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COMPOSITIONS OF TWO ADDITIVE
ALMOST CONTINUOUS FUNCTIONS

Abstract

In the paper we prove that an additive Darboux function f : R→ R
can be expressed as a composition of two additive almost continuous
(connectivity) functions if and only if either f is almost continuous
(connectivity) function or dim(ker(f)) 6= 1. We also show that for ev-
ery cardinal number λ ≤ 2ω there exists an additive almost continuous
functions with dim(ker(f)) = λ. A question whether every Darboux
function f : R → R can be expressed as a composition of two almost
continuous functions (see [?] or [?]) remains open.

1 Definitions and Notation

Our terminology and notation is standard. In particular, functions will be
identified with their graphs, and for a subset A of R × R (possibly, but not
necessarily, a graph of a function) we will write dom (A) and rng (A) to denote
the x-projection (the domain) and the y-projection (the range) of A, respec-
tively. The cardinality of a set A will be denoted by card (A). Cardinals will
be identified with the initial ordinals. The cardinality of the set R of real
numbers, the continuum, will be denoted by 2ω.

Throughout the paper we will consider R as a linear space over the field Q
of rational numbers. A linear basis of this space will be referred to as a Hamel
basis. It is evident that the cardinality of every Hamel basis is equal to 2ω.
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For an arbitrary set A ⊂ R the symbol L(A) will denote the linear subspace
of R over Q spanned by A, i.e., the set of all finite linear combinations of
elements of A with coefficients from Q. Similarly for an arbitrary planar set
A ⊂ R×R we define the set L2(A). Also, for A ⊂ R and x ∈ R we write x+A
for {x+ a : a ∈ A}.

Now, let L 6= ∅ be a linear subspace of R over Q. A function f : L→ R is
said to be additive if it satisfies Cauchy’s equation f(x+ y) = f(x) + f(y) for
every x, y ∈ L. (See [?] or [?, p. 120].) The class of all additive functions from
R to R will be denoted by Add. Recall that if H ⊂ R is a Hamel basis, then
every function f0 : H → R can be uniquely extended to the additive function
f : R→ R. In fact, f = L2(f0).

For f ∈ Add its kernel ker(f) is defined as f−1(0). Clearly ker(f) is a
linear subspace of R. Thus, dim(ker(f)) denotes the (linear) dimension of
ker(f) over Q.

A function f : R −→ R is a Darboux function if it has the intermediate
value property, i.e., whenever for every x1, x2 ∈ R, x1 < x2, and every point
c between f(x1) and f(x2) there exists x ∈ [x1, x2] such that f(x) = c. The
family of all Darboux functions from R to R will be denoted by D.

A function f : R → R is said to be almost continuous in the sense of
Stallings if each open set (in R2) containing f contains also a (graph of)
continuous function g : R→ R [?]. The class of all almost continuous functions
from R into R will be denoted by AC.

A closed set K ⊂ R×R is said to be a blocking set for a function f : R→ R
provided f ∩K = ∅ while g ∩K 6= ∅ for every continuous function g : R→ R.
A blocking set K ⊂ R × R for f is irreducible if no proper subset of K is a
blocking set for f [?].

It is known that f is almost continuous if and only if it has no blocking set.
Moreover, if f is not almost continuous, then there is an irreducible blocking
set K for f , and the x-projection of K is a non–degenerate connected set [?].
Thus, if f : R→ R intersects all closed sets K ⊂ R2 with the domain being a
non-degenerate interval, then it is almost continuous (cf. [?]).

A function f : R → R is a connectivity function if its graph is connected
(in R2). We will use a symbol Conn to denote the class of all connectivity
functions f : R → R. The class of all continuous functions f : R → R will be
denoted by C. We have the following chain of proper inclusions [?].

C ⊂ AC ⊂ Conn ⊂ D.

It is well–known that the composition of two Darboux functions is a Dar-
boux function again. The problem of characterization of these Darboux func-
tions which can be expressed as a composition of two almost continuous func-
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tions was considered in [?]. (See also [?].) In this paper we will consider the
analogous problem in the class of additive functions.

2 Main Theorem

Let B be the family of all closed sets B ⊂ R × R such that dom (B) is a
non-degenerate interval and either

(A) B = R× {y}; or,

(B) By = {x ∈ R : 〈x, y〉 ∈ B} is nowhere dense for each y ∈ R.

We will use this family throughout the paper.
In what follows we will use the following lemma repeatedly.

Lemma 1. Let f ∈ Add be such that ker(f) 6= {0}. If f ∩ B 6= ∅ for every
B ∈ B, then f ∈ AC.

Proof. Fix an arbitrary closed set K ⊂ R2 such that dom (K) is a non-
degenerate interval. It is enough to show that f ∩K 6= ∅. If Ky is nowhere
dense for each y ∈ R, then K ∈ B and f ∩K 6= ∅. So, assume otherwise.

Then there is y ∈ R such that Ky contains a non-degenerate interval I.
But R × {y} ∈ B; so f ∩ (R × {y}) 6= ∅. In particular, there exists x ∈ R
such that f(x) = y. Also, ker(f) is dense, since ker(f) 6= {0}, and so f−1(y)
contains a dense set x + ker(f). Thus f−1(y) ∩ I ⊃ (x + ker(f)) ∩ I 6= ∅ and
∅ 6= f ∩ (I × {y}) ⊂ f ∩K.

The next theorem constitutes one direction of our main characterization
theorem.

Theorem 1. Let f ∈ D ∩ Add be such that dim(ker(f)) 6= 1. Then f is a
composition of two additive almost continuous functions.

Proof. Fix f ∈ D∩Add with dim(ker(f)) 6= 1. If dim(ker(f)) = 0, then f is
continuous (see [?]) and f = f ◦ id. Similarly, if f ≡ 0, then f = f ◦ id. Hence
we can assume that dim(ker(f)) ≥ 2 and f 6≡ 0.

Let {Kα : α < 2ω} be an enumeration of the family B such that K0 =
R× {0} and let {bα : α < 2ω} be an enumeration of a fixed Hamel basis with
b0 ∈ ker(f).

We construct, by induction on α < 2ω, the sequences 〈gα : α < 2ω〉 and
〈hα : α < 2ω〉 of additive functions from subsets of R into R maintaining the
following inductive properties for every α < 2ω.

(i) gβ ⊂ gα and hβ ⊂ hα for every β < α;
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(ii) card (dom (gα)) ≤ max(ω, α), and card (dom (hα)) ≤ max(ω, α);

(iii) rng (gα) = dom (hα) and hα ◦ gα = f |dom (gα);

(iv) gα ∩Kα 6= ∅ and hα ∩Kα 6= ∅;

(v) bα ∈ dom (gα).

To make an inductive step assume that for some α < 2ω the functions gβ
and hβ satisfying conditions (i)–(v) have already been constructed for every
β < α.

If α = 0, choose s0 ∈ ker(f) \ L({b0}). Such a choice is possible, since
dim(ker(f)) ≥ 2. Put g0 = L2({〈b0, 0〉, 〈s0, s0〉}) and h0 = L2({〈s0, 0〉}). It is
easy to see that g0 and h0 fulfill the conditions (i)–(v).

So, assume that α > 0 and put gα =
⋃
β<α gβ and hα =

⋃
β<α hβ .

Clearly functions gα and gα satisfy the conditions (i)-(iii). We will find
xα, yα, sα, vα, cα ∈ R such that

(a) 〈xα, yα〉 ∈ Kα;

(b) 〈vα, f(sα)〉 ∈ Kα;

(c) gα = L2(gα ∪ {〈xα, yα〉, 〈bα, cα〉, 〈sα, vα〉}) and
hα = L2(hα ∪ {〈yα, f(xα)〉, 〈cα, f(bα)〉, 〈vα, f(sα)〉}) remain functions.

It is easy to see that such gα and hα will satisfy the conditions (i)–(v).
As a first step we will construct xα and yα. If Kα ∩ gα 6= ∅, we simply

choose 〈xα, yα〉 ∈ Kα ∩ gα. So, assume that Kα ∩ gα = ∅. In this case we will
find 〈xα, yα〉 ∈ Kα such that

xα /∈ dom (gα), and yα /∈ dom (hα) = rng (gα). (1)

Such a restriction is necessary to guarantee condition (c).
Let Xα = dom (gα), and Yα = dom (hα) = rng (gα). Then card (Xα) < 2ω

and card (Yα) < 2ω. If Kα was chosen according to the part (A) of the
definition of B, then Kα = R × {y} for some y ∈ R. Hence y 6∈ Yα, since
Kα ∩ gα = ∅. Put yα = y and choose xα 6∈ Xα. Then 〈xα, yα〉 ∈ Kα and the
condition (??) is satisfied. So, assume that Kα was chosen according to the
part (B) of the definition of B, i.e., that Ky

α is nowhere dense for every y ∈ R.
To deal with this case recall the following fact. (See [?, Th. 29.19, p. 231].)

For every closed set K ⊂ R2 the set

Z(K) = {y ∈ R : Ky contains a non-empty perfect set}

is either countable or is of power continuum.
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This leads us to the two natural subcases.

• card (Z(Kα)) = 2ω. Then card (Z(Kα) \ Yα) = 2ω and we can choose
yα ∈ Z(Kα) \ Yα. Moreover, card (Kyα

α ) = 2ω, and so we can pick
xα ∈ Kyα

α \Xα. Then 〈xα, yα〉 ∈ Kα satisfies (??).

• card (Z(Kα)) ≤ ω. Then the set Eα = dom (Kα) \
⋃
{Ky

α : y ∈ Z(Kα)}
is a residual subset of the interval dom (Kα) since each set Ky

α is nowhere
dense. In particular, card (Eα) = 2ω. Moreover, Ky

α is countable for ev-
ery y ∈ R\Z(Kα). So the set E1

α = Eα\(Xα ∪
⋃
{Ky

α : y ∈ Yα \ Z(Kα)})
has cardinality 2ω. Choose xα ∈ E1

α ⊂ dom (Kα) \
(
Xα ∪

⋃
y∈Yα K

y
α

)
and yα ∈ R with 〈xα, yα〉 ∈ Kα. Then yα 6∈ Yα and (??) is satisfied.

This finishes the construction of xα and yα.
To construct sα and vα first note that by (??),

g
α

= L2(gα ∪ {〈xα, yα〉}), and hα = L2(hα ∪ {(yα, f(xα))})

are the additive functions. If Kα ∩ hα 6= ∅, we choose 〈vα, wα〉 ∈ Kα ∩ hα and
take sα such that g

α
(sα) = vα. Such an sα exists since dom (hα) = rng (g

α
).

Then wα = hα(vα) = hα(g
α

(sα)) = f(sα), so the condition (b) is satisfied.
So, assume that Kα ∩ hα = ∅. Then, as in the construction of xα and yα, we
can find 〈vα, wα〉 ∈ Kα such that

vα /∈ dom (hα) = rng (g
α

), and wα /∈ rng (hα). (2)

Now, note that rng (f) = R, since f is a non-zero additive Darboux func-
tion. Choose sα ∈ f−1(wα) and notice that sα 6∈ dom (g

α
) since otherwise

wα = f(sα) = hα(g
α

(sα)) = hα(vα) ∈ rng (hα), contradicting (??). Thus,
〈vα, f(sα)〉 ∈ Kα, as required in (b).

Finally, to choose cα note that

Gα = L2(g
α
∪ {〈sα, vα〉}), and Hα = L2(hα ∪ {〈vα, f(sα)〉})

are the additive functions. If bα ∈ dom (Gα), we put cα = Gα(bα). Otherwise
we choose cα ∈ R \ dom (Hα). It is easy to see that xα, yα, sα, vα, and cα
chosen above satisfy (a)–(c). This finishes the inductive construction.

Having constructed functions gα and hα let

g =
⋃
α<2ω

gα, and h0 =
⋃
α<2ω

hα.

It is easy to see that g and h0 are additive functions such that dom (g) = R
(by (v)) and that f = h0 ◦ g. Now, if h : R → R is any additive extension of
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h0, then, by (iv), g and h are almost continuous, while we still have f = h ◦ g.
This finishes the proof.

Next we will prove the converse of Theorem ??. For this we will need the
following simple and well known fact.

Lemma 2. If g, h ∈ Add and g is a surjection, then

dim(ker(h ◦ g)) = dim(ker(h)) + dim(ker(g)).

Proof. Let G,H be linearly independent sets such that L(G) = ker(g)
and L(H) = ker(h). For every w ∈ H choose sw ∈ g−1(w) and notice that
F = G ∪ {sw : w ∈ H} is linearly independent. Indeed, suppose that

x =

n∑
i=1

qivi +

k∑
j=1

pjswj = 0 (3)

for some n, k ∈ N, qi, pj ∈ Q, vi ∈ G, and wj ∈ H, where i = 1, . . . , n, and
j = 1, . . . , k. Then

g(x) =

n∑
i=1

qig(vi) +

k∑
j=1

pjg(swj ) =

k∑
j=1

pjg(swj ) =

k∑
j=1

pjwj = 0

which shows that pj = 0 for j = 1, . . . , k. Hence, by (??),
∑n
i=1 qivi = 0,

which implies that qi = 0 for i = 1, . . . , n.
It is easy to see that L(F ) = ker(h ◦ g) and consequently,

dim(ker(g))+dim(ker(h)) = card (G)+card (H) = card (F ) = dim(ker(h◦g)).

This finishes the proof.

With this lemma in hand we are ready for the next theorem.

Theorem 2. Assume f ∈ Add and dim(ker(f)) = 1.

(I) If f /∈ AC, then f = h ◦ g for no h, g ∈ Add ∩ AC.

(II) If f /∈ Conn, then f = h ◦ g for no h, g ∈ Add ∩ Conn.

Proof. Fix f ∈ Add ∩ D such that dim(ker(f)) = 1 and suppose that there
exist g, h ∈ Add ∩ D with f = h ◦ g. Then, g is surjection, since g 6≡ 0.
By Lemma ??, either dim(ker(g)) = 0 or dim(ker(h)) = 0. Consequently,
either g or h is a Darboux injection, so it is equal to a linear homeomorphism
L(x) = ax. (Any other additive function has a dense graph, so it cannot be
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Darboux and one-to-one at the same time.) Since the classes AC and Conn
are closed under composition with homeomorphisms (cf, e.g., [?]), we conclude
that f ∈ AC (f ∈ Conn) if and only if g, h ∈ AC (g, h ∈ Conn).

Theorems ?? and ?? give us as a corollary the main characterization. (Since
AC ⊂ Conn.)

Corollary 1. Let f : R→ R be an additive Darboux function. Then

(I) f is a composition of two additive almost continuous functions if and only
if either f is almost continuous or dim(ker(f)) 6= 1;

(II) f is a composition of two additive connectivity functions if and only if
either f is a connectivity function or dim(ker(f)) 6= 1.

3 Final Remarks

Although Corollary ?? gives a full characterization of additive Darboux func-
tions which can be expressed as a composition of two additive almost contin-
uous (or connectivity) functions it still does not exclude the possibility that
every additive Darboux function can be expressed as a such composition. To
conclude this, we need also the following example.

Example 1. There exists a function f : R → R such that dim(ker(f)) = 1
and f ∈ Add ∩ D \ Conn.

Proof. Let H be a Hamel basis and H0 be a proper subset of H be with
card (H0) = 2ω. Choose h0 ∈ H0, fix a bijection ϕ : H0 \ {h0} −→ H0 and
define f : H → R as follows.

f(h) =

 0 for h = h0
ϕ(h) for h ∈ H0 \ {h0}
h for h ∈ H \H0.

Let f be the additive extension of f . It is easy to observe that

f(h) ∈ h+ L(H0) for h ∈ H, (4)

and therefore
f(x) ∈ x+ L(H0) for every x ∈ R. (5)

It is obvious that ker(f) = L({h0}). Also rng (f) = R, since rng (f) = H.
Thus f−1(y) 6= ∅ for every y ∈ R. Moreover, since all level sets are congruent
under translations and ker(f) is dense [?], f−1(y) is dense for every y ∈ R.
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Hence, the graph of f is dense in R2 and f [J ] = R for every interval J ⊂ R.
In particular, f ∈ D. Moreover, by (??),

f ⊂
⋃

b∈L(H0)

{〈x, x+ b〉 : x ∈ R}

and consequently, the line y = x+c separates the graph of f for every number
c ∈ R \ L(H0). So, f is not a connectivity function.

Corollary 2. There exists an additive Darboux function f : R→ R such that
f = h ◦ g for no f, g ∈ Add ∩ Conn.

Our last theorem is a variation of the example above. For its proof we will
need one more easy lemma.

Lemma 3. Let f be an additive function and F = L2(f ∪ {〈u, v〉}) where
u /∈ dom (f) and v /∈ rng (f). Then ker(F ) = ker(f).

Proof. Obviously ker(f) ⊂ ker(F ). To prove that ker(F ) ⊂ ker(f), fix an
arbitrary x ∈ ker(F ). Then

x = q0u+ q1w where q0, q1 ∈ Q and w ∈ dom (f).

Since F (x) = q0v + q1f(w) = 0, q0v = −q1f(w). Because v 6∈ rng (f), q0 = 0
and consequently, x ∈ dom (f). Which shows that x ∈ ker(f).

Theorem 3. For every cardinal number λ ≤ 2ω there exists an additive almost
continuous function f : R→ R such that dim(ker(f)) = λ.

Proof. Since the function f ≡ 0 is almost continuous and dim(ker(f)) = 2ω

for such f , we can assume that λ < 2ω. If λ = 0, then the identity function id
has required properties and so we may also assume that λ > 0.

Now, let H ⊂ R be a Hamel basis and H0 ⊂ H be such that card (H0) = λ.
Also, let {bα : α < 2ω} = H \H0 and choose an enumeration {Kα : α < 2ω}
of the family B of blocking sets from Lemma ??, with K0 = R × {0}. The
construction will be a slight modification of that in the proof of Theorem ??.

By transfinite induction construct a sequence 〈fα : α < 2ω〉 of additive
partial functions from R into R such the that following inductive conditions
are satisfied for every α < 2ω.

(i) fβ ⊂ fα for every β < α;

(ii) fα ∩Kα 6= ∅;

(iii) bα ∈ dom (fα) and card (fα) ≤ max(λ, ω, α);
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(iv) ker(fα) = L(H0).

We start the induction by putting f0 = L2((H0×{0})∪{〈b0, 1〉}). It is obvious
that f0 fulfills the conditions (i)–(iv).

To make an inductive step, fix α < 2ω, α > 0, and assume that we
have already chosen functions fβ for β < α which satisfy conditions (i)–
(iv). If bα ∈ dom (

⋃
β<α fβ), we put fα =

⋃
β<α fβ . Otherwise, by (iii),

card (rng (
⋃
β<α fβ)) < 2ω and we can choose cα ∈ R \ rng (

⋃
β<α fβ). Put

fα = L2

{〈bα, cα〉} ∪ ⋃
β<α

fβ

 .

Clearly fα satisfies (i), (iii) and (iv). Also, if Kα ∩ fα 6= ∅, then fα = fα
satisfies (ii) as well and the construction is completed.

So, assume that Kα ∩ fα = ∅ and let Xα = dom (fα), and Yα = rng (fα).
From (iii) we have that card (Yα) ≤ card (Xα) ≤ max(ω, α, λ) < 2ω. We will
choose 〈xα, yα〉 ∈ Kα such that

xα /∈ Xα and yα /∈ Yα (6)

and define fα = L2(fα ∪ {〈xα, yα〉}). This will finish the construction since,
by Lemma ??, ker(fα) = ker(fα) = L(H0).

Now, if Kα = R×{y} for some y ∈ R, then yα = y 6∈ Yα, since Kα∩fα = ∅.
Choose an arbitrary xα ∈ R \Xα. Then 〈xα, yα〉 satisfies (??).

So, assume that Kα = R×{y} for no y ∈ R. Then Ky
α is nowhere dense for

every y ∈ R. Since Z(Kα) = {y ∈ R : Ky
α contains non-empty perfect set} is

either countable or has the cardinality of the continuum, we have the following
two cases to consider.

• card (Z(Kα)) = 2ω. Choose yα ∈ Z(Kα) \ Yα. Then card (Kyα
α ) = 2ω

and we may choose xα ∈ Kyα
α \Xα. Clearly 〈xα, yα〉 satisfies (??).

• card (Z(Kα)) ≤ ω. Then the set

Eα = dom (Kα) \
⋃
{Ky

α : y ∈ Z(Kα)}

is residual in dom (Kα) and the set

E1
α = Eα \

(
Xα ∪

⋃
{Ky

α : y ∈ Yα \ Z(Kα)}
)

has the cardinality of the continuum. Choose xα ∈ E1
α and yα ∈ R such

that 〈xα, yα〉 ∈ Kα. Then 〈xα, yα〉 satisfies (??) as well.
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This finishes the inductive construction.
Now, put

f =
⋃
α<2ω

fα.

It is easy to see that f has the desired properties.
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