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The Walsh model for M ∗
2 Carleson

Ciprian Demeter, Michael Lacey, Terence Tao
and Christoph Thiele

Abstract

We study the Walsh model of a certain maximal truncation of
Carleson’s operator related to the Return Times Theorem.

1. Introduction

Let D denote the collection of all the dyadic intervals of the form [2im,
2i(m+1)), i, m ∈ Z and let CD(R+) be the set of all the functions f : R+→ R

that are finite linear combinations of characteristic functions of dyadic in-
tervals.

For l ≥ 0 we recall that the l−th Walsh function Wl is defined recursively
by the formula

W0 = 1[0,1)

W2l = Wl(2x) + Wl(2x − 1)

W2l+1 = Wl(2x) − Wl(2x − 1).

We recognize that W1 is the Haar function also denoted by h.

Definition 1.1 A tile P is a rectangle IP × ωP of area one, such that IP

and ωP are dyadic intervals. If P = [2in, 2i(n + 1)) × [2−il, 2−i(l + 1)) is
such a tile, we define the corresponding Walsh wave packet wP by

wP (x) = 2−i/2Wl(2
−ix − n).

The intervals IP and wP will be referred to as the time and frequency inter-
vals of the tile P .
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Definition 1.2 A bitile P is a rectangle IP × ωP of area two, such that IP

and ωP are dyadic intervals. For any bitile

P = [2in, 2i(n + 1)) × [2−i+1l, 2−i+1(l + 1))

we define the lower tile

P1 = [2in, 2i(n + 1)) × [2l2−i, (2l + 1)2−i)

and the upper tile

P2 = [2in, 2i(n + 1)) × [(2l + 1)2−i, (2l + 2)2−i).

If ωP is the frequency interval of the bitile P then we will use the notations
ωP,1 and ωP,2 for the the frequency intervals of the sub-tiles P1 and P2.

We next recall the definition of the Walsh-Fourier transform. Except on
a set of measure 0 (which we shall always ignore), every x ∈ R+ can be
identified with a doubly-infinite set of binary digits

x = ...a2a1a0.a−1a−2...

where an ∈ Z2 and an is eventually zero as n → ∞. We define two operations
on R+ by

an(x ⊕ y) := an(x) + an(y)

an(x ⊗ y) :=
∑
m∈Z

am(x)an−m(y),

where the addition and multiplication in the right hand terms are considered
modulo 2. We next define the function e : R+ → {−1, 1} to be 1 when
a−1 = 0 and −1 when a−1 = 1. Using this we can introduce the Walsh-
Fourier transform of a function f ∈ CD(R+) to be

f̂(ξ) :=

∫
e(x ⊗ ξ)f(x)dx.

We also note that the inverse Walsh-Fourier transform fˇ and the Walsh-
Fourier transform coincide in this context.

In the following we will denote with Suniv the collection of all the bitiles.
It is known, see [6], that the almost everywhere convergence of the Walsh
series for f ∈ Lp ∑

l≥0

〈f, Wl〉Wl(x)

is a consequence of the estimate

‖Wf‖p � ‖f‖p,

where
Wf(x) = ‖

∑
P∈Suniv

〈f, wP1〉wP1(x)1ωP,2
(θ)‖L∞

θ
.
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Define the M∗
2 norm of a family of Walsh multipliers mk as

‖(mk(θ))k∈Z‖M∗
2 (θ) = sup

‖g‖2=1

‖ sup
k

|(ĝmk )̌ (x)|‖L2
x
.

In this paper we will be concerned with getting estimates for the operator

Wmaxf(x) = ‖(
∑

P∈Suniv:|IP |<2k

〈f, wP1〉wP1(x)1ωP,2
(θ))k∈Z‖M∗

2 (θ).

Theorem 1.3 For each 1 < p < ∞ we have

(1.1) ‖Wmaxf‖p �p ‖f‖p.

It has been acknowledged, see for example [4], [7], that the Walsh models
provide a lot of the intuition that lies behind their Fourier analog. In our
case, the interest in proving Theorem 1.3 is motivated by its connections
with the following Return Times Theorem due to Bourgain [2].

Theorem 1.4 Let X = (X, Σ, µ, τ) be a dynamical system and let 1 ≤
p, q ≤ ∞ satisfy 1

p
+ 1

q
≤ 1. For each function f ∈ Lp(X) there is a

universal set X0 ⊆ X with µ(X0) = 1, such that for each second dynamical
system Y = (Y,F , ν, σ), each g ∈ Lq(Y ) and each x ∈ X0, the averages

1

N

N−1∑
n=0

f(τnx)g(σny)

converge ν- almost everywhere.

In [3] we extend Bourgain’s theorem to a larger range of p and q. Our
argument there relies on estimates like the one in Theorem 1.4 for a model
operator which is the Fourier counterpart of Wmax. We hope that our pre-
sentation here for the simpler Walsh model will ease the understanding of
the the proof in [3].

We note that in order to prove Theorem 1.3 it suffices to assume that
the summation in the definition of the operator Wmax runs over a finite
collection S ⊂ Suniv of bitiles, and to prove inequality (1.1) with bounds
independent on S. We fix the collection S for the remaining part of the
paper.

The argument relies on first splitting the collection of bitiles into struc-
tured collections called trees. The bitiles in each tree give rise to a modulated
Littlewood-Paley decomposition. The model operator Wmax restricted to
each such a tree is estimated in Section 3, by using the Caldéron-Zygmund-
type estimates from Section 2.
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In Section 5 the operator Wmaxf(x) is estimated pointwise, and it is
shown that for each x the contribution to Wmaxf(x) comes from one stack
of trees. Crucial to estimating this contribution is a weighted version of a
maximal multiplier result due to Bourgain. This is proved in Section 4. The
different pieces of the proof are put together in the last section of this paper.

2. Variational norm estimates for averages

Let H be a separable Hilbert space equipped with a norm | · |H and denote
by Lq(R, H) the measurable functions on R with values in H whose q-th
power are integrable. Let E(f |Dk) denote the conditional expectation with
respect to the σ-algebra on R generated by the dyadic intervals of length 2k.
We include the case k = ∞ by setting E(f |D∞) = 0. From now on we will
use the notation

gI(x) =
1

|I|1/2
g(

x − l(I)

|I| )

for each dyadic interval I = [l(I), r(I)).

Lemma 2.1 (Jump inequality) Consider 1 < q < ∞ and f ∈ Lq(R, H).
For each x and λ > 0 define the entropy number Mλ(x) be the maximal
length of a chain ∞ = k0 > k1 > k2 > · · · > kMλ(x) such that for each
1 ≤ m ≤ Mλ(x)

|E(f |Dkm)(x) − E(f |Dkm−1)(x)|H ≥ λ.

Then
‖λM

1/2
λ (x)‖Lq

x(R,H) ≤ Cq‖f‖Lq(R,H)

where the constant Cq remains bounded for q in any compact subinterval
of (1,∞).

Proof. This result is well known, we briefly sketch the proof for complete-
ness. First we establish that the number Mλ(x) of λ-jumps can be estimated
by counting the λ/2-jumps in a greedy algorithmic way. Let k0(x) = ∞
and for m ≥ 1 let km(x) be the minimal number, if it exists, such that
|E(f |Dkm(x))(x) − E(f |Dkm−1(x))(x)|H ≥ λ/2. Let M̃λ(x) be the maximal
index for which kM̃λ(x) exists. Define

Ax = {k0(x), k1(x), . . . , kM̃λ(x)}
Ix = {J ∈ D : x ∈ J, |J | = 2k for some k ∈ Ax}.

Then one easily checks that Mλ(x) ≤ M̃λ(x). The crucial additional prop-
erty of this greedy selection is that the initial parts of the sequence km

coincide for two nearby values of x until the value of 2km gets smaller than
the length of the smallest dyadic interval containing both values.
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For each x and each selected interval J ∈ Ix, let IJ be the collection of
dyadic intervals contained in J but not contained in any interval from Ix

of length smaller than |J |. By vector valued Caldéron-Zygmund theory we
have

(2.1)
∥∥∥(∑

J∈Ix

∣∣∣ ∑
I∈IJ

εI 〈f, hI〉hI(x)
∣∣∣2
H

)1/2∥∥∥
Lq(R)

≤ Cq‖f‖Lq(R,H)

uniformly in all choices of signs εI ∈ {−1, 1}. For q = 2 this is an easy
Hilbert space argument using orthogonality of the functions hJ . For q < 2
we use a Caldéron-Zygmund decomposition of |f | to obtain a weak endpoint
at q = 1 and then interpolate. For q > 2 we use BMO techniques, i.e., we
estimate the sharp maximal function

g#(x) = sup
x∈I

( 1

|I|
∫

I

(g − gI)
2
)1/2

= sup
x∈I

( 1

|I|
∫

I

g2 − g2
I

)1/2

of the function g on the left hand side of (2.1) by the maximal function of |f |,
and then use standard Lq bounds for the sharp function and the maximal
function.

Inequality (2.1) implies∥∥∥( ∑
1≤m≤M̃λ(x)

|E(f |Dkm(x))(x) − E(f |Dkm−1(x))(x)|2H
)1/2∥∥∥

q
≤ Cq‖f‖Lq(R,H)

and using that all jumps are at least λ/2 proves the lemma. �
Define the r- variational norm of a sequence gk of elements in H to be

‖gk‖V r(k) := sup
k

|gk|H + sup
M,k0,k1,...,kM

( M∑
m=1

|gkm − gkm−1|rH
)1/r

One may also define some “weak” variational norm

‖gk‖V r,∞(k) := sup
k

|gk|H + sup
λ>0

λM
1/r
λ .

where Mλ is the maximal number of indices k0, k1, . . . , kM such that |gkm −
gkm−1 |H ≥ λ for all 1 ≤ m ≤ M . We have the usual estimate for the V r(k)
norm in terms of Mλ

‖gk‖V r(k) ≤ ‖gk‖∞ + C

∫ ∞

0

λrMλ
dλ

λ

The jump inequality in Lemma 2.1 is almost a V 2,∞ inequality, with the
difference that in that inequality λ is independent of x, while in an honest
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V 2,∞ inequality the parameter λ may be maximized at every x individually.
Hence the jump inequality is somewhat weaker than a V 2,∞ inequality. By
integrating over all λ and using Fubini one can abandon this disadvantage
of λ being constant in x and prove honest V r(k) norm estimates with r > 2.

Lemma 2.2 (Variational estimate) Let 1 < q < ∞ and f ∈ Lq(R, H).
Then for 2 < r < ∞ we have∥∥∥∥∥E(f |Dk)(x)

∥∥
V r(k)

∥∥∥
Lq

x

≤ Cq(1 + (r − 2)−1)‖f‖Lq(R,H)

where Cq remains bounded on any compact interval of (1,∞).

Proof. For each x and λ > 0 we denote by Mλ(x) the entropy number of
the collection {E(f |Dk)(x) : k ∈ Z}. We first consider this inequality for |f |
being the characteristic function of a set A. Then Mλ = 0 for λ > 1. Hence
we can write for 2 < r < ∞

‖E(f |Dk)(x)‖V r(k) ≤ C

(∫ 1

0

λ2Mλ(x) λr−2dλ

λ

)1/r

The right hand term is an Lr
λ(dµ) norm of (λ2Mλ)1/r(x) with respect to an

appropriate measure space of total mass ‖µ‖ =
∫ 1

0
λr−3dλ = (r − 2)−1.

In the case q = r we get

‖‖E(f |Dk)(x)‖V r(k)‖Lr
x
≤ C‖‖(λ2Mλ(x))1/r‖Lr

λ(dµ)‖Lr
x

= C‖‖(λ2Mλ(x))1/r‖Lr
x
‖Lr

λ(dµ)

≤ C‖|A|1/r‖Lr
λ(dµ)

≤ C(r − 2)−1/r|A|1/r.

Here we have used that ∫
λ2Mλ(x) dx ≤ C|A|

from the jump inequality in Lemma 2.1 applied with q = 2. We remark that
(r − 2)−1/r is bounded by 1 + (r − 2)−1.

If q > r, then we invoke Hölder’s inequality

‖(λ2Mλ(x))1/r‖Lr
λ(dµ) ≤ (r − 2)1/q−1/r‖(λ2Mλ(x))1/r‖Lq(dµ)

and ∫
(λ2Mλ(x))q/r dx ≤ C2q/r|A|
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and then proceed as above to obtain∥∥∥∥∥E(f |Dk)(x)
∥∥

V r(k)

∥∥∥
Lq

x

≤ C2q/r(r − 2)−1/r|A|1/q

Observe that 2 < 2q/r < q, so we can write Cq instead of C2q/r.

If q < r, we will prove a weak type inequality

m
{
x :
∥∥E(f |Dk)(x)

∥∥
V r(k)

≥ ν
} ≤ Cq(1 + (r − 2)−1)ν−q‖f‖q

Lq(R,H).

Define

E =
{
x : sup

x∈I∈D

1

|I|
∫

I

|f |(y)dy ≥ ν
}

.

Outside E, we may replace f by the good part g of the Calderón-
Zygmund decomposition of f in order to calculate the value of E(f |Dk).
As usual we have

‖g‖Lr(R,H) ≤ Cν1−q/r‖f‖q/r
Lq(R,H).

Hence we have

m{x : ‖E(f |Dk)(x)‖V r(k) ≥ ν}
≤ |E| + m{x ∈ Ec : ‖E(f |Dk)(x)‖V r(k) ≥ ν}
≤ Cqν

−q‖f‖q
Lq(R,H) + Cν−r‖‖E(f |Dk)(x)‖V r(k)‖r

Lr
x(Ec)

≤ Cq(1 + (r − 2)−1)ν−q‖f‖q
Lq(R,H)

The Lemma now follows by Marcinkiewicz interpolation, passing from re-
stricted weak type to strong type inequalities. �

3. General facts about Walsh time-frequency analysis

The endpoints of the dyadic intervals will be called dyadic points. For each
dyadic interval ω = [a, b], the subintervals ω1 := [a, a+b

2
] and ω2 := [a+b

2
, b]

will be referred to as the left and right children of ω, respectively.

Definition 3.1 For two tiles (or bitiles) P and P ′ we write P ≤ P ′ if
IP ⊆ IP ′ and ωP ′ ⊆ ωP .

Definition 3.2 A tree with top (IT, ξT) is a collection of bitiles T ⊆ S such
that IP ⊆ IT and ξT ∈ ωP for each P ∈ T. An i-tree is a tree T such that
ξT ∈ ωP,i for each P ∈ T.
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Definition 3.3 Fix some f : R+ → R. For a finite subset of bitiles S′ ⊆ S
define its size relative to f as

size(S′) := sup
T

(
1

|IT|
∑
P∈T

|〈f, wP1〉|2
) 1

2

where the supremum is taken over all the 2-trees T ⊂ S′.

We recall a few important results regarding the size.

Proposition 3.4 For each 1 < s < ∞, each 2-tree T and each f ∈ Ls(R+)
we have (

1

|IT|
∑
P∈T

|〈f, wP1〉|2
)1/2

� inf
x∈IT

Msf(x).

Proof. See for example Lemma 1.8.1 in [5]. �
The following Bessel type inequality, see for example [4], will be used to

organize collections of bitiles into trees.

Proposition 3.5 Let S′ ⊆ S be a collection of tiles and define

∆ := [− log2(size(S
′))] ,

where the size is understood with respect to some function f ∈ L2(R+).
Then S′ can be written as a disjoint union S′ =

⋃
n≥∆ Pn, where size(Pn) ≤

2−n and each Pn consists of a family FPn of pairwise disjoint trees satisfying

(3.1)
∑

T∈FPn

|IT| � 22n‖f‖2
2,

with bounds independent of S′, n and f .

Elementary computations show that for each tile P = [2in, 2i(n + 1)) ×
[2−il, 2−i(l + 1)), each l′ ≥ 0 and each ξ ∈ [2−il′, 2−i(l′ + 1)) we have

wP (x) = 1IP
(x)e(2−il ⊗ x)

wP (x)e(ξ ⊗ x) = ε(P, ξ)1IP
(x)e(2−i|l′ − l| ⊗ x)

where ε(P, ξ) ∈ {−1, 1} depends on P and ξ but not on x. In particular, if
T is a 2-tree and P ∈ T then

wP1(x)e(ξT ⊗ x) = ε(P, ξT)wP ′(x)

where P ′ = [2in, 2i(n+1))×[2−i, 2−i+1), and thus wP1(x)e(ξT⊗x) is constant
on both the left half and the right half of IP .
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An immediate consequence is that for each k ∈ Z and each aP ∈ R

e(ξT ⊗ x)
∑

P∈T:|IP |≥2k

aP wP1(x) = E(e(ξT ⊗ ·)
∑
P∈T

aP wP1|Dk−1)(x).

Since

wP1(x)e(ξT ⊗ x) = ε(P, ξT)2−i/2W1(2
−ix − n)

= ε(P, ξT)hIP
(x)

where h is the Haar function, the classical theory of wavelets and John-
Nirenberg’s inequality imply the following.

Theorem 3.6 Let T be a 2-tree and assume (aP )P∈T ∈ R satisfy( 1

|I|
∑
P∈T
IP ⊆I

|aIP
|2
)1/2

≤ B,

for each dyadic interval I. Then for each 1 < s < ∞∥∥∥e(ξT ⊗ ·)
∑
P∈T

aP wP1

∥∥∥
BMO

� B

and ∥∥∥e(ξT ⊗ ·)
∑
P∈T

aP wP1

∥∥∥
s
�s B|IT|1/s.

As an immediate consequence of Theorem 3.6 and of Lemma 2.2 we
obtain the following.

Theorem 3.7 Let T be a 2-tree, f : R+ → R and let size(T) denote the
size of T with respect to the function f . Then for each 1 < s < ∞∥∥∥∥∥ ∑

P∈T
|IP |≤2k

aP wP1(x)
∥∥

V r(k)

∥∥∥
Ls

x

�s size(T)|IT|1/s.

4. A generalization of a Lemma of Bourgain

In this section we generalize a maximal multiplier result due to Bourgain [1]
We begin with the following easy consequence of Minkowski’s inequality.

Lemma 4.1 Let Ξ be a finite set. Consider also two sequences ak and bk in
the Hilbert space l2(Ξ) and define ak 	 bk ∈ l2(Ξ) by (ak 	 bk)ξ = (ak)ξ(bk)ξ.
Then

‖ak 	 bk‖V r(k) � (
∑
ξ∈Ξ

‖(ak)ξ‖2
V r(k)‖(bk)ξ‖2

V r(k))
1/2.
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Proposition 4.2 Let H be a Hilbert space. Assume we are given a set A of
linear functionals f → f (α) =

〈
f, e(α)

〉
, e(α) ∈ H, of norm less than ε such

that ∑
α∈A

|f (α)|2 ≤ |f |2

for each f ∈ H. Set N = ε2|A|. Let fk be a sequence of H-valued functions
on R such that we have the variational inequality∥∥‖fk(x)‖V r(k)

∥∥
L2

x
≤ F.

Then we have ∥∥‖ sup
k

|f (α)
k (x)|‖l2(A)

∥∥
L2

x
≤ CN r/4−1/2F.

A special example of a collection of linear functionals as in the Lemma
can be obtained by choosing the e(α) to be an orthonormal family of vectors
and ε = 1. Our main application will involve a more general set of linear
functionals. We remark that the difficulty in this proposition comes from
the fact that we take the supremum in k before we take the square sum of
the components.

Proof. Fix x and define Cx = {fk(x)} and d(x) = diam(Cx). It suffices
to prove the Proposition in the case Cx is finite and then to invoke the
Monotone Convergence Theorem. Also, we can assume with no loss of gen-
erality that Cx contains the origin 0. For each λ > 0 denote by Nλ(x) the
minimum number of balls with radius λ and centered at elements of Cx,
whose union covers Cx. It is an easy exercise to prove that

(4.1) sup
λ>0

λN
1/r
λ (x) �r ‖fk(x)‖V r(k),

with the implicit constant depending only on r. For each n ≥ − log2(d(x)),
let Cn,x be a collection of elements of (Cx − Cx) such that

|c|H ≤ 2−n+2 for each c ∈ Cn,x,


Cn ≤ N2−n(x) + 1

and each c ∈ Cn,x can be written as

(4.2) c =
∑

n≥− log2(d(x))

cn with cn ∈ Cn,x.

Here is how Cn,x is constructed. For each n ≥ − log2(d(x)) define Bn,x to be
a collection of N2−n(x) elements of Cx such that the balls with centers in Bn,x
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and radius 2−n cover Cx. If n = [− log2(d(x))] − 1 define Bn,x = {0}. For
each n ≥ − log2(d(x)) and each c ∈ Bn,x, choose an element c′ ∈ Bn−1,x such
that the ball centered at c and with radius 2−n intersects the ball centered
at c′ and with radius 2−n+1. Define

Cn,x := {c − c′ : c ∈ Bn,x} ∪ {0}.
Since Cx is finite, for each c ∈ Cx there is n such that c ∈ Bn,x. To verify
the representation (4.2) for an arbitrary c ∈ Cx, denote as above by c′

the element from Bn−1,x associated with c, by c′′ the element from Bn−2,x

associated with c′ and so on, and note that this sequence will eventually
terminate with 0. Hence we can write

c = (c − c′) + (c′ − c′′) + . . . .

Note also that by construction, each element of Cn,x has norm at most 2−n+2.
This together with inequality (4.1) further allows us to write for each x

and α

sup
k

|f (α)
k (x)| ≤

∑
n≥− log2(d(x))

sup
cn∈Cn,x

|c(α)
n |

�
∑

n≥− log2(d(x))

min

(
2−nε,

( ∑
cn∈Cn,x

|c(α)
n |2

)1/2
)

.

Summing over α we get∑
α

(sup
k

|f (α)
k (x)|)2 �

∑
n≥− log2(d(x))

min
(
2−2nN,

∑
cn∈Cn,x

|cn|2H
)

� 2−2n
∑

n≥− log2(d(x))

min(N, N2−n(x)).

Taking finally the L2 norm in x gives∥∥∥∥∥ sup
k

|f (α)
k (x)|∥∥

l2(A)

∥∥∥2

L2
x

�
∫ ∑

2−n<d(x)/N1/2

2−2nN dx +

∫ ∑
d(x)/N1/2≤2−n≤d(x)

2−2nN2−n(x) dx

�
∫

d2(x) dx +

∫ ∑
d(x)/N1/2≤2−n

2−(2−r)n2−rnN2−n(x) dx

�
∫

d2(x) dx + N r/2−1

∫
d(x)2−r

∑
n

2−rnN2−n(x) dx

� N r/2−1

∫
‖fk(x)‖2

V r(k) dx � N r/2−1F 2.

This finishes the proof. �
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Corollary 4.3 Let 2 < r < ∞. Assume we are given a set Ξ ⊂ R+ of
cardinality N > 1 and assume that there is no dyadic interval of length 1
which contains more than one point in Ξ. For every k ≥ 0 define Ωk to be the
union of all dyadic intervals of length 2−k which have nonempty intersection
with Ξ. For each ω ∈ Ωk let εω be a number so that for every nested sequence
of intervals ωk ∈ Ωk we have

(4.3) ‖εωk
‖V r(k) ≤ σ.

Define

∆kf(x) =
( ∑

ω∈Ωk

εω1ωf̂
)

(̌x).

Then ∥∥ sup
k≥0

|∆kf |
∥∥

2
�r σN r/4−1/2‖f‖2.

Proof. Fix f ∈ L2(R+). For each k ≥ 0 we will denote by ωξ,k the unique
dyadic interval in Ωk such that ξ ∈ ωξ,k, and by wξ(x) = e(x ⊗ ξ). Let H
be the N dimensional Hilbert space l2(Ξ). Define the sequence of functions
fk : R → H , k ≥ 0, by

(fk(x))ξ = εωξ,k
(f̂1ωξ,k

)̌ (x)

= εωξ,k
wξ(x)E(fwξ|Dk)(x),

and note that

(4.4) (fk(x))ξ = wξ(y)(fk(x ⊕ y))ξ

for all y ∈ [0, 1).
To construct the vectors e(α), choose some small negative integer m

so that all wξ are constant on dyadic subintervals of [0, 1) of length 2m.
We write wξ(J) for this constant value on such an interval J . For each such
interval Jα, α ∈ A := {1, 2, . . . , 2−m}, define

e(α) = (2m/2wξ(Jα))ξ∈Ξ.

The corresponding linear functionals are of norm ε = 2m/2|Ξ|1/2. We also
have ∑

α

|g(α)|2 ≤
∫ 1

0

|
∑
ξ∈Ξ

gξwξ(x)|2 dx ≤
∑

ξ

|gξ|2,

for each g ∈ H. In the last inequality we have used that the functions wξ

are orthogonal on [0, 1). Hence the functionals satisfy the assumption of
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Proposition 4.2 with N = ε2|A| = |Ξ|. We observe the following

‖‖ sup
k

|f (α)
k (x)|‖l2(A)‖L2

x
=

∫
R+

∫ 1

0

sup
k

|
∑
ξ∈Ξ

εωξ,k
wξ(y)(f̂1ωξ,k

)̌ (x)|2dy dx

=

∫
R+

∫ 1

0

sup
k

|
∑
ξ∈Ξ

εωξ,k
wξ(y)(f̂1ωξ,k

)̌ (x ⊕ y)|2dy dx

=

∫
R+

sup
k

|
∑
ξ∈Ξ

εωξ,k
(f̂1ωξ,k

)̌ (x)|2 dx

= ‖ sup
k≥0

|∆kf |‖2
2

where the last equality is a consequence of (4.4). The corollary now follows
from Proposition 4.2 once we verify that

‖‖fk(x)‖V r(k)‖L2
x

�r σ‖f‖2.

Note that for each x, fk(x) = ak,x 	 bk,x, where (ak,x)ξ = εωξ,k
and (ak,x)ξ =

wξ(x)E(fwξ|Dk)(x). The above estimate is now a consequence of Lemma 2.2,
Lemma 4.1 and inequality (4.3). �

An argument very similar to the above also proves the following version
of Corollary 4.3:

Corollary 4.4 Consider a collection Ω of Ndisjoint dyadic intervals ω∈R+.
For each ω ∈ Ω and each k ∈ Z let εk,ω ∈ R . Define

∆kf(x) :=
∑
ω∈Ω

εk,ω(f̂1ω )̌ (x).

Then for each r > 2∥∥ sup
k

|∆kf |
∥∥

L2 �r N r/4−1/2 sup
ω∈Ω

‖εk,ω‖V r(k)‖f‖L2.

It turns out that the results of corollaries 4.3 and 4.4 are not general
enough for our applications, and so we prove the following more general
version. Consider now an arbitrary set Ξ = {ξ1, . . . , ξN} with no further
restrictions on it, and for each k ∈ Z define Ωk to be the set of all dyadic
intervals of length 2−k which contain some element of Ξ. We now associate
to each ω ∈ ⋃k Ωk a number εω ∈ R and define

(4.5) ∆kf(x) :=
∑
ω∈Ωk

εω(f̂1ω )̌ (x).
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Proposition 4.5 For each r > 2 we have the inequality

‖ sup
k

|∆kf |‖2 �r N r/4−1/2σ‖f‖2,

where
σ = sup

n
sup

ξn∈ωk∈Ωk

‖εωk
‖V r(k).

Proof. It suffices as before to assume that the index k runs through a
finite interval {a, a + 1, . . . , b} with a, b ∈ Z. We can find a sequence a =
k0 < k1 < . . . < kL = b with L ≤ N , such that for each 0 ≤ j ≤ L − 1,
Ωk has the same cardinality when kj ≤ k < kj+1. If f̂j := (

∑
ω∈Ωkj

1ω −∑
ω∈Ωkj+1

1ω)f̂ , then the functions fj are pairwise orthogonal. We can now

bound ‖ supk |∆kf |‖2 by

∥∥∥∥ sup
j

sup
kj≤k<kj+1

∣∣∣( ∑
ω∈Ωkj+1

εω(k)1ω

∑
j′>j

f̂j′
)̌ ∣∣∣∥∥∥∥

2

+(4.6)

+
∥∥∥ sup

j
sup

kj≤k<kj+1

∣∣∣( ∑
ω∈Ωk

εω1ωf̂j

)̌ ∣∣∣∥∥∥
2
.(4.7)

For each ω ∈ Ωkj+1
and each kj ≤ k < kj+1, ω(k) is defined to be the

interval in Ωk containing ω. Corollary 4.3 and scaling invariance show that
the term (4.7) can be bounded by(∑

j

∥∥∥ sup
kj≤k<kj+1

∣∣∣( ∑
ω∈Ωk

εω1ωf̂j

)̌ ∣∣∣∥∥∥2

2

)1/2

�
(∑

j

N r/2−1 sup
n

sup
ξn∈ωk∈Ωk
kj≤k<kj+1

‖εωk
‖2

V r(k)‖fj‖2
2

)1/2

� σN r/4−1/2‖f‖2.

To estimate the term in (4.6), define the maximal operators

O∗
j (h) := sup

kj≤k<kj+1

∣∣∣( ∑
ω∈Ωkj+1

εω(k)1ωĥ
)̌ ∣∣∣.

We will argue that∥∥∥ sup
1≤j≤N

O∗
j

( ∑
j≤j′≤N

fj′
)∥∥∥

2
� σN r/4−1/2

( L∑
j=1

‖fj‖2
2

)1/2

.
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It suffices to consider only dyadic values of N so we will assume that N = 2M ,
for some M ≥ 0. For each 0 ≤ m ≤ M , denote by Am the best constant
for which the following inequality holds for all discrete dyadic intervals J =
(j1, j2] := {j1 + 1, j1 + 2, . . . , j2}1 ⊆ {1, 2 . . . , 2M} with 2m elements∥∥∥ sup

j∈J
O∗

j

( ∑
j≤j′≤j2

fj′
)∥∥∥

2
� Am

(∑
j∈J

‖fj‖2
2

)1/2

.

We will use a reasoning similar to the one in the proof of the Rademacher-
Menshov inequality, to argue that AM � BM , where

Bm := σ2m(r/4−1/2).

We can write for each 0 ≤ m ≤ M −1 and each discrete dyadic interval J =
(j1, j2] ⊆ {1, 2, . . . , 2M} having 2m+1 elements and midpoint j3 := j1 + 2m

∥∥∥ sup
j∈J

O∗
j

( ∑
j≤j′≤j2

fj′
)∥∥∥2

2

≤
∥∥∥ sup

j3+1≤j≤j2

O∗
j

( ∑
j≤j′≤j2

fj′
)∥∥∥2

2
+

+

(∥∥∥ sup
j1+1≤j≤j3

O∗
j

( ∑
j≤j′≤j3

fj′
)∥∥∥

2
+
∥∥∥ sup

j1+1≤j≤j3

O∗
j

( ∑
j3+1≤j′≤j2

fj′
)∥∥∥

2

)2

.

We then use the definition of Am for the first two terms above and Corol-
lary 4.4 for the third one, to bound the sum above by

A2
m

∑
j3+1≤j′≤j2

‖fj′‖2
2+

(
Am

( ∑
j1≤j′≤j3

‖fj′‖2
2

)1/2

+CBm

( ∑
j3+1≤j′≤j2

‖fj′‖2
2

)1/2
)2

≤ (Am + CBm)2
∑
j∈J

‖fj‖2
2.

We conclude that Am+1 ≤ Am + CBm for each 0 ≤ m ≤ M − 1, which
together with the fact that A0 = 0 proves that AM � BM . �

Remark 4.6 If in the above proposition we choose εω = 1 for each ω, we
recover the result of Bourgain from [1], with a slightly larger dependence
on N of the bound. While Bourgain’s bound is logarithmic in N , a bound of
the form N r/4−1/2 will suffice for our later applications, since we afford to
take r as close to 2 as we want.

1j1 and j2 are of the form a2b with a, b ∈ Z+
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5. Pointwise estimates outside exceptional sets

5.1. An estimate for a collection of 2-trees

Assume we have a collection S′ ⊆ S of bitiles which can be written as a not
necessarily disjoint union of 2-trees

S′ =
⋃
T∈F

T.

We shall assume that if T ∈ F , then T is indeed the maximal 2-tree in S′

with the top (IT, ξT), that is, all bitiles in P ∈ S′ which satisfy IP ⊆ IT and
ξT ∈ ωP,2 are in T.

Theorem 5.1 For each β ≥ 1, γ > 0 and each (aP )P∈S′ define the excep-
tional sets

E(1) =
{
x :
∑
T∈F

1IT(x) > β
}
,

E(2) =
⋃
T∈F

{
x :
∥∥∥ ∑

P∈T
|IP |<2k

aPwP1(x)
∥∥∥

V r(k)
> γ

}
.

Then for each x /∈ E(1) ∪ E(2) and each r > 2 we have∥∥∥∥( ∑
P∈S′

|IP |≤2k

aP wP1(x)1ωP,2
(θ)
)

k∈Z

∥∥∥∥
M∗

2 (θ)

�r γβr/4−1/2.

Proof. Fix x not in the union of the exceptional sets and let Fx be the
family of all trees T ∈ F with x ∈ IT. Define

Ξx = {ξT,T ∈ Fx}.
For each k ∈ Z let Ωk be the collection of dyadic frequency intervals of
length 2−k which contain an element of Ξx. Let Ω̃k be the collection of all
children of intervals in Ωk−1 that are not themselves in Ωk. Observe that
both

⋃
k′ Ω̃k′ and Ωk ∪

⋃
k′≤k Ω̃k′ are collections of pairwise disjoint intervals

which cover R+ (with the possible exception of finitely many dyadic points).
Moreover we can write∑

P∈S′:|IP |<2k

aPwP1(x)1ωP,2
(θ) =

∑
ω∈Ωk

1ω(θ)
∑
P∈S′

|IP |<2k, ω∩ωs,2 �=∅

aP wP1(x)1ωP,2
(θ)

+
∑
k′≤k

∑
ω∈Ω̃k′

1ω(θ)
∑
P∈S′

|IP |<2k, ω∩ωP,2 �=∅

aP wP1(x)1ωP,2
(θ).

Indeed, if 1ω(θ)wP11ωP,2
(θ) �≡ 0 for some ω ∈ Ωk ∪ ⋃k′≤k Ω̃k′ and P ∈ S′,

then this implies that ω ∩ ωP,2 �= ∅.



The Walsh model for M∗
2 Carleson 737

Moreover, when ω ∈ Ωk, this latter restriction together with |IP | < 2k is
equivalent with just asking that ω ⊆ ωP,2. Similarly, when ω ∈ ⋃k′≤k Ω̃k′

then ωP,2 � ω is impossible, which in turn makes the requirement |IP | < 2k

superfluous. Indeed ωP,2 � ω would imply that ωP ⊆ ω, contradicting the
fact that ωP contains an element from Ξx while ω does not. Hence we can
rewrite ∑

P∈S′:|IP |<2k

aP wP1(x)1ωP,2
(θ) =

=
∑
ω∈Ωk

1ω(θ)
∑
P∈S′

ω⊆ωP,2

aPwP1(x)1ωP,2
(θ)(5.1)

+
∑
k′≤k

∑
ω∈Ω̃k′

1ω(θ)
∑
P∈S′

ω⊆ωP,2

aP wP1(x)1ωP,2
(θ).(5.2)

The multiplier in (5.2) can be written more conveniently as(
1 −

∑
ω̃∈Ωk

1ω̃

)(∑
k′

∑
ω∈Ω̃k′

1ω(θ)
∑

P∈S′, ω⊆ωP,2

aP wP1(x)1ωP,2
(θ)

)
=

= (1 −
∑
ω̃∈Ωk

1ω̃)
∑
P∈S′

aP wP1(x)1ωP,2
(θ),

given the fact that( ⋃
I∈Ωk

I
)c

=
⋃
k′≤k

⋃
I∈Ω̃k′

I and
( ⋃

k′≤k

Ω̃k′
)⋂( ⋃

k′>k

Ω̃k′
)

= ∅,

modulo some dyadic points. This maximal multiplier operator is now eas-
ily seen to be the composition of two operators. One is the identity mi-
nus Bourgain’s maximal operator for which Proposition 4.5 provides good
bounds. The second one is a linear operator associated with the multiplier∑

P∈S′ aP wP1(x)1ωP,2
(θ). To analyze the latter operator, we note that for

each θ the contribution to the multiplier comes from a single tree. To see
this note that the collection

A :=
{
P ∈ S′ : x ∈ IP , θ ∈ ωP,2

}
is finite and totally ordered and hence it contains a maximum element Pθ.
If Tθ ∈ F is one of the 2-trees to which Pθ belongs, then by the maximality
condition in the hypothesis it follows that P ∈ Tθ for each P ∈ A. Moreover,
there is some k such that∑

P∈S′
aP wP1(x)1ωP,2

(θ) =
∑
P∈Tθ

|IP |≤2k

aP wP1(x).
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By invoking Proposition 4.5 and the fact that x /∈ E(1) ∪ E(2) we get that∥∥∥∥((1 − ∑
ω̃∈Ωk

1ω̃

)∑
P∈S′

aP wP1(x)1ωP,2

)
k∈Z

∥∥∥∥
M∗

2

≤
(

1 +
∥∥∥( ∑

ω̃∈Ωk

1ω̃

)
k∈Z

∥∥∥
M∗

2

)∥∥∥∑
P∈S′

aP wP1(x)1ωP,2
(θ)
∥∥∥

L∞(θ)

� γβr/4−1/2.

The term (5.1) is clearly of the form∑
ω∈Ωk

1ω(θ)εω

with
εω =

∑
P∈S′

ω⊆ωP,2

aP wP1(x).

We claim that for each nested sequence of intervals ωk ∈ Ωk we have the
variational norm estimate

(5.3) ‖εωk
‖V r(k) �r γ.

This follows immediately from the fact that all bitiles contributing to εωk

belong to a single tree T ∈ F . Indeed, the collection

B :=
{
P ∈ S′ : x ∈ IP , ωk ⊆ ωP,2 for some k

}
is finite and totally ordered, so it has a maximum element Px. If Tx ∈ Fx is
one of the 2-trees to which Px belongs, then from the maximality condition
in the hypothesis it follows that P ∈ Tx for each P ∈ B. Moreover, for
each k {

P ∈ S′ : ωk ⊆ ωP,2

}
=
{
P ∈ Tx : |IP | ≤ 2k

}
.

Thus (5.3) and Proposition 4.5 imply that∥∥∥∥∥
( ∑

ω∈Ωk

1ω(θ)
∑
P∈S′

ω⊆ωP,2

aP wP1(x)1ωP,2
(θ)

)
k∈Z

∥∥∥∥∥
M∗

2 (θ)

� γβr/4−1/2.

�

5.2. An estimate for a collection of 1-trees

The discussion here is very similar to that for 2-trees. Assume we have a
collection S′ of bitiles which can be written as a not necessarily disjoint
union of finitely many 1-trees

S′ =
⋃
T∈F

T.
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We shall assume that for every P ∈ S′ there does not exist a tree T ∈ F
with IP ⊂ IT and ξT ∈ ωP,2. This assumption does in particular imply that
the upper tiles P2 are pairwise disjoint. For assume not and IP � IP ′ and
ωP ′,2 � ωP,2 for some P, P ′, then it is easy to see that the upper tile P2

violates the above assumption with respect to any tree to which P ′ belongs.

Theorem 5.2 Let (aP )P∈S′ satisfy

(5.4) sup
P∈S′

|aP |
|IP |1/2

≤ σ.

For each α ≥ 1 define the exceptional set

E =
{
x :
∑
T∈F

1IT(x) > β
}
.

Then for each x /∈ E and each r > 2 we have∥∥∥( ∑
P∈S′

|IP |≤2k

aPwP1(x)1ωP,2

)
k∈Z

∥∥∥
M∗

2

�r σβr/4−1/2.

Proof. As before we write∑
P∈S′:|IP |<2k

aP wP1(x)1ωP,2
(θ) =

∑
ω∈Ωk

1ω(θ)
∑
P∈S′

ω⊆ωP,2

aP wP1(x)1ωP,2
(θ)

+
∑

k′≤k∗

∑
ω∈Ω̃k′

1ω(θ)
∑
P∈S′

ω⊆ωP,2

aP wP1(x)1ωP,2
(θ).

The argument continues as in the previous section. Since the upper tiles P2

are pairwise disjoint, the collections A and B contain at most one bitile.
This observation together with (5.4) implies that∥∥∥∑

P∈S′
aP wP1(x)1ωP,2

(θ)
∥∥∥

L∞(θ)
≤ σ and ‖εωk

‖V r(k) �r σ

An application of Proposition 4.5 ends the proof. �

5.3. Arbitrary collection of trees

Let S′ be an arbitrary collection of bitiles which can be written as a not
necessarily disjoint union of finitely many trees

S′ =
⋃
T∈F

T.

We next show that S′ can be split into a collection of 2-trees like in Sec-
tion 5.1 and a collection of 1-trees like in Section 5.2.
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For each T ∈ F let T(2) be the collection of all bitiles P ∈ S′ such that
IP ⊆ IT and ξT ∈ ωP,2. If S(2) denotes the union of all trees T(2), then S(2)

qualifies as a collection of trees as in Section 5.1.
For each T ∈ F let T(1) be the collection of all bitiles P ∈ S′ \ S(2) such

that IP ⊆ IT and ξT ∈ ωP,1. If S(1) be the union of all trees T(1), then S(1)

qualifies as a collection of trees as in Section 5.2. The additional geometric
assumption is satisfied since we have exhausted all 2-trees first.

We will denote by F (2) and F (1) respectively the two families of trees that
arise from the above procedure. An immediate consequence of the results in
the previous two subsections is the following theorem.

Theorem 5.3 Let (aP )P∈S′ satisfy

sup
P∈S′

|aP |
|IP |1/2

≤ σ.

For each β ≥ 1 and γ > 0 define the exceptional sets

E(1) =
{

x :
∑
T∈F

1IT(x) > β
}
,

E(2) =
⋃

T∈F(2)

{
x :
∥∥∥ ∑

P∈T

|IP |<2k

aP wP1(x)
∥∥∥

V r(k)
> γ

}
.

Then for each x /∈ E(1) ∪ E(2) and each r > 2 we have∥∥∥∥( ∑
P∈S′

|IP |≤2k

aPwP1(x)1ωP,2

)
k∈Z

∥∥∥∥
M∗

2

�r (σ + γ)βr/4−1/2.

6. Main argument

In this section we present the proof of Theorem 1.3. For each collection of
bitiles S′ ⊆ S define the following operator.

VS′f(x) =

∥∥∥∥∥
( ∑

P∈S′
|IP |<2k

〈f, wP1〉wP1(x)1ωP,2
(θ)

)
k∈Z

∥∥∥∥∥
M∗

2 (θ)

.

Note that for each S′ the operator VS′ is sublinear as a function of f .
Also, for each f and x the mapping S′ → TS′f(x) is sublinear as a function
of the bitile set S′. We will prove in the following that

(6.1) m{x : VS1F (x) � λ} �p
|F |
λp

,

for each F ⊆ R+ of finite measure, each λ > 0 and each 1 < p < ∞.
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Then, by invoking the Marcinkiewicz interpolation theorem and restricted
weak type interpolation we get for each 1 < p < ∞ that

‖VSf‖p �p ‖f‖p.

Fix F and λ. We first prove (6.1) in the case λ ≤ 1. Define the first
exceptional set

E := {x : Mp1F (x) ≥ λ}
and note that

|E| � |F |
λp

.

Since the range of p is open, it thus suffices to prove that for each ε > 0

(6.2) m{x ∈ R : VS11F (x) � λ1−ε} �ε,p
|F |
λp

,

where
S1 = {P ∈ S : IP ∩ Ec �= ∅}.

Proposition 3.4 guarantees that size(S1) � λ, where the size is understood
here with respect to the function 1F . Define ∆ := [− log2(size(S1))]. Use the
result of Proposition 3.5 to split S1 as a disjoint union S1 =

⋃
n≥∆ Pn, where

size(Pn) ≤ 2−n and each Pn consists of a family FPn of trees satisfying

(6.3)
∑

T∈FPn

|IT| � 22n|F |.

Let ε > 0 be an arbitrary positive number. For each n ≥ ∆ de-
fine σ := 2−n, β := 23nλp, γ := 2−n/2λ1/2−ε. Define aP := 〈1F , wP1〉 for
each P ∈ Pn and note that the collection Pn together with the coefficients
(aP )P∈Pn satisfy the requirements of Theorem 5.3. Let F (2)

Pn
be the collection

of all the 2-trees T(2) obtained from the trees T ∈ FPn by the procedure de-
scribed in the beginning of Section 5.3. Define the corresponding exceptional
sets

E(1)
n =

{
x :
∑
T∈F

1IT(x) > β
}
,

E(2)
n =

⋃
T∈F(2)

{
x : ‖

∑
P∈T

|IP |<2k

aP wP1(x)‖V r(k) > γ

}
.

By (6.3) and the fact that λ ≤ 1 we get

|E(1)
n | � 2−nλ−p|F |.
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By Theorem 3.7 and the fact that λ ≤ 1, for each 1 < s < ∞ we get

|E(2)
n | � γ−sσs−2|F | � 2−n(s/2−2)λ−s(1/2−ε)|F |.

Define
E∗ :=

⋃
n≥∆

(E(1)
n ∪ E(2)

n ).

Note that since ∆ � log2(λ
−1), we have |E∗| � λ−p|F |, an estimate which

can be seen by using a sufficiently large s.

For each x /∈ E∗, Theorem 5.3 guarantees that∥∥∥∥ ∑
P∈S1

|IP |<2k

〈1F , wP1〉wP1(x)1ωP,2
(θ)

∥∥∥∥
M∗

2 (θ)

≤
∑
n≥∆

∥∥∥∥ ∑
P∈Pn

|IP |<2k

〈1F , wP1〉wP1(x)1ωP,2
(θ)

∥∥∥∥
M∗

2 (θ)

�
∑
n≥∆

n
[
2(3(r/2−1)−1)nλp(r/2−1) + 2(3(r/2−1)−1/2)nλp(r/2−1)+1/2−ε

]
� λ1−2ε,

if r is chosen sufficiently close to 2, depending on p and ε. This ends the
proof of (6.2), and hence the proof of (6.1) in the case λ ≤ 1.

We next focus on proving (6.1) in the case λ>1. In this remaining part of
the discussion the size will be understood with respect to the function λ−11F .
Proposition 3.4 implies that size(S) � λ−1. Define ∆ := [− log2(size(S))].
Split S as before, as a disjoint union S =

⋃
n≥∆ Pn, where size(Pn) ≤ 2−n

and each Pn consists of a family FPn of trees satisfying

(6.4)
∑

T∈FPn

|IT| � 22nλ−2|F |.

For each n ≥ ∆ define σ := 2−n, β := 2(p+1)n and γ := 2−n/2. Define
also aP := 〈λ−11F , wP1〉 for each P ∈ Pn and note that the collection Pn

together with the coefficients (aP )P∈Pn satisfy the requirements of Theo-

rem 5.3. Let F (2)
Pn

the collection of all the 2-trees T(2) obtained from the trees
T ∈ FPn by the procedure described in the beginning of the Section 5.3.
Define the corresponding exceptional sets

E(1)
n =

{
x :
∑
T∈F

1IT(x) > β
}
,

E(2)
n =

⋃
T∈F(2)

{
x : ‖

∑
P∈T

|IP |<2k

aP wP1(x)‖V r(k) > γ

}
.
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By (6.4) and the fact that λ ≥ 1 we get

|E(1)
n | � 2−(p−1)nλ−2|F |.

By Theorem 3.7 and the fact that λ ≥ 1, for each 1 < s < ∞ we get

|E(2)
n | � γ−sσs−2λ−2|F | � 2−n(s/2−2)λ−2|F |.

Define
E∗ :=

⋃
n≥∆

(E(1)
n ∪ E(2)

n ).

Note that since ∆ � log2(λ), we have

|E∗| � λ−p|F |,

an estimate which can be seen by using a sufficiently large s.
For each x /∈ E∗, Theorem 5.3 guarantees that∥∥∥∥( ∑

P∈S
|IP |<2k

〈λ−11F ,wP1〉wP1(x)1ωP,2
(θ)

)
k∈Z

∥∥∥∥
M∗

2 (θ)

≤
∑
n≥∆

∥∥∥∥( ∑
P∈Pn

|IP |<2k

〈λ−11F , wP1〉wP1(x)1ωP,2
(θ)

)
k∈Z

∥∥∥∥
M∗

2 (θ)

�
∑
n≥∆

n2(p+1)(r/2−1)n(2−n + 2−n/2) � 1,

if r is chosen sufficiently close to 2, depending only on p. This ends the proof
of (6.1) in the case λ > 1.
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