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COMPOSITIONS OF TWO ADDITIVE
ALMOST CONTINUOUS FUNCTIONS

Abstract

In the paper we prove that an additive Darboux function f: R — R
can be expressed as a composition of two additive almost continuous
(connectivity) functions if and only if either f is almost continuous
(connectivity) function or dim(ker(f)) # 1. We also show that for ev-
ery cardinal number A < 2% there exists an additive almost continuous
functions with dim(ker(f)) = A. A question whether every Darboux
function f: R — R can be expressed as a composition of two almost
continuous functions (see [?] or [?]) remains open.

1 Definitions and Notation

Our terminology and notation is standard. In particular, functions will be
identified with their graphs, and for a subset A of R x R (possibly, but not
necessarily, a graph of a function) we will write dom (A) and rng (A) to denote
the z-projection (the domain) and the y-projection (the range) of A, respec-
tively. The cardinality of a set A will be denoted by card (A). Cardinals will
be identified with the initial ordinals. The cardinality of the set R of real
numbers, the continuum, will be denoted by 2¢.

Throughout the paper we will consider R as a linear space over the field Q
of rational numbers. A linear basis of this space will be referred to as a Hamel
basis. It is evident that the cardinality of every Hamel basis is equal to 2.
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For an arbitrary set A C R the symbol L(A) will denote the linear subspace
of R over Q spanned by A, i.e., the set of all finite linear combinations of
elements of A with coefficients from Q. Similarly for an arbitrary planar set
A C Rx R we define the set Ly(A). Also, for A C R and = € R we write z+ A
for {x +a: a € A}.

Now, let L # () be a linear subspace of R over Q. A function f: L — R is
said to be additive if it satisfies Cauchy’s equation f(z +y) = f(z) + f(y) for
every x,y € L. (See [?] or [?, p. 120].) The class of all additive functions from
R to R will be denoted by Add. Recall that if H C R is a Hamel basis, then
every function fy: H — R can be uniquely extended to the additive function
f: R = R. In fact, f = La(fo).

For f € Add its kernel ker(f) is defined as f=1(0). Clearly ker(f) is a
linear subspace of R. Thus, dim(ker(f)) denotes the (linear) dimension of
ker(f) over Q.

A function f: R — R is a Darbouz function if it has the intermediate
value property, i.e., whenever for every x1,zs € R, 21 < x2, and every point
¢ between f(x1) and f(x2) there exists © € [x1,x2] such that f(x) = ¢. The
family of all Darboux functions from R to R will be denoted by D.

A function f : R — R is said to be almost continuous in the sense of
Stallings if each open set (in R?) containing f contains also a (graph of)
continuous function g : R — R [?]. The class of all almost continuous functions
from R into R will be denoted by AC.

A closed set K C R xR is said to be a blocking set for a function f: R — R
provided f N K = () while g N K # @ for every continuous function g: R — R.
A blocking set K C R x R for f is irreducible if no proper subset of K is a
blocking set for f [?].

It is known that f is almost continuous if and only if it has no blocking set.
Moreover, if f is not almost continuous, then there is an irreducible blocking
set K for f, and the z-projection of K is a non-degenerate connected set [?].
Thus, if f: R — R intersects all closed sets K C R? with the domain being a
non-degenerate interval, then it is almost continuous (cf. [?]).

A function f: R — R is a connectivity function if its graph is connected
(in R?). We will use a symbol Conn to denote the class of all connectivity
functions f: R — R. The class of all continuous functions f: R — R will be
denoted by C. We have the following chain of proper inclusions [?].

Cc AC c Conn C D.

It is well-known that the composition of two Darboux functions is a Dar-
boux function again. The problem of characterization of these Darboux func-
tions which can be expressed as a composition of two almost continuous func-
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tions was considered in [?]. (See also [?].) In this paper we will consider the
analogous problem in the class of additive functions.

2 Main Theorem

Let B be the family of all closed sets B C R x R such that dom (B) is a
non-degenerate interval and either

(A) B=Rx {y}; or,
(B) BY = {z € R: (z,y) € B} is nowhere dense for each y € R.

We will use this family throughout the paper.
In what follows we will use the following lemma repeatedly.

Lemma 1. Let f € Add be such that ker(f) # {0}. If f N B # 0 for every
B € B, then f € AC.

PRrROOF. Fix an arbitrary closed set K C R? such that dom (K) is a non-
degenerate interval. It is enough to show that f N K # (. If KY is nowhere
dense for each y € R, then K € B and f N K # (). So, assume otherwise.

Then there is y € R such that K¥ contains a non-degenerate interval I.
But R x {y} € B; so f N (R x {y}) # 0. In particular, there exists z € R
such that f(z) = y. Also, ker(f) is dense, since ker(f) # {0}, and so f~!(y)
contains a dense set x + ker(f). Thus f~'(y) NI D (z + ker(f)) NI # 0 and
D+ fnIx{y}) cfNK. O

The next theorem constitutes one direction of our main characterization
theorem.

Theorem 1. Let f € DN Add be such that dim(ker(f)) # 1. Then f is a

composition of two additive almost continuous functions.

Proor. Fix f € DN .Add with dim(ker(f)) # 1. If dim(ker(f)) = 0, then f is
continuous (see [?]) and f = foid. Similarly, if f =0, then f = foid. Hence
we can assume that dim(ker(f)) > 2 and f £ 0.

Let {K4: @ < 2¥} be an enumeration of the family B such that Ky =
R x {0} and let {by: o < 2*} be an enumeration of a fixed Hamel basis with
by € ker(f).

We construct, by induction on a < 2%, the sequences {g,: a < 2¢) and
(ho: @ < 2¢) of additive functions from subsets of R into R maintaining the
following inductive properties for every a < 2%.

(i) 95 C ga and hg C hy for every 8 <
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(ii) card (dom (g4)) < max(w, @), and card (dom (hy)) < max(w, «);
(i) rng(ge) = dom (hy) and he © go = f|dom (g4 );
(iv) go N K,y # 0 and hy N K, # 0;

)

(V) bq € dom (gq)-

To make an inductive step assume that for some o < 2% the functions gz
and hg satisfying conditions (i)—(v) have already been constructed for every
B < a.

If @« = 0, choose sg € ker(f) \ L({bp}). Such a choice is possible, since
dim(ker(f)) > 2. Put go = L2({(bo, 0), (s0,50)}) and hg = La({(s0,0)}). It is
easy to see that go and hg fulfill the conditions (i)—(v).

So, assume that o > 0 and put g, = Ug.,9s and ha = Us,, hs-
Clearly functions g, and g, satisfy the conditions (i)-(iii). We will find
Ta, Yoy Sas Vo, Ca € R such that

(a) <xa7ya> € Ku;
() (va, f(sa)) € Ka;

(€) ga = Lz@a U{{Za)Ya), (bas Ca)s (Sas va) }) and
ha = La(ha U {{Ya, f(2a)), (ca, [(ba)); (Va, [(Sa))}) remain functions.

It is easy to see that such g, and h, will satisfy the conditions (i)—(v).

As a first step we will construct z, and y,. If K, Ng, # 0, we simply
choose (Zq,Yo) € Ko NG, So, assume that K, NG, = 0. In this case we will
find (z4,yq) € K, such that

o ¢ dom (g,), and yo ¢ dom (ha) =g (g,)- (1)

Such a restriction is necessary to guarantee condition (c).

Let X, = dom (g,), and Y,, = dom (h,) = rng (g, ). Then card (X,) < 2%
and card (Y,) < 2¢¥. If K, was chosen according to the part (A) of the
definition of B, then K, = R x {y} for some y € R. Hence y ¢ Y,, since
K,Ng, =0. Put y, =y and choose z, € X,. Then (z4,y,) € K, and the
condition (??) is satisfied. So, assume that K, was chosen according to the
part (B) of the definition of B, i.e., that K'Y is nowhere dense for every y € R.
To deal with this case recall the following fact. (See [?, Th. 29.19, p. 231].)

For every closed set K C R? the set
Z(K) ={y € R: KY contains a non-empty perfect set}

is either countable or is of power continuum.
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This leads us to the two natural subcases.

o card (Z(K,)) = 2¢. Then card (Z(K,) \ Yo) = 2% and we can choose
Yo € Z(Kq) \ Yo. Moreover, card (K¥*) = 2%, and so we can pick
zq € K¥ \ X,. Then (24, y) € K, satisfies (77).

o card (Z(K,)) < w. Then the set E, = dom (K,) \U{KY: y € Z(K.)}
is a residual subset of the interval dom (K, ) since each set K is nowhere
dense. In particular, card (E,) = 2*. Moreover, K¥ is countable for ev-
eryy € R\Z(K,). Sotheset E} = E,\(X, UU{KY:y €Yo\ Z(K,)})
has cardinality 2. Choose z, € E. C dom (K,) \ (Xa UlUyey, Kg)
and y, € R with (4, ya) € K. Then y, € Y, and (?7) is satisfied.

This finishes the construction of z, and y,.
To construct s, and v, first note that by (?7?),

9y = L2(G0 U{(za:ya)}), and  hy = La(ha U{(¥a, f(za))})

are the additive functions. If K, Nh, # 0, we choose (vy,wq) € Ko Nh,, and
take s, such that g (sa) = va. Such an s, exists since dom (h,) =g (g, ).
Then w, = h,(ve) = ho (g, (sa)) = f(sa), so the condition (b) is satisfied.
So, assume that K, Nh, = (. Then, as in the construction of z, and y,, we
can find (v,,wq) € K, such that

Vo ¢ dom (h,) =mmg(g ), and wa ¢ mg(h,). (2)

Now, note that rng (f) = R, since f is a non-zero additive Darboux func-
tion. Choose s, € f~!(w,) and notice that s, ¢ dom (g,,) since otherwise
Wao = f(sa) = ho(g,(5a)) = ho(va) € mng(hy,), contradicting (??). Thus,
(Vas f(8a)) € Ka, as required in (b).

Finally, to choose ¢, note that

Go = La(g, U{{sa:va)}); and  Ha = La(hg U {(va, f(sa))})

are the additive functions. If b, € dom (G), we put ¢, = G4 (by). Otherwise

we choose ¢, € R\ dom (H,). It is easy to see that zs, Yo, Sa, Va, and cq,

chosen above satisfy (a)—(c). This finishes the inductive construction.
Having constructed functions g, and h, let

g= U ga, and K0 = U he-
a<2w a<2v

It is easy to see that g and h" are additive functions such that dom (g) = R
(by (v)) and that f = h® o g. Now, if h: R — R is any additive extension of
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hY, then, by (iv), g and h are almost continuous, while we still have f = hog.
This finishes the proof. O

Next we will prove the converse of Theorem ??. For this we will need the
following simple and well known fact.

Lemma 2. If g,h € Add and g is a surjection, then
dim(ker(h o g)) = dim(ker(h)) + dim(ker(g)).

PRrROOF. Let G,H be linearly independent sets such that L(G) = ker(g)
and L(H) = ker(h). For every w € H choose s, € g~*(w) and notice that
F =GU{sy: w € H} is linearly independent. Indeed, suppose that

n k
m:qui—Fijswj =0 (3)
i=1 j=1

for some n,k € N, ¢;,p; € Q, v; € G, and w; € H, where i = 1,...,n, and
j=1,...,k. Then

n k k k
9(x) = qigwi) + Y _pig(sw,) = Y _pig(sw,) =Y _pjw; =0
i=1 j=1 j=1 j=1

which shows that p; = 0 for j = 1,...,k. Hence, by (?7?), Yi", ¢iv; = 0,
which implies that ¢; =0 fori=1,...,n.
It is easy to see that L(F') = ker(h o g) and consequently,

dim(ker(g)) +dim(ker(h)) = card (G) +card (H) = card (F) = dim(ker(hog)).

This finishes the proof. O
With this lemma in hand we are ready for the next theorem.

Theorem 2. Assume f € Add and dim(ker(f)) = 1.

(X) If f ¢ AC, then f =hog for no h,g € AddN AC.

(IT) If f ¢ Conn, then f = hog for no h,g € Add N Conn.

Proor. Fix f € Add N D such that dim(ker(f)) = 1 and suppose that there
exist g,h € Add ND with f = hog. Then, g is surjection, since g # 0.
By Lemma ?7?, either dim(ker(g)) = 0 or dim(ker(h)) = 0. Consequently,
either g or h is a Darboux injection, so it is equal to a linear homeomorphism
L(z) = az. (Any other additive function has a dense graph, so it cannot be
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Darboux and one-to-one at the same time.) Since the classes AC and Conn
are closed under composition with homeomorphisms (cf, e.g., [?]), we conclude
that f € AC (f € Conn) if and only if g,h € AC (g,h € Conn). O

Theorems 77 and ?7? give us as a corollary the main characterization. (Since
AC C Conn.)

Corollary 1. Let f: R — R be an additive Darbouz function. Then

(I) f is a composition of two additive almost continuous functions if and only
if either f is almost continuous or dim(ker(f)) # 1;

(IT) f is a composition of two additive connectivity functions if and only if
either f is a connectiwity function or dim(ker(f)) # 1.

3 Final Remarks

Although Corollary ?7? gives a full characterization of additive Darboux func-
tions which can be expressed as a composition of two additive almost contin-
uous (or connectivity) functions it still does not exclude the possibility that
every additive Darboux function can be expressed as a such composition. To
conclude this, we need also the following example.

Example 1. There exists a function f: R — R such that dim(ker(f)) = 1
and f € AddND\ Conn.

ProOOF. Let H be a Hamel basis and Hy be a proper subset of H be with
card (Hg) = 2¥. Choose hg € Hy, fix a bijection p: Ho \ {ho} — Hy and
define f: H — R as follows.

0 for h=hy

f(h) =14 @(h) for heHy\{ho}
h for he H \ Ho.

Let f be the additive extension of f. It is easy to observe that

F(h) € h+ L(Hy) for he H, (4)

and therefore
f(z) € x+ L(Hp) for every x € R. (5)

It is obvious that ker(f) = L({ho}). Also rng(f) = R, since rng (f) = H.
Thus f~1(y) # 0 for every y € R. Moreover, since all level sets are congruent
under translations and ker(f) is dense [?], f~1(y) is dense for every y € R.
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Hence, the graph of f is dense in R? and f[J] = R for every interval J C R.
In particular, f € D. Moreover, by (77),

fcC U {{z,z+b): z € R}

beL(Hy)

and consequently, the line y = x + ¢ separates the graph of f for every number
c € R\ L(Hyp). So, f is not a connectivity function. O

Corollary 2. There ezists an additive Darboux function f: R — R such that
f=hog forno f,g € Add N Conn.

Our last theorem is a variation of the example above. For its proof we will
need one more easy lemma.

Lemma 3. Let f be an additive function and F = La(f U {(u,v)}) where
u ¢ dom (f) and v ¢ rng (f). Then ker(F) = ker(f).

PRrROOF. Obviously ker(f) C ker(F'). To prove that ker(F) C ker(f), fix an
arbitrary = € ker(F'). Then

x = qgou+ qrw where go,q1 € Q and w € dom (f).

Since F(z) = qov + ¢1 f(w) = 0, gqov = —¢1 f(w). Because v € rng (f), ¢go =0
and consequently, x € dom (f). Which shows that x € ker(f). O

Theorem 3. For every cardinal number A < 2% there exists an additive almost
continuous function f: R — R such that dim(ker(f)) = A.

PROOF. Since the function f =0 is almost continuous and dim(ker(f)) = 2¢
for such f, we can assume that A < 2¥. If A = 0, then the identity function id
has required properties and so we may also assume that A > 0.

Now, let H C R be a Hamel basis and Hy C H be such that card (Hy) = .
Also, let {by: @ < 2¥} = H \ Hy and choose an enumeration {K,: a < 2¥}
of the family B of blocking sets from Lemma ??, with Ky = R x {0}. The
construction will be a slight modification of that in the proof of Theorem 77.

By transfinite induction construct a sequence (f,: a < 2¢) of additive
partial functions from R into R such the that following inductive conditions
are satisfied for every a < 2¢.

(1) fs C fao for every 8 < a;
(ii) fo N Ko #0;
(iii) by € dom (f,) and card (f,) < max(\, w, a);
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(iv) ker(fn) = L(Hy).

We start the induction by putting fo = Lo((Ho x {0})U{(bg, 1)}). It is obvious
that fo fulfills the conditions (i)—(iv).

To make an inductive step, fix a < 2“, a > 0, and assume that we
have already chosen functions fg for § < « which satisfy conditions (i)-
(iv). If by € dom(Us, f5), we put fo = Up<a fp- Otherwise, by (iii),
card (g (s, f5)) < 2¥ and we can choose ¢q € R\ g (U, f5)- Put

fa = La {(ba,ca>}U U I

B<a

Clearly f, satisfies (i), (iii) and (iv). Also, if Ko N f, # 0, then f, = f,
satisfies (ii) as well and the construction is completed.

So, assume that K, N f, =0 and let X, = dom (f,), and Y,, = rng (f,).
From (iii) we have that card (V) < card (X,) < max(w,a, \) < 2¢. We will
choose (Zq,ya) € K, such that

To @ Xo and vy, €Y, (6)

and define fo, = Lo(f, U {(%a,Ya)}). This will finish the construction since,
by Lemma ??, ker(f,) = ker(f,) = L(Hp).

Now, if K, = Rx {y} for some y € R, then y, =y € Yy, since K,Nf, = 0.
Choose an arbitrary z, € R\ X,. Then (z,,y,) satisfies (?7?).

So, assume that K, = Rx {y} for noy € R. Then K¥ is nowhere dense for
every y € R. Since Z(K,) = {y € R: KY contains non-empty perfect set} is
either countable or has the cardinality of the continuum, we have the following
two cases to consider.

e card (Z(K,)) = 2¢. Choose yo € Z(K,) \ Yo. Then card (K¥~) = 2¢
and we may choose z,, € K¥> \ X,. Clearly (24, yo) satisfies (77).

e card (Z(K,)) < w. Then the set
E, = dom (Ko) \ | {KY: v € Z(Ka)}
is residual in dom (K, ) and the set
By = Ea\ (Xa UUJIKE: y € Yo\ Z(Ka)})

has the cardinality of the continuum. Choose x,, € E and y, € R such
that (xa,Ya) € Ko Then (z4,y,) satisfies (7?7) as well.
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This finishes the inductive construction.

Now, put
f = U fa
a<2v
It is easy to see that f has the desired properties. O
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