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Abstract

The paper is devoted to joint and separate connectivity properties of
functions on product spaces. Examples, generalized types of continuity
and quasicontinuity points of separately connected functions are studied.

Introduction and Preliminary Examples

Many authors consider the notion of local w∗continuity as a suitable tool for
investigation of relationship between continuity and connectivity [3], [6], [7],
[10]. There arises a question whether it is possible to define a point version
of local w∗continuity. Another motivation of this paper is to find the weakest
assumptions on spaces X,Y and Z as well as on continuity types of the sections
fx and fy of a function f : X × Y → Z such that f has at least one point of
joint continuity [9]. From this point of view it seems to be closely related to
the following properties of functions:

• quasi and almost continuity,

• O-connectedness,

• cliquishness,

• local w∗continuity.
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The notion of O-connectedness was introduced in [6] dealing with a decom-
position of continuity and separate properties of functions. Since this notion
as well as the quasi continuity, almost continuity and cliquishness are closely
related to the problems mentioned above we recall them. In the sequel X,Y, Z
are topological spaces and (M,d) is a metric space.

Definition 1. • A function f : X → Y is quasi continuous (almost
continuous) at a point x if for any open set V containing f(x), x ∈
cl (int (f−1(V ))) (x ∈ int (cl (f−1(V )))), where int (A) and cl (A) denote
the interior and closure of a set A [4], [2].

• A function f : X →M is cliquish at a point x if for any ε > 0 and any
open set U containing x there is a non-empty open set H ⊂ U such that
d(f(x1), f(x2)) < ε for any x1, x2 ∈ H [11].

• A function f is quasi continuous, almost continuous, cliquish if it is so
at any point.

• A function f : X → Y is O-connected if f(V ) is connected for any open
connected set V ⊂ X [6].

• A function f : X → Y is locally w∗continuous if there is a base ϑ for Y
such that f−1(Fr (V )) is closed for any V ∈ ϑ, where Fr (V ) is boundary
of V [7].

The goal of this paper is to introduce a notion of continuity being a quasi
and point version of local w∗continuity.

Definition 2. A function f : X → Y is quasi w∗continuous at a point x if for
any open set V containing f(x) there is an open set H ⊂ V containing f(x)
and there is a quasi open set U containing x such that U ∩ f−1(Fr (H)) = ∅,
where a set A is called quasi open if A ⊂ cl (int (A)). A function f is quasi
w∗continuous if it is so at any point.

It is clear, if f is locally w∗continuous, then f is quasi w∗continuous.

Example 1. A function f : [0,∞)→ R defined as f(0) = 0 and f(x) = sin 1
x

for x > 0 is quasi w∗continuous but it is not locally w∗continuous at zero.

For further investigation the following construction of a function being
quasi w∗continuous at no point will be useful.

Example 2. Let {Aα}α∈I be decomposition of R into c pairwise disjoint sets
Aα each of which is dense in R, where I is index set of cardinality c. Define
f : R → R by f(x) = f0(α), x ∈ Aα where f0 : I → R is one-to-one function
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mapping I onto R. Function f is not quasi w∗continuous at any point and it
is almost continuous and O-connected.

Considering a function f : X × Y → Z we denote by fx : Y → Z and
fy : X → Z x-section and y-section of f given by fx(y) = f(x, y) and
fy(x) = f(x, y), respectively. If all x-sections and all y-sections of f are
quasi w∗continuous (O-connected) we say f is separately quasi w∗continuous
(separately O-connected).

As the following two examples show there is no connection between sepa-
rate quasi w∗continuity and quasi w∗continuity.

Example 3. There is a real function f defined on X = [a, b] × [c, d] being
separately quasi w∗continuous which is not quasi w∗continuous.

Proof. Let A be a set of second category such that no three points from A
are collinear [8, Th. 15.5]. Since int (D(A)) is non-empty (D(A) is a set of all
points at which A is of second category), there are intervals [a, b], [c, d] such
that [a, b]× [c, d] ⊂ int (D(A)). Put X = [a, b]× [c, d]. Let {Vn}∞n=1 be a base
of X. Let A0 = {an0}∞n=1, where an0 ∈ Vn ∩A. By transfinite induction, define
Aα = {anα}∞n=1, where anα ∈ Vn ∩ (A \

⋃
β<α

Aβ). Note, Vn ∩ A is of second

category and
⋃
β<α

Aβ is of first category for any countable ordinal number α.

It is clear Aα is dense in X. Hence {Aα}α∈I is a system of disjoint subsets of
A each of which is dense in X, where I is index set of cardinality c.

Define f : X → R by

f(x) =

{
f0(α), x ∈ Aα
0, x ∈ X \

⋃
α∈I A

where f0 is one-to-one function mapping I onto R.

Function f is not quasi w∗continuous, since f−1(S) is dense in X for any
non-empty set S ⊂ R. Each section of f takes non-zero value at most two
points, hence f is separately quasi w∗continuous.

Example 4. There is a function g : R×R→ R which is quasi w∗continuous
but not separately quasi w∗continuous.

Define g : R× R→ R as follows

g(x, y) =

{
f(y), x = 0 where f is from Example 2

0, x 6= 0



278 Milan Matejdes

Main Results

Lemma 1. If f : X × Y → Z is separately O-connected, then f(U × V ) is
connected for any open connected sets U ⊂ X and V ⊂ Y .

Proof. Let z1 = f([x1, y1]), z2 = f([x2, y2]) ∈ f(U × V ). Since fx1
and fy2

are O-connected, then fx1
(V ) = f({x1} × V ) and fy2(U) = f(U × {y2}) are

non-empty connected sets containing f([x1, y2]). That means arbitrary two
points z1, z2 ∈ f(U × V ) can be joined by a connected set, hence f(U × V ) is
connected.

Theorem 1. Let X,Y be locally connected spaces. If f : X × Y → Z is
separately O-connected, then f is O-connected.

Proof. It is modification that of [6, Th. 1]. Let G be a connected open
subset of X × Y . Then G can be expressed as a union of a collection of basis
elements of the form U × V , where U and V are open and connected. Let
z1 = f([x1, y1]), z2 = f([x2, y2]) ∈ f(G). The points [x1, y1], [x2, y2] can be
joined by a finite collection U1×V1, U2×V2, . . . , Un×Vn of such basis elements,
such that [x1, y1] ∈ U1 × V1 and [x2, y2] ∈ Un × Vn and any two successive
sets Ui × Vi, Ui+1 × Vi+1 have at least one common point. Since Ui × Vi,
i = 1, 2, . . . , n are open connected, f(Ui × Vi) are connected, by Lemma 1.
Since z1 ∈ f(U1 × V1), z2 ∈ f(Un × Vn) and f(Ui × Vi) ∩ f(Ui+1 × Vi+1) 6= ∅
for any i = 1, . . . , n − 1, z1 and z2 can be joined by a connected set. Since
z1, z2 are arbitrary points from f(G), f(G) is connected.

The next theorem deals with sufficient conditions for quasi continuity under
slight conditions on X and Z. The space X is supposed to be of π-connected
type; i.e., each open non-empty subset of X contains an open non-empty
connected subset.

Theorem 2. Let X be of π-connected type and f : X → Z be O-connected.
If f is almost continuous at x and quasi w∗continuous at x, then f is quasi
continuous at x.

Proof. Let U, V be open neighborhood of x, f(x), respectively. Since f is
quasi w∗continuous at x, there is an open set H ⊂ V , f(x) ∈ H and there is a
quasi open set U0 ⊂ U containing x, such that U0 ∩ f−1(Fr (H)) = ∅. Since f
is almost continuous at x, there is an open set U1 ⊂ U containing x such that
f−1(H) is dense in U1. That means, the set f−1(H) ∩ U0 ∩ U1 is non-empty.
The space X is of π-connected type, hence there is a non-empty and connected
set U2 ⊂ U0 ∩U1 ⊂ U and f(U2) is connected. We claim f(U2) ⊂ H. Assume
there exists x1 ∈ U2 such that f(x1) /∈ H. Since U0∩f−1(Fr (H)) = ∅, f(x1) /∈
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cl (H). The set f−1(H) is dense in U1, hence there exists x2 ∈ U2 such that
f(x2) ∈ H. That means, f(U2) is non-connected, what is a contradiction.

Corollary 1. Let X be of π-connected type and Z be a second countable space.
If f : X → Y is O-connected, then f is quasi w∗continuous except for a set
of first category if and only if f is quasi continuous except for a set of first
category.

Proof. The proof follows from [12, Th. 1], since f is almost continuous except
for a set of first category.

Corollary 2. Let X be Baire of π-connected type and Z be a separable met-
ric space. If f is O-connected, then f is cliquish if and only if f is quasi
w∗continuous except for a set of first category.

Proof. Implication ”⇒” follows from [1].

”⇐” By Corollary 1, f is quasi continuous on a dense set P , hence f is
cliquish on P . Since the set of all points at which f is cliquish is closed, f is
cliquish at any point.

As for the continuity assumptions in Theorem 2 none of them can be
omitted.

Example 2 shows that quasi w∗continuity is essential. Dirichlet function
shows that O-connectedness cannot be omitted. Next example completes that
almost continuity is essential too.

Example 5. Define f : R→ R as

f(x) =


1, x ∈

⋃∞
n=1

(
1

n+1 ,
1
n

)
0, x = 0

f0(α), n 6= 0 and x /∈
⋃∞
n=1

(
1

n+1 ,
1
n

)
where f0 and {Aα}α∈I are from Example 1.

Function f is O-connected, quasi w∗continuous at x = 0 and it is not
almost continuous at x = 0.

Theorem 3. Let X,Y be locally connected spaces and Z be second countable.
If f : X × Y → Z is separately O-connected, then f is quasi w∗continuous
except for a set of first category, if and only if f is quasi continuous except for
a set of first category.
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Proof. Since X × Y is locally connected, the proof follows from Corollary 1
and Theorem 1.

A π-base for a space (Y, T ) is a subset P of T − {∅} such that every non-
empty set U of T contains a non-empty set G of P [9]. (Y, T ) is locally of
π-countable connected type if each open non-empty subset of Y contains an
open connected non-empty subset having a countable π-base.

Theorem 4. Let X be a Baire space, Y be Baire locally of π-countable
connected type and Z be separable matric. If fx is O-connected and quasi
w∗continuous except for a set of first category for any x /∈ S (S ⊂ X of first
category) and fy is quasi continuous for any y ∈ Y , then f : X × Y → Z is
cliquish. Moreover, if X × Y is Baire, f is continuous on a residual set.

Proof. It follows from Corollary 2 and [5, Th. 3, Cor. 1].
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