x1, . . . , xn) := Φ1(−x1, x2, . . . , xn) so that det Φ−1
2 Φ1 = −1. Further, let

(N1, N2) be a strongly π-admissible FM-index pair for (π, {0}), λ ∈ ]0, 1], and

s ∈ R+ such that Φλ1 (Dn, Sn−1) ⊂ (N1, N
−s
2 ),

Setting α(x1, . . . , xn) := (−x1, x2, . . . , xn), it follows that

(4.3)

Dn/Sn−1

α

��

Φλ1 // N1/N
−s
2

Dn/Sn−1

Φλ2

99rrrrrrrrrr

is a commutative diagram in the category of pointed topological spaces. Hence,

passing (4.3) to singular homology, we obtain −1 = Hn(α) = Hn(Φλ2 )−1◦Hn(Φλ1 )

(see [4, Section 2.2] for the computation of Hq(α)). This shows that 〈Φ1, π, 0〉 6=
〈Φ2, π, 0〉. �

5. The effect of homeomorphisms

Definition 5.1. For every q ∈ Z, let µq:Z → Hq(Sq) be an isomorphism

and µ := (µq)q∈Z. Then, given an arbitrary morphism f :Hq+k[Sq+k]→ Hq(Sq),
k ∈ Z, there is a unique number θ(f) := θ(f, µ, q, k) such that f ◦ µq+k =

θ(f, µ, q, k) · µq.
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Until further notice, we will work with a fixed but arbitrary collection µ of

isomorphisms.

Let X and Y be Banach spaces and let π be a strongly linearizable local

semiflow on X. As in the previous section, let X1 = X1(π) be defined as in

the definition of strong linearizability and choose n := dimX1. Let U ⊂ X be

a neighbourhood of 0 in X, V ⊂ Y and f :U → V a homeomorphism. Using

orientations o1:Sn → C(π, {0}) and o2:Sn → C(f [π], {f(0)}), the action of f

can be described by its induced action f∗ on Sn, whose singular homology can

be expressed by a number θ ∈ Z.

Definition 5.2. Let o1, o2 be orientations for (π, 0), resp. (f [π], f(0)).

f∗ := f∗o1,o2 (we drop the subscript when no confusion can arise) denotes the

unique morphism in HT for which

Sn o1 //

f∗

��

C(π, {0})

〈f〉
��

Sn
o2
// C(f [π], {f(0)})

is commutative. Moreover, let θ(〈f〉) := θ(〈f〉, µ, o1, o2) := θ(Hn(f∗o1,o2), µ, n, 0).

In general, the morphism Hq(f
∗) depends on o1 and o2. However, if we

assume that X = Y , f(0) = 0, f is Fréchet-differentiable in 0, and Df(0) is an

isomorphism, then Hq(f
∗) depends only on Df(0):

Proposition 5.3. Suppose that Df(0) = idX , and let o:Dn → X1 be injec-

tive and continuous with o(0) = 0. Then:

(a) o is a seed for π and f [π];

(b) 〈o, π〉 and 〈o, f [π]〉 are orientations;

(c) θ(〈f〉, µ, 〈o, π〉, 〈o, f [π]〉) = 1.

Proof. Letting gr(x) := r(f−1◦o(x))+(1−r)o(x), there is a neighbourhood

U of 0 in Rn such that

‖Pgr(x)‖ ≥ ‖P (o(x))‖ − ‖P (f(o(x))− o(x))‖ ≥ 1

2
‖o(x)‖ > 0

for all x ∈ U \ {0} and all r ∈ [0, 1].

It follows from Lemma 4.1 that gr is a seed for (π, 0) for all r ∈ [0, 1] which

induces an orientation 〈gr, π〉 by Proposition 4.5. In view of Lemma 3.8, 〈gr, π〉
does not depend on r.

Moreover, since gr is a seed for (π, 0), f ◦ gr is a seed for (f [π], 0). We thus

have 〈o, f [π]〉 = 〈f ◦ g1, f [π]〉 = 〈f ◦ g0, f [π]〉 = 〈f ◦ o, f [π]〉.
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We need to show that

(5.1)

Sn
〈o,π〉

//

[id]

��

C(π, {0})

[f ]

��

Sn
〈o,f [π]〉

// C(f [π], {0})

is commutative.

Let (N1, N2) be a strongly π-admissible FM-index pair for (π, {0}). Then

there are λ ∈ ]0, 1] and s ∈ R+ such that

Dn/Sn−1 oλ //

id

��

N1/N
−s
2

f

��

Dn/Sn−1

(f◦o)λ
// f(N1)/f(N−s2 )

is commutative in T OP. Since o is a seed for f [π], we can assume without loss

of generality (choosing λ and s large enough) that

Dn/Sn−1 oλ //

id

��

N1/N
−s
2

f

��

Dn/Sn−1

oλ
// f(N1)/f(N−s2 )

is defined. It commutes because 〈f ◦ o, f [π]〉 = 〈o, f [π]〉 as we have already seen.

Since f induces an isomorphism N1/N
−s
2 → f(N1)/f(N−s2 ) in HT , it follows

that 〈o, f [π]〉 = 〈f ◦ o, f [π]〉 is an orientation. �

6. Orientations for linear skew product semiflows

For the convenience of the reader, we give a short overview of [6], on which the

second part of this paper relies. We begin with an abstract setting for the proof

of Theorem 1.2. Subsequently, we introduce a class of linear skew product semi-

flows, which are crucial for the calculation of the connecting homomorphisms.

Let H be a real Hilbert space, and let AH :D(AH) ⊂ H → H be a sectorial

operator such that:

(1) AH has compact resolvent;

(2) AH is densely defined;

(3) <λ > 0 for all λ ∈ σ(AH).

Let X be a real Banach space with continuous inclusion X ⊂ H, and let

A:D(A) ⊂ X → X
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be a sectorial operator such that:

(1) A is densely defined;

(2) A has compact resolvent;

(3) Ax = AHx for all x ∈ D(A).

Fix α ∈ [0, 1[, let Xα denote the α-th fractional power space [5], and let

f ∈ C1(U , X0), where U ⊂ Xα is open.

We consider mild solutions of the Cauchy problem

(6.1) ẋ+Ax = f(x),

which induce a local semiflow on Xα ([5, Theorem 3.3.3], [1, Theorem A.3]).

This semiflow is denoted by πf , respectively π whenever the meaning is clear.

Now, let e−, e+ be hyperbolic equilibria of (6.1), and assume that the spec-

trum of A − Df(e±) consists of simple and real eigenvalues. Furthermore, let

u:R → Xα be a solution of π with u(t) → e+ as t → ∞, and suppose that

eλt‖u(t)− e+‖α 6→ 0 as t → ∞ for some λ ∈ R+. Then by [6, Theorem 3.2],

one has ‖u(t)− e+‖−1
α (u(t) − e+) → η as t → ∞, where η is an eigenvector

of A−Df(e+).

Let E denote the A-invariant complement of span{η} in X, and for β ∈ [0, 1],

let Eβ := E ∩Xβ be equipped with the Xβ-norm ‖ · ‖β .

Using [6, Theorem 4.1], it now follows that there exist a neighbourhood U of

clu(R) and a diffeomorphism G:U → V ⊂ R× Eα such that G[π] is a semiflow

whose solutions are mild solutions of

ẋ = g1(x, y),

ẏ + Ãy = g2(x, y),

that is, if (u(t), v(t)), t ∈ [0, T [, is a solution of G[π], then u̇(t) = g1(u(t), v(t))

for all t, and v(t) is a mild solution of

ẏ + Ãy = g2(u(t), y),

where Ã denotes the restriction of A to E1.

By the choise of G, we can further assume that G(e±) = (±1, 0) and G(u(t))

in [−1, 1]×{0} for all t ∈ R. The semiflow G[π] is defined by the condition that

G ◦ ũ is a solution of G[π] if and only if ũ is a solution of π with ũ(R) ⊂ U .

Next, we introduce a new name: π1 := G[π]. Scaling in y yields a fami-

ly (πλ)λ∈]0,1] of semiflows, where (u(t), v(t)) is a solution of πλ if and only if

(u(t), λv(t)) is a solution of π1. One can show [6, Proposition 5.15] that πλ has

a limit π0, where (u(t), v(t)) is a solution of π0 if and only if (u(t), 0) is a solution

of π1 and v(t) is a mild solution of

ẏ + Ãy = g2(u(t), y).
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At this stage, we need an additonal assumption, namely that [−1, 1]×{0} is

an isolated invariant set relative to π1. There are well-known conditions ensuring

this, for instance the transversal intersection of the global stable manifold of e+

and the global unstable manifold of e−, but the isolation of [−1, 1] × {0} is

sufficient for our purposes. We can conclude that (πλ, [−1, 1]× {0})λ∈[0,1] is an

S-continuous family.

For the rest of this section, we will deal with semiflows like π0, which are

called linear skew product semiflows.

6.1. Linear skew product semiflows.

Definition 6.1. Let F be a Banach space and let a < b be real numbers.

A linear skew product semiflow (see also [11]) on (]a, b[, F ) is a semiflow π = (ξ,Φ)

on ]a, b[× F , where

(x, y)πt = (xξt,Φ(x, t)y) for all (t, x, y) ∈ D(π).

Here, ξ is a flow on ]a, b[ and for every (x, t) ∈ D(ξ) we have Φ(x, t) ∈ L(F, F ).

Let SK(]a, b[, F ) denote the set of all linear skew product semiflows on (]a, b[, F )

and let π ∈ SK := SK([a, b], F ) ⊂ SK(]a, b[, F ) if there exists an ε > 0 and

a π̃ ∈ SK(]a − ε, b + ε[, F ) with (x, y)πt = (x, y)π̃t whenever the left side is

defined.

Given a decomposition F = F1⊕F2 into closed subspaces and semiflows π1 =

(ξ,Φ1) ∈ SK([a, b], F1), π2 = (ξ,Φ2) ∈ SK(ξ,Φ2), define π1 ⊕ π2 ∈ SK([a, b], E)

by π1⊕π2 = (ξ,Φ1⊕Φ2), where (Φ1⊕Φ2)(t, x)(y1⊕y2) = Φ1(t, x)y1⊕Φ2(t, x)y2.

We consider linear skew product semiflows which are generated by semilinear

parabolic equations and are normalized on the zero-section, that is, the semiflow

π = π(A,F ) ∈ SK([−2, 2], Xα) is induced by mild solutions of

(6.2)
ẋ = 1− x2,

ẏ +Ay = F (x)y.

Unfortunately, the right-hand side of the above equation is not necessarily locally

Lipschitz continuous if one assumes only that F is a continuous family of linear

operators. Therefore, the term mild solution is used as follows: (u(t), v(t)) is

called a mild solution of (6.2) if u(t) is a solution of the first equation, that is,

u̇(t) = 1− u(t)2, and v(t) is a mild solution of ẏ +Ay = F (u(t))y.

Suppose that

• X is a Banach space;

• A is sectorial linear operator which is densely defined on X and has

compact resolvent;

• Xα denotes the α-th fractional power space (see [5]);
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and

(1) F : [−2, 2] → L(Xα, X0) is sufficiently continuous, that is, there are

−2 = x0 ≤ · · · ≤ xn = 2 ∈ [−2, 2] such that for every interval [xi, xi+1],

i ∈ {0, . . . , n − 1}, there is an F̃ ∈ C([xi, xi+1],L(Xα, X0)) such that

F (x) = F̃ (x) for every x ∈ ]xi, xi+1[;

(2) −1, 1 6∈ {x0, . . . , xn}.
The linear skew product semiflow defined by (6.2) depends continuously on

the right-hand side F .

Proposition 6.2 [6, Corollary 6.4]. Let Fn → F0 ∈ L∞([−2, 2],L(Xα, X)),

n ∈ N, and suppose that Fn, n ∈ N ∪ {0}, are sufficiently continuous. Then:

(a) π(A,Fn) is a semiflow for all n ∈ N ∪ {0};
(b) π(A,Fn)→ π(A,F ) and

(c) every closed set N ⊂ ]−2, 2[ × Xα which is bounded with respect to

‖ · ‖R×X0 is strongly π(A,Fn)-admissible.

We will consider classes SKi, i ∈ {−1, 0, 1, 2}, of linear skew product semi-

flows. Higher indices indicate stronger restrictions. Let us make the following ad-

ditional assumptions: A and (A−F (1)) are hyperbolic and have simple eigenval-

ues, all of which are real; let π = π(A,F ), and let E±(π, e) := E±(e) := P±e (0)X,

e ∈ {−1, 1} denote the associated subspaces of X, where P±π,e(0) := P±e (0) :=

P±(0) is the projection onto the subspaces which belong to the positive respec-

tively negative part of the spectrum of L := A−F (e). E±,α := E±∩Xα denotes

the respective subspace of Xα.

(6.2) implies that there are exactly two equilibria, namely (−1, 0) and (1, 0),

and both are hyperbolic.

Definition 6.3. Let SK0 := SK0(α,X,A) ⊂ SK([−2, 2], Xα) denote the set

of linear skew product semiflows with π ∈ SK0 if and only if

(a) π is induced by mild solutions of (6.2), which satisfies the assumptions

above;

(b) K := [−1, 1]× {0} is an isolated invariant set relative to π;

(c) dimE−(1) = dimE−(−1) <∞.

Definition 6.4. Let [−1, 1] ⊂ ]a, b[ ⊂ [−2, 2] and let h: [a, b] → [−2, 2]

be a homeomorphism such that h(−1) = −1, h(1) = 1. Let π ∈ SK−1 =

SK−1([a, b], α,X,A) ⊂ SK([a, b], Xα) denote the set of all semiflows π for which

there exists an h with the properties above and a π̃ ∈ SK0 such that (h◦u(t), v(t))

is a solution of π̃ whenever (u(t), v(t)) is a solution of π.

In the sequel, we are interested in signs of connecting homomorphisms and

need a condition which guarantees that these signs do not change under perturba-

tions. Therefore, we introduce a relation between linear skew product semiflows:
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Definition 6.5. Let π0, π1 ∈ SK0. Then π0 ∼ π1 if and only if there exists

a homotopy, that is, an S-continuous family (πλ, [−1, 1] × {0})λ∈[0,1] such that

for all λ ∈ [0, 1]

(a) πλ ∈ SK0, and

(b) E−(πλ,−1) and E−(πλ, 1) are constant.

Let SK1 ⊂ SK0 denote the subset of all semiflows π(A,F ) where F is locally

constant in a neigbourhood of {−1, 1}, that is, there exists a δ > 0 such that

for all x ∈ ]−1 − δ,−1 + δ[ we have F (x) = F (−1) and for all x ∈ ]1 − δ, 1 + δ[

F (x) = F (1).

Lemma 6.6 ([6, Lemma 6.10]). For every π(A,F ) ∈ SK0, there is a λ0 ∈
[0, 1] such that π(A,F ) ∼ π(A,Fλ) ∈ SK1 for all λ ∈ [0, λ0], where we set

Fλ(x) :=


F (−1) if x ∈ [−1− λ,−1 + λ],

F (1) if x ∈ [1− λ, 1 + λ],

F (x) otherwise.

Let SK2 ⊂ SK1 denote the subset of all those semiflows which satisfy the

following stronger restriction (compared to the definition of SK1): There exists

a δ > 0 such that F (x) = F (−1) for all x ∈ [−2,−1 + δ[ and F (x) = F (1) for

all x ∈ ]1− δ, 2].

Lemma 6.7 ([6, Lemma 6.11]). For every π(A,F ) ∈ SK1, it holds that

π(A,F ) ∼ π(A, F̃ ) ∈ SK2, where we set

F̃ (x) :=


F (−1) if − 2 ≤ x ≤ −1,

F (x) if − 1 < x < 1,

F (1) if 1 ≤ x ≤ 2.

For π = (ξ,Φ) ∈ SK2, we can define an invariant subbundle U (the exact

terminology can be found in the appendix). After the definition of U , we will

show that this subbundle determines the sign of connecting homorphisms.

Let E− := E−(π,−1) and define U(x) ∈ L(E−, Xα) by

U(x)y := y, x ∈ [−2,−1 + δ], y ∈ E−.

We continue along [−2, 2] by following the semiflow, that is,

U(x) := U(−1 + δ)Φ(−1 + δ, tx), x ∈ [−1 + δ, 1− δ]

where (−1 + δ)ξtx = x defines tx.

P−1 (0) ◦U(1− δ) is a bijection, so, given y0 ∈ E−(1), there is a w ∈ E−(−1)

with P−1 (0)◦U(1− δ)w = y0. Choose a basis {ηi: i = 1 . . . dimE−(1)} for E−(1)

such that each ηi is an eigenvector of L := A− F (1).
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Further, let λi < 0 denote the real eigenvalue λi which corresponds to ηi,

that is, e−Ltηi = e−λitηi. For each i ∈ {1, . . . ,dimE−}, there is an η+
i ∈ E+(1)

with ηi + η+
i ∈ U(1− δ)E−(−1). Let yi ∈ E− be given by U(1− δ)yi = ηi + η+

i

and define

U(x)yi := ηi + e−(L−λi)(tx−t1−δ)η+
i , x ∈ [1− δ, 1[, i = 1 . . . dimE−.

Finally, let

U(x)y := lim
x̃→1

U(x̃)y, x ∈ [1, 2], y ∈ E−.

U is π-invariant (6), so there is a linear skew product semiflow πU = (ξ,ΦU ) ∈
SK([−2, 2], E−) such that

U(xξt)Φ(x, t)y = ΦU (x, t)U(x)y

whenever xξ[0, t] ⊂ ]−2, 2[.

6.2. Conley index orientations for linear skew product semiflows.

Lemma 6.8. Let π = (ξ,Φ) ∈ SK−1([a, b], α,X,A) and let Ψ−1,Ψ1 ∈
L(Rn, Xα), such that P−−1(π, 0)Ψ−1 and P−1 (π, 0)Ψ1 are isomorphisms. Then:

(a) o−1(x, y) := (−1,Ψ−1y), (x, y) ∈ ]−1/2, 1/2[ × Rn, is a seed for (π,

(−1, 0)), and

(b) o1(y) := (1,Ψ1y), y ∈ Rn, is a seed for (π, (1, 0)).

If π ∈ SK1, then the semiflow is linear in the sense of Section 2 in a neigh-

bourhood of each of the equilibria (±1, 0). In this case, Proposition 2.3 implies

that π is strongly linearizable (Definition 2.4) in each of the equilibria, so we can

invoke Proposition 4.5, which states that o±1 are seeds.

However, the notion of being strongly linearizable relies on the existence

of some kind of tangential space for stable sets. We have not established such

a result for SK0, so we will circumvent this problem by using the more elementary

Lemma 3.4 and the concrete structure of our linear skew product semiflows.

Proof. Suppose that π = π(A,F ).

(a) Let U := B1/2[(−1, 0)] ⊂ [−2, 2] × Xα, and let (N1, N2) be a strongly

π-admissible FM-index pair for (π, (−1, 0)) with N1 ⊂ U . Since Inv+(U) ⊂
{0} × E+,α(−1), it follows that o−1(x, y) ∈ N−∞2 for all (x, y) ∈ D(o−1) \ {0}.
Now, Lemma 3.4 implies that o−1 is a seed for (π, (−1, 0)).

(b) Let X1 := {0} ×Xα and (N1, N2) be a strongly π-admissible FM-index

pair for (π, (1, 0)) with N1 ⊂ B1[(1, 0)] ⊂ R × Xα. Then (X1 ∩ N1, X1 ∩ N2)

(6) Here, we identify U with its image.
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is a strongly π-admissible FM-index pair for (π̃, 0), where π̃ is induced by mild

solutions of the linear equation

ẋ, = 0 x ∈ {0},
ẏ +Ay = F (1)y, y ∈ Xα.

It follows from Corollary 4.6 that o1 is a seed for (π̃, 0), that is, there is a λ ∈ R+

such that oλ1 (y) = o(λy) ∈ N−∞2 for all y ∈ Rn \ {0}. As before, applying

Lemma 3.4 proves that o1 is a seed for (π, (−1, 0)). �

Until further notice, let µ be given by Definition 5.1, π ∈ SK−1, Ψ−1 ∈
ISO(Rn, E−(−1)), Ψ1 ∈ ISO(Rn, E−(1)), and o1 and o−1 be defined by Lem-

ma 6.8.

Definition 6.9.

θ(π) := θ(π, µ,Ψ−1,Ψ1) := θ(Hn−1〈o1〉−1 ◦ ∂n ◦Hn〈o−1〉, µ, n, 1)

where ∂q:Hq〈π, {(−1, 0)}〉 → 〈π, {(1, 0)}〉 denotes the q-th connecting homor-

phism of the long exact attractor-repeller sequence in singular homology which

is associated with (π, [−1, 1]× {0}, {(1, 0)}, {(−1, 0)}).

Lemma 6.10. Let πk → π∞ be a sequence in SK0 such that the assumptions

of [2, Theorem 7.3] hold whenever Ñ is a bounded neighbourhood of [−1, 1]×{0}.
Suppose that 〈o−1, πk, (−1, 0)〉 (resp. 〈o1, πk, (1, 0)〉) is an orientation for all k ∈
N ∪ {∞} sufficiently large. Then θ(πk) = θ(π∞) for all k ∈ N sufficiently large.

Proof. By [2, Theorem 7.3], there are strongly admissible FM-index triples

(N1,k, N2,k, N3,k), (Ñ1,k, Ñ2,k, Ñ3,k) for (πk, [−1, 1]× {0}, {(1, 0)}, {(−1, 0}) and

(M1,M2,M3), (M̃1, M̃2, M̃3) for (π∞, [−1, 1]×{0}, {(1, 0)}, {(−1, 0)}) such that

for all k ∈ N sufficiently large

(Ñ1,k, Ñ2,k, Ñ3,k) ⊂ (M̃1, M̃2, M̃3) ⊂ (N1,k, N2,k, N3,k) ⊂ (M1,M2,M3).

We can assume that M1 is bounded in X so that it is strongly π∞-admissible by

Proposition 6.2.

It follows from Proposition 3.10 that

(6.3)

Dn+1/Sn
o−1
//

id

��

N1,k/N2,k

⊂
��

Dn+1/Sn
o−1

// M1/M2
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and

(6.4)

Dn/Sn−1 o1 //

id

��

N2,k/N3,k

⊂
��

Dn/Sn−1

o1
// M2/M3

are commutative for all k ∈ N sufficiently large.

Moreover, there is a commutative ladder

// Hq+1[N1,k/N3,k] //

⊂
��

Hq+1[N1,k/N2,k]
∂̃q+1

//

⊂
��

Hq[N2,k/N3,k] //

⊂
��

// Hq+1[M1/M3] // Hq+1[M1/M2]
∂q+1

// Hq[M2/M3] //

where ∂q and ∂̃q denote the respective q-th connecting homomorphism.

It follows that θ(πk) = θ(π∞) for all k sufficiently large. �

Proposition 6.11. 〈oν , π, (ν, 0)〉 is an orientation for every π ∈ SK0, ν ∈
{−1, 1}. Moreover, for all π0, π1 ∈ SK0, it holds that θ(π0) = θ(π1) whenever

π0 ∼ π1 in the sense of Definiton 6.5.

Proof. First, assume that π ∈ SK1, let ν ∈ {−1, 1}, m = n for ν = 1 and

m = n+ 1 for ν = −1. Then there is a neighbourhood U of (ν, 0) in ]−2, 2[×Xα

such that the restriction of π to U is induced by mild solutions of

ẋ = 1− x2,

ẏ +Ay = F (ν)y.

It follows from Corollary 4.6 that 〈oν , π〉 is an orientation.

Now, let π ∈ SK0. By Lemma 6.6, there is an S-continous family (πλ,{(ν, 0)})
such that π1 ∈ SK1, π0 = π, and E−(πλ, ν) are constant. Hence, oν is a seed

for (πλ, (ν, 0)) for every λ ∈ [0, 1]. It follows from Theorem 3.12 that 〈oν , π〉 is

an orientation for (π, {ν}), proving the first claim.

In order to show the second claim, let π0, π1 ∈ SK0 with π0 ∼ π1, that is,

there exists an S-continuous family (πλ, [−1, 1]×{0})λ∈[0,1] such that E−(πλ,−1)

and E−(πλ, 1) are constant. Therefore, we can choose Ψ1 and Ψ−1 such that

o−1 (resp. o1) induces orientations for (πλ,−1) (resp. (πλ, 1)) for all λ ∈ [0, 1].

Suppose that θ(πλ) is not constant. Then there is a sequence λn → λ∞

in [0, 1] with θ(πn) 6= θ(π∞), where we set πn := πλn , n ∈ N ∪ {∞}. This is

a contradiction to Lemma 6.10, showing that θ(π0) = θ(π1). �



202 A. Jänig

6.3. The unstable subbundle. For every π ∈ SK2, we have defined an

invariant subbundle U of [−2, 2] × Xα. Let (N1, N2, N3) be an arbitrary FM-

index pair for (π, [−1, 1] × {0}, {(1, 0)}, {(−1, 0)}). Due to the invariance of U ,

(M1,M2,M3) := (N1 ∩U,N2 ∩U,N3 ∩U) is an FM-index pair for π| imU (recall

that we have already defined a semiflow πU , which denotes the restriction of π

to U .

The inclusion (M1,M2,M3) ⊂ (N1, N2, N3) induces a commutative ladder in

singular homology, namely

(6.5)

// Hq[M1,M3] //

⊂i

��

Hq[M1,M2] //

⊂k

��

Hq−1[M2,M3] //

⊂l
��

// Hq[N1, N3] // Hq[N1, N2] // Hq−1[N2, N3] //

Lemma 6.12. For every π ∈ SK2, 〈oν , π| imU 〉, ν ∈ {−1, 1}, induces an orien-

tation for (π| imU , {(ν, 0)}).

Proof. F (x) is constant for all x in a neighbourhood N±1 of ±1. Therefore,

U(±1) = E−(±1), and so o−1 and o1 can be defined by Lemma 6.8. It follows

from Corollary 4.6 that 〈oν , π, (ν, 0)〉 is an orientation for every ν ∈ {−1, 1}. �

Lemma 6.12 guarantees that θ(π| imU ) is defined and so we may formulate

the following:

Proposition 6.13. For every π ∈ SK2 it holds that θ(π) = θ(π| imU ).

Proof. Let ν ∈ {−1, 1} and (N1, N2) be an arbitrary strongly admissible

FM-index pair for (π, {(ν, 0)}). Then (N1 ∩ U,N2 ∩ U) is a strongly admissible

FM-index pair for (π| imU , {(ν, 0)}).
By Lemma 6.12, there is an s ∈ R+ and a λ ∈ [0, 1] such that oλν (Sm−1) ⊂

N−s2 ∩ U ⊂ N−s2 , where m = n for ν = 1 and m = n+ 1 for ν = −1. Therefore,

Dm/Sm−1
oλν //

oλν ((RR
RRR

RRR
RRR

RR
(N1 ∩ U)/(N−s2 ∩ U)

⊂
��

N1/N
−s
2

is commutative in T OP and thus in HT ,

Dm/Sm−1 oν //

oν
((QQ

QQQ
QQQ

QQQ
QQ

(N1 ∩ U)/(N2 ∩ U)

⊂
��

N1/N2
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Now, let (N1, N2, N3) be a strongly admissible FM-index triple for (π, [−1, 1]

×{0}, {(1, 0)}, {(−1, 0)}). It follows that Hq(i) and Hq(l) (defined in (6.5)) are

isomorphisms since oν is an isomorphism by Proposition 6.11 respectively Lem-

ma 6.12. Therefore, the commutativity of (6.5) implies that θ(π| imU ) = θ(π) as

claimed. �

The definition sgnΨ−1,Ψ1
U := sgn det Ψ−1

1 U(1)U(−1)−1Ψ−1 gives U a sign.

We define the inverse of an injective and continuous homorphism A ∈ L(E,F )

on imA ⊂ F . The definition of sgnU makes sense because

im Ψ−1 = E−(−1) = imU(−1) and im Ψ1 = E−(1) = imU(1).

Alternatively, one can read the inverses in the above equation as left inverses.

In this case, sgnΨ−1,Ψ1
U is well-defined and agrees with the first definition.

Recall that the definition of θ requires a choice of generators µ = (µq)q∈Z.

Consider the following system

ẋ = 1− x2,

ẏ = y,

of ordinary differential equations on ]−2, 2[ × Rn. They define a semiflow χn,

which is obviously a linear skew product semiflow, that is, χn ∈ SK2([−2, 2],Rn).

Let Uχn denote the subbundle U which is defined with respect to χn (in fact,

Uχn = [−2, 2]× Rn).

Definition 6.14. Let µ̃0:Z→ H0(S0) be arbitrary, and let µ = (µq)q∈Z be

such that µ0 = µ̃0 and for all n ∈ N

θ(χn, µ, idRn , idRn) = sgnidRn ,idRn
Uχn .

It is clear that µ is well-defined, and the following proposition shows that

the definition makes sense.

Proposition 6.15. For every π ∈ SK2, for every Ψ−1 ∈ ISO(Rn, E−(−1)),

and for every Ψ1 ∈ ISO(Rn, E−(1)), it holds that

θ(π, (µq)q∈Z,Ψ−1,Ψ1) = sgnΨ−1,Ψ1
Uπ 6= 0.

Proof. By [6, Proposition 6.23], there is an isomorphism of trivial bundles

V := VπU such that χ̃ := V −1[πU ] ∼ χn.

As usual, let o1 and o−1 be given by Lemma 6.8. They are seeds for an

orientation for (−1, 0) respectively (1, 0). Moreover, ô−1 := (−1, 0) + idRn is

a seed for (χ̃, (−1, 0)) and ô1 := (1, 0) + idRn is a seed for (χ̃, (1, 0)).
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Let α be defined by

Sn+1
〈o−1〉

// C(π| imU , {(−1, 0)})

Sn+1

〈ô−1〉
//

α

OO

C(χ̃, {(−1, 0)})

〈U◦V 〉

OO

and β by

Sn
〈o1〉

// C(π| imU , {(1, 0)})

Sn
〈ô1〉

//

β

OO

C(χ̃, {(1, 0)}).

〈U◦V 〉

OO

It follows from Proposition 4.7 and Corollary 4.6 that

α = sgn det

(
1 0

0 Ψ−1
−1 ◦ U(−1) ◦ V (−1)

)
= sgn det Ψ−1

−1 ◦ U(−1) ◦ V (−1)

and

β = sgn det Ψ−1
1 ◦ U(1) ◦ V (1).

Since sgn detV (1)◦V (−1) = sgn detV (1)◦V (1) (by homotopy, V is a continuous

family of isomorphisms), it follows that β ◦α−1 = sgnΨ−1,Ψ1
U , where we denote

the mappings by their mapping degree.

In singular homology, the respective attractor-repeller sequences define a com-

mutative diagram:

Hq+1〈π| imU , {(−1, 0)}〉
∂q+1

// Hq〈π| imU , {(1, 0)}〉

Hq+1〈χ̃, {(−1, 0)}〉
∂̃q+1

//

Hq+1〈U◦V 〉

OO

Hq〈χ̃, {(1, 0)}〉

Hq〈U◦V 〉

OO

It follows from Proposition 6.11 and the choice of µ that θ(χ̃, µ, idRn , idRn) =

θ(χn, µ, idRn , idRn) = 1. We obtain a commutative diagram

Hn+1(Sn+1)
θ(π| imU )

// Hn(Sn)

Hn+1(Sn+1)
1
//

·α

OO

Hn(Sn),

·β

OO

showing that θ(π| imU ) = αβ = sgnΨ−1,Ψ1
U . �
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6.4. Geometric orientation. Let Ψ−1 ∈ ISO(Rn, E−(−1)) and Ψ1 ∈ L ∈
ISO(Rn, E−(1)) be arbitrary but fixed as in the previous section. We will define

a geometric orientation for every π ∈ SK2 and then show that this geometric

orientation is well-defined for every π ∈ SK0 and coincides with the (Conley

index) orientation of the previous section.

Definition 6.16. For every π = (ξ,Φ) ∈ SK−1, let sgnπ ∈ {−1, 1} denote

the unique number for which

sgnπ := sgn(π,Ψ−1,Ψ1) := lim
(x,xξt)→(−1+,1−)

sgn det Ψ−1
1 PΦ(x, t)Ψ−1,

where P = P−1 (0) denotes the unique projection P :X → E−(1) with kerP =

E+(1).

Note that for every t ∈ R+, the spaces E−(1) and E+,α(1) (resp. E−(−1)

and E+,α(1)) are Φ(1, t)-invariant (resp. Φ(−1, t)-invariant) subspaces.

Lemma 6.17. Let π = π(A,F ) ∈ SK1 and δ > 0 such that

F (x) = F (−1), x ∈ [−1,−1 + δ],

F (x) = F (1), x ∈ [1− δ, 1].

Then

sgnπ = sgn det Ψ−1
1 PΦ(−1 + δ, t0)Ψ−1 6= 0,

where (−1+δ)ξt0 = 1−δ. In particular, sgnπ is well-defined for every π ∈ SK1.

Proof. Let x ∈ ]−1, 1[ and t ∈ R+ such that x ∈ ]−1,−1+δ] and xξt ≥ 1−δ.
Then there are t−1, t1 ∈ R+ such that xξt1 = −1 + δ, and (1− δ)ξt1 = xξt. We

have

PΦ(x, t) = PΦ(1− δ, t1)Φ(−1 + δ, t0)Φ(x, t−1)

= PΦ(1− δ, t1)PΦ(−1 + δ, t0)Φ(x, t−1).

PΦ(1 − δ, t1)Φ(−1 + δ, t0)Φ((−1 + δ)ξ(−λt−1), λt−1)Ψ−1 is an ismorphism for

all λ ∈ [0, 1]. Otherwise, there would be a 0 6= ỹ ∈ E−(−1), an x̃ ∈ ]−1,−1 + δ],

and a t̃ ∈ R+ with x̃ξt̃ ≥ 1 − δ and Φ(x̃, t̃)ỹ ∈ E+(1). This implies that there

exists a full bounded solution through (x̃, ỹ), which contradicts the isolation of

[−1, 1]× {0} relative to π (see [6, Lemma 6.8]).

We have shown that

sgn det Ψ−1
1 PΦ(x, t)Ψ−1 = sgn detPΦ(1− δ, t1)P PΦ(−1 + δ, t0)Ψ−1.

A similar argument applies to PΦ(1−δ, s)P . It is an isomorphism for all s ∈ [0, t1]

and homotopic to the identity on (E−(1), E−(1) \ {0}), showing that

sgn det Ψ−1
1 PΦ(x, t)Ψ−1 = sgn det Ψ−1

1 PΦ(−1 + δ, t0)Ψ1. �
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The following proposition relies on Proposition 6.15.

Proposition 6.18. Let π ∈ SK1. Then sgnπ = θ(π) 6= 0.

Proof. Recall that for every π ∈ SK1 there is a δ = δ(π) > 0 such that

F (x) = F (−1), x ∈ [−1,−1 + δ],

F (x) = F (1), x ∈ [1− δ, 1],

and we have U(x) = E−(−1) for all x ∈ [−2,−1 + δ].

Initially, suppose that π ∈ SK2. Let x ∈ ]−1,−1 + δ[, t ∈ R+, and πU =

(ξ,ΦU ). We have

(6.6) Φ(x, t)y = U(xξt)ΦU (x, t)U(x)−1y

for all y ∈ E−(−1).

Moreover, we have sgn det ΦU (x0, t0) = 1 since ΦU (x, t) ∈ ISO(E−(−1),

E−(−1)) for all (x, t) ∈ D(ΦU ). It follows from (6.6) that

(6.7) sgn det Ψ−1
1 PΦ(x, t)Ψ−1 = sgn det Ψ−1

1 PU(xξt)U(x)−1Ψ−1.

Taking (6.7) to the limit (x, xξt)→ (−1, 1), we obtain sgnπ = sgnU , proving in

conjunction with Proposition 6.15 that sgnπ = sgnU = θ(π).

Lemma 6.6 states that for every π0 ∈ SK1 there is a π1 ∈ SK2 with π0 ∼ π1.

It follows immediately from the differential equation given there that sgnπ0 =

sgnπ1. Moreover, Proposition 6.11 implies that θ(π0) = θ(π1). This proves the

claim for every π ∈ SK1. �

Lemma 6.19. Let Ψν,k, ν ∈ {−1, 1}, be a sequence of homomorphisms in

L(Rn, X1) with Ψν,k → Ψν,∞ ∈ ISO(Rn, E−(ν)) as k → ∞. Then, for every

π = (ξ,Φ) ∈ SK0, one has

(6.8) lim
(x,xξt,k)→(−1+,1,∞)

sgn det(PΨ1,k)−1PΦ(x, t)Ψ−1,k

= θ(π,Ψ−1,∞,Ψ1,∞) 6= 0.

Proof. Let xk → −1 in [−1, 1], tk ∈ R+ with xkξtk → 1, π0 = π(A,F ) ∈
SK0, and πk := π(A,Fk) with

Fk(x) :=


F (−1) if − 2 + xk ≤ x < xk,

F (1) if xkξtk ≤ x < 2− (xkξtk),

F (x) otherwise.

We have Fk → F as k → ∞ in L∞([−2, 2],L(Xα, X)). Moreover, there is

a strongly admissible isolating neighbourhood for [−1, 1]× {0} relative to π, so

we can choose k0 ∈ N such that [−1, 1]× {0} is an isolated invariant set relative
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to πk for all k ≥ k0. Consequently, one has πk ∈ SK1 for all k0 ≤ k < ∞. We

can assume without loss of generality that PΨ1,k is an isomorphism for k ≥ k0.

If (u(t), v(t)), t ∈ [0, T ], is a solution of π0 with xk ≤ u(t) ≤ xkξtk for all

t ∈ [0, T ], then it is also a solution of πk. Hence, it follows from Lemma 6.17

and Proposition 6.18 that for all k0 ≤ k <∞

sgn det(PΨ1,k)−1PΦ(xk, tk)Ψ−1,k = θ(πk,Ψ−1,k, PΨ1,k).

As shown in the proof of Proposition 6.11, every π̃ ∈ SK1 is strongly lineariz-

able in the sense of Definition 2.2 in each of its equilibria. Thus, it follows from

Corollary 4.6 and Proposition 4.7 that there is a k1 ≥ k0 such that

θ(πk,Ψ−1,k, PΨ1,k) = θ(πk,Ψ−1,∞,Ψ1,∞) for all k1 ≤ k <∞.

Finally, in view of Lemma 6.10, there is a k2 ≥ k1 such that

θ(πk,Ψ−1,∞,Ψ1,∞) = θ(π,Ψ−1,∞,Ψ1,∞) for all k2 ≤ k ≤ ∞. �

An immediate consequence of Lemma 6.19 is

Corollary 6.20. sgnπ is well-defined for every π ∈ SK0 and we have

θ(π) = sgn(π).

Corollary 6.21. Let π = (ξ,Φ) ∈ SK−1([a, b], α,X,A). Then sgnπ is

well-defined and we have sgnπ = θ(π). Moreover, Lemma 6.19 holds for every

π ∈ SK−1.

Proof. According to Definition 6.4, there is a semiflow π̃ = (ξ̃,Φ) ∈ SK0

such that (h(u(t)), v(t)) is a solution of π̃ whenever (u(t), v(t)) is a solution of π.

This shows immediately that sgnπ is well-defined and sgnπ = sgn π̃. It is

also clear that

Dn/Sn−1 o1 //

id

��

Ñ1/Ñ2

h×id

��

Dn/Sn−1

o1
// M̃1/M̃2

is commutative whenever (Ñ1, Ñ2) is a strongly π-admissible FM-index pair for

(π, {(1, 0)}) and (M̃1, M̃2) = (h× id)(Ñ1, Ñ2).

Since h is necessarily strictly monotone increasing,

gλ(x) := λ(h× id) ◦ o−1(x) + (1− λ)o−1(x)

satisfies gλ(x) 6= (−1, 0) for all x ∈ Dn \ {0}. Given an arbitrary λ ∈ [0, 1], it

is a straightforward extension of Lemma 6.8 that gλ is a seed for (π, {(−1, 0)})
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and (π̃, {(−1, 0)}). Hence, by Lemma 3.8,

Dn+1/Sn
o−1
//

id

��

gλ

%%LL
LLL

LLL
LL

N1/N2

h×id

��

Dn+1/Sn
o−1

// M1/M2

commutes in HT for all λ ∈ [0, 1], where (N1, N2) is a strongly admissible FM-

index pair for (π, {(−1, 0)}) and (M1,M2) = (h× id)(N1, N2).

Therefore, we have θ(π) = θ(π̃). The left-hand side of (6.8) is unaffected

by h, showing that the formula still holds. �

7. Heteroclinic solutions

Recall the assumptions of the beginning of the the previous section. In

particular let u:R → Xα be a solution of (6.1) with u(t) → e± as t → ±∞. It

follows that ‖u(t)− e+‖−1
α (u(t) − e+) → η ∈ X1 as t → ∞. η is an eigenvector

of A−Df(e+) which belongs to an eigenvalue λ > 0.

Let E ⊂ X be an A-invariant and A −Df(e+) invariant subspace (7) with

X = E ⊕ {η}. By E = E1 ⊕ E2, we mean that E1 and E2 are closed linear

subspaces of E with E1 ∩E2 = {0} and E = E1 +E2. The canonical projection

P : E1 ⊕ E2 → E1 is given by P (e1 ⊕ e2) := e1.

Due to the hyperbolicity of A − Df(e+), there is a decomposition E =

E−(−1)⊕E+(−1), where E−(−1) (resp. E+(−1)∩X1) is a A−Df(e+) invariant

subspace and the restriction Ã− of A − Df(e+) to E−(−1) (resp. Ã+ of A −
Df(e+) to E+(−1)) satisfies <σ(Ã−) < 0 (resp. <σ(Ã+) > 0).

In view of [6, Theorem 4.1], we can assume that:

(1) G(e+) = (1, 0), G(e−) = (−1, 0);

(2) G(u(t)) ∈ ]−1, 1[× {0} for all t ∈ R;

(3) DG(x)y = (0, y) for all y ∈ E and for all x in a neighbourhood of e+.

Let π1 := G[π1], and let the family of semiflows (πλ)λ∈[0,1] be defined by scal-

ing in y as explained in the the previous section. It follows from [6, Theorem 5.12]

that (πλ, [−1, 1]× {0})λ∈[0,1] is S-continuous. Note that π0 ∈ SK−1.

Definition 7.1. Let {x1, . . . , xn+1} be a basis for E−X(e−) consisting of

eigenvectors of A − Df(e−), let {y1, . . . , yn} be a basis for E−X(e+), and let

Ψ−1 := (x1, . . . , xn+1) and Ψ1 := (y1, . . . , yn) denote the corresponding matrices,

which we understand as isomorphisms Rn+1 → E−X(e−) (resp. Rn → E−X(e+)).

Let P (t) denote the canonical projection

P (t):E−(+1)⊕ span{u̇(t)} ⊕ E+(+1)→ E−(+1).

(7) This can always be achieved by choosing A appropriately.
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P (t) is well defined for large t ∈ R. Define

ν(u) := ν(u,Ψ−1) := (−1)i+1 sgn ν̃,

Ψ̂ = (x1, . . . , xi−1, xi+1, . . . , xn+1) ,

and

sgnu := ν(u) · lim
(t,t+∆)→(−∞,∞)

sgn det Ψ−1
1 P (t+ ∆)DΠ∆(u(t))Ψ̂

where (u(−t)− e−)‖u(−t)− e−‖−1
α → ν̃xi‖xi‖−1

α as t→∞ and Πtx := xπt.

It is clear that sgnu depends on the isomorphisms Ψ−1 and Ψ1, that is,

sgnu = sgn(u,Ψ−1,Ψ1).

u = cl{u(t): t ∈ R} is an isolated invariant set, and (u, {e+}, {e−}) is an

attractor-repeller decomposition ({e+} denotes the attractor). There is a long

exact sequence in singular homology associated with the attractor-repeller de-

composition. Let (∂q)q∈Z denote the family of connecting homomorphisms of this

sequence, that is, ∂q+1:Hq+1〈π, {e−1}〉 → Hq〈π, {e1}〉 for all q ∈ Z.

Definition 7.2. Let θ be given by Definition 5.1, µ by Definition 6.14,

and let

θ̂(π, u) := θ̂(π, u,Ψ−1,Ψ1) := θ(Hn〈ô1〉 ◦ ∂n+1 ◦Hn+1〈ô−1〉, µ, n+ 1, 1),

where we set

ô−1(y) := e− + Ψ−1(y), y ∈ Rn+1,

ô+1(y) := e+ + Ψ+1(y), y ∈ Rn.

It follows from Proposition 2.3 that π is strongly linearizable at e+ and e−,

so Proposition 4.5 implies that ôi, i ∈ {−1, 1}, induces an orientation. Thus, θ̂

is defined.

Let p1:R×E → R (resp. p2:R×E → E), p1(x, y) := x (resp. p2(x, y) := y),

denote the projection onto the first (resp. second) component.

Proposition 7.3. θ̂(π, u,Ψ−1,Ψ1) = ν(u,Ψ−1)·θ(π0, Ψ̃−1, Ψ̃1), where we set

Ψ̃−1 := p2 ◦DG(e−) ◦ Ψ̂,

and

(7.1) Ψ̃1 := p2 ◦DG(e+) ◦Ψ1.

Note that our assumptions at the beginning of this section imply that

(0, Ψ̃1y) = (DG(e+) ◦Ψ1)y for all y ∈ Rn.
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Proof. Define

o−1(x, y) := (−1 + x, Ψ̃1(y)), (x, y) ∈ R× Rn,

o1(y) := (1, Ψ̃1(y)), y ∈ Rn,

as in Lemma 6.8 and consider the following commutative diagram

Hn+1〈π, {e−1}〉
∂n+1

//

Hn+1〈B−1〉
��

Hn+1〈G〉

''

Hn〈π, {e1}〉

Hn〈B1〉
��

Hn〈G〉

ww

Hn+1〈B−1[π], {(−1, 0)}〉

Hn〈id〉
��

Hn〈B1[π], {(1, 0)}〉

Hn〈id〉
��

Hn+1〈B−1[π], {(−1, 0)}〉

Hn+1〈GB−1
−1〉

��

Hn〈B1[π], {(1, 0)}〉

Hn〈GB−1
1 〉
��

Hn+1〈π1, {(−1, 0)}〉
δn+1

// Hn〈π1, {(1, 0)}〉,

where we set

B−1(e− + x) := (−1, 0) +DG(e−)x, B1(e+ + x) := (1, 0) +DG(e+)x.

δq:Hq〈π1, {(−1, 0)}〉 → Hq−1〈π1, {(1, 0)}〉 is the connecting homomorphism as-

sociated with (π1, [−1, 1]× {0}, {(1, 0)}, {(−1, 0)}).
Applying orientations, we obtain for i ∈ {−1, 1}

Z
Hm〈ôi〉◦µm

//

·1
��

Hm〈π, {ei}〉

Hm〈B1〉
��

Hm〈G〉

ww

Z
Hm〈Bi◦ôi〉◦µm

//

·αi
��

Hm〈Bi[π], {(i, 0)}〉

Hm〈id〉
��

Z
Hm〈oi〉◦µm

//

·βi
��

Hm〈Bi[π], {(i, 0)}〉

Hm〈GB−1
1 〉
��

Z
Hm〈oi〉◦µm

// Hm〈π1, {(i, 0)}〉

where we set

m :=

{
n+ 1 if i = −1,

n if i = 1.

It follows from Proposition 5.3 that β−1 = β1 = 1. We thus have (relative to

these orientations)

θ̂(π, u, ô−1, ô1) = α1α−1θ̃(δn+1),

where we set θ̃(δ) := θ(Hn〈o1〉−1 ◦ δ ◦Hn+1〈o−1〉, ν, n+ 1, 1).
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One has α1 = 1 because B1 ◦ ô1 = o1. By Proposition 4.7 we further have

α−1 = sgn det(Ψ−1
1 ◦DG(e−1)−1 ◦ (1, Ψ̃−1)),

where (1, Ψ̃−1)(y1, y2) = (y1, Ψ̃−1y2).

Since (u(t) − e−)‖u(t)− e−‖−1
α → ν̃xi‖xi‖−1

α in Xα as t → −∞, one has

DG(e−)(ν̃xi‖xi‖−1
α ) = (1, 0), so written as matrices (8)

Ψ−1
−1DG(e−)−1((1, 0), Ψ̃−1) ∼ (ν̃ẽi, ẽ1, . . . , ẽi−1, ẽi+1, . . . ẽn+1).

Here, ((1, 0), Ψ̃−1)(x1, . . . , xn+1) := x1 ·(1, 0)+Ψ̃−1(x2, . . . , xn+1), ẽk := Ψ−1xkk

denotes the k-th unity vector in Rn+1, and given C,D ∈ ISO(Rn+1,

Rn+1), we write C ∼ D if and only if detC detD > 0. This shows that

α−1 = (−1)i+1ν̃ = ν(u).

It follows from [6, Proposition 5.15] that (πλ, [−1, 1]× {0})λ∈[0,1] is S-conti-

nuous and for every λ ∈ [0, 1], ([−1, 1], {1}, {−1}) is an attractor-repeller decom-

position relative to πλ. Let δλn+1:Hn+1〈πλ, {(−1, 0)}〉 → Hn〈πλ, {(1, 0)}〉 denote

the associated connecting homomorphism in singular homology.

We will show that λ 7→ θ̃(δλn+1) =: θ̃λ is locally constant. Otherwise, there

is a sequence λk → λ0 in [0, 1] such that θk := θ̃(δλk) 6= θ̃(δλ0) =: θ0. It follows

from [2, Theorem 7.3] that for all k large enough, there are strongly admissible

FM-index triples (N1,k, N2,k, N3,k) and (Ñ1,k, Ñ2,k, Ñ3,k) for πk := πλk , k ∈
N ∪ {0} such that the following diagram (the rows of which are a part of the

respective long exact attractor repeller sequence in homology)

Hq+1[N1,k/N2,k]
δkq+1

//

⊂
��

Hq[N2,k/N3,k]

⊂
��

Hq+1[Ñ1,0/Ñ2,0]
δ0q+1

// Hq[Ñ2,0/Ñ3,0]

is defined, commutative, and its vertical arrows denote isomorphisms (9).

Now, Proposition 3.10 implies that θk = θ0 for all k ∈ N sufficiently large,

a contradiction, and so θ(π0, Ψ̃−1, Ψ̃1) = θ0 = θ1 = θ̃(δn+1). �

Theorem 7.4. sgnu := sgn(u,Ψ−1,Ψ1) is well-defined and

∂q+1 ◦Hq+1〈ô−1〉 ◦ µq+1 =

{
sgnu ·Hq〈ô1〉 ◦ µq if q = n,

0 otherwise.

(8) (y1, . . . , yn)(x1, . . . , xn) := x1 · y1 + · · ·+ xn · yn for (x1, . . . , xn) ∈ Rn.

(9) The respective inclusion induced morphism in the homotopy category of pointed spaces
is a homotopy equivalence and therefore induces an isomorphism in singular homology.
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Note that the seeds ô±1 and the sign of u depend on Ψ±1. The assumptions

on G at the beginning of this section are used throughout the following proof

without further notice.

Proof. Let v(t) := p1 ◦G◦u(t). Lemma 5.16 in [6] relates the semigroup Πt

to the linear skew product semiflow π0 = (ξ,Φ), namely

p2DΠ̃∆(v(t)) = Φ(v(t),∆)p2,

where we set Π̃tx := G(xξt)ΠtG(x)−1 = xπ1t. Recall that Definition 6.16 relies

on the canonical projection

P :E−(−1)⊕ E+(−1)→ E−(−1).

Let P (t) be given by Definition 7.1. Translating to R× E, we obtain

P̃ (t) := DG(u(t))P (t)DG(u(t))−1.

We have

P (t)DG(u(t))−1(x, y) = P (t)x̃u̇(t) + Py

for some x̃ ∈ R, so we can drop the notation of t that is, P̃ := P̃ (t), where t is

large (so that P (t) is defined) but, apart from that, arbitrary.

Defining

Ψ̃1,t := DG(u(t))Ψ1, Ψ̃1 := DG(e+)Ψ1,

Ψ̃−1,t := DG(u(t))Ψ̂, Ψ̃−1 := DG(e−)Ψ̂,

we further have Ψ̃1,t = Ψ̃1 for all t ∈ R with |t| sufficiently large, and Ψ̃−1,t →
Ψ̃−1 as t→ −∞.

It follows from Corollary 6.21 that

(7.2) sgn det(p2Ψ̃1)−1PΦ(v(t),∆)p2Ψ̃−1,t → θ(π0, Ψ̃−1, Ψ̃1) 6= 0

as (t, t+ ∆)→ (−∞,∞).

For fixed parameters t and ∆, one has

PΦ(v(t),∆)p2 = P̃ DΠ̃∆(v(t)),

so it follows from (7.2) that

sgn det Ψ̃−1
1 P̃ DΠ̃∆(v(t))Ψ̃−1,t → θ(π0, Ψ̃−1, Ψ̃1) 6= 0.

We have

Ψ̃−1
1 P̃ DΠ̃∆(v(t))Ψ̃−1,t = Ψ−1

1 P (t)DΠ∆(v(t))Ψ̂,

showing that sgn(u,Ψ−1,Ψ1) is defined. Using Proposition 7.3, one obtains

sgn(u,Ψ−1,Ψ1) = θ̂(π, u,Ψ−1,Ψ1).

Resolving the definition of θ̂ completesthe proof. �
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8. Appendix

Although one could certainly use the notion of a vector bundle as defined

in [7], this would create a large overhead due to formalism since the structure of

the vector bundles used here is relatively simple.

Let [a, b] ⊂ R be fixed and let E, F denote arbitrary Banach spaces. We will

write E = E1⊕E2 if and only if E1 and E2 are closed linear subspaces of E with

E = E1 +E2 and E1∩E2 = {0}. Given a linear subspace E1 ⊂ E, another linear

subspace E2 is called a topological complement if and only if E = E1 ⊕ E2. In

particular, such a complement exists if E1 is closed and either dimE1 < ∞ or

codimE1 <∞.

Definition 8.1. A (trivial) bundle is the Cartesian product [a, b] × E

equipped with the product metric.

Taking (trivial) bundles as objects of a category B = B([a, b]), one needs to

define morphisms:

Definition 8.2. A morphism in B is a continuous mapping G: [a, b] →
L(E,F ). G is called a splitting if for every x ∈ [a, b], G(x)E has a topologi-

cal complement in F .

Given bundles [a, b]× E and [a, b]× Ẽ and a morphism F between them, F

can be applied to [a, b]× E in the following way: F̂ (x, η) := (x, F (x)η).

If F1, F2 are morphisms, then (F1 ◦ F2)(x) := F1(x) ◦ F2(x) is again a mor-

phism. In particular, a morphism F is an isomorphism iff for every x ∈ [a, b]

F (x) ∈ L(E,F ) is an isomorphism and iff the induced mapping F̂ is a homeo-

morphism.

Lemma 8.3. Let G ∈ C([a, b],L(E,F )) and suppose that G(x0) is an iso-

morphism in L(E,F ). Then there is a neighbourhood U of x0 in [a, b] such that

G(x) is an isomorphism for all x ∈ U . Moreover, G(x)−1 is continuous in x for

all x ∈ U .

Corollary 8.4. G ∈ C([a, b],L(E,F )) is an isomorphism if and only if for

every x ∈ [a, b] G(x) is an isomorphism in L(E,F ).

Definition 8.5. A subset U ⊂ [a, b]×F is called a subbundle if there exists

another bundle [a, b]×E and a splitting monomorphism G : [a, b]×E → [a, b]×F
such that U = Ĝ([a, b]× E).

Lemma 8.6. Ĝ: [a, b]× E → U is a homeomorphism, and the norms on the

fibers are equivalent, that is, there are constants m,M ∈ R+ such that 0 6= m

and m‖η‖E ≤ ‖G(x)η‖F ≤M‖η‖E for all (x, η) ∈ [a, b]× E.

Given a splitting monomorphism U : [a, b] × E → [a, b] × F , one can speak

of a subbundle, identifying U with its image Û([a, b] × E). Then the fibers are
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given by U(x) := U(x)E for x ∈ [a, b]. If V ⊂ [a, b], then we write U(V ) :=⋃
x∈V
{x} × U(x).

Lemma 8.7. Let U : [a, b]×E → [a, b]× F be a subbundle, let x0 ∈ [a, b] and

let P :F → U(x0) be a continuous projection onto U(x0). Then there exists a

neighbourhood V of x0 in [a, b] such that p:U(V )→ V ×U(x0), p(x, y) = (x, Py),

is a homeomorphism and the norms on the fibers are equivalent, that is, there

are constants m,M ∈ R+ such that 0 6= m and m‖η‖ ≤ ‖Pη‖ ≤ M‖η‖ for all

(x, η) ∈ U(V ).
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