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σ-FINITE BOREL MEASURES ON THE
REAL LINE∗

Abstract

A characterization is given of those Borel measures on the real line
that can be expressed as the total variation measure of an ACG∗ func-
tion.

Let µ be a measure defined on the Borel subsets of an interval [a, b]. If µ is
absolutely continuous with respect to Lebesgue measure (that is, if µ(N) = 0
for every Borel set N of Lebesgue measure zero) and if µ([a, b]) < ∞ then µ
can be represented in the form

µ(B) = µf (B) =

∫
B

f ′(x) dx (B ⊂ [a, b]), (1)

where f is absolutely continuous on [a, b] and µf is the corresponding Lebesgue-
Stieltjes measure. Beginning students of analysis learn this material routinely.

It seems, though, that there has been little discussion of the σ-finite case. If
µ is not finite, but is σ-finite, is there a representation similar to this available?

Part of such a representation is immediately available from the Radon-
Nikodym theorem and a theorem of Lusin. Any absolutely continuous, σ-finite
measure µ on [a, b] can be represented as

µ(B) =

∫
B

g(x) dx

for some measurable, finite a.e. function g. But Lusin’s theorem (eg., see [1,
p. 113]) asserts the existence of a continuous function f with f ′ = g a.e. This
gives

µ(B) =

∫
B

f ′(x) dx.
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This cannot, however, be considered a satisfactory generalization of the re-
lation (1) since there is really no connection between the measure µ and its
“associated” function f .

We propose to characterize those Borel measures µ which can be repre-
sented in the form

µ(B) = µf (B) =

∫
B

|f ′(x)| dx (B ⊂ [a, b]),

where f is ACG∗ (i.e., generalized absolutely continuous in the sense of Saks [4,
p. 231]) on [a, b] and µf is the total variation measure associated with f . Recall
that, for such a function f , the derivative f ′ would be Lebesgue integrable on
a dense set of subintervals. Thus such measures are special. Indeed “most”
measures are unlike this: in the space of measurable, a.e. finite functions, given
an appropriate metric (see [2, p. 377]), the typical function is not Lebesgue
integrable on any subinterval.

Let us begin by defining the total variation measure associated with any
continuous function f on [a, b]. Let E ⊂ [a, b], let δ be a gauge on E (i.e., δ is
a positive function defined on E) and write

V (f,E, δ) = sup
{∑

|f(bi)− f(ai)|
}
,

where the supremum is taken over all disjoint collections {(ai, bi)} of open
subintervals of (a, b) for which there is a point ξi ∈ E ∩ (ai, bi) satisfying
bi − ai < δ(ξi). Then write

µ∗f (E) = inf {V (f,E, δ) : δ is a gauge on E} .

It can be verified that µ∗f is a metric outer measure on [a, b]. Since it is a
metric outer measure its restriction to the Borel sets is a measure µf ; we call
µf the total variation measure associated with f .

If f is continuous and monotonic then µf is precisely the Lebesgue-Stieltjes
measure generated by f . If f is continuous and has bounded variation then µf

is the Lebesgue-Stieltjes measure associated with the total variation function
for f . (Accounts of metric outer measures can be found in numerous texts,
for example in [2] where also this method of construction, called Method III,
is discussed.)

Our theorem characterizes those Borel measures on [a, b] which arise in this
way from a function that is ACG∗.

THEOREM Let f be ACG∗ on an interval [a, b]. Then the total variation
measure µ = µf associated with f has the following properties:
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a. µ is a σ-finite Borel measure on [a, b].

b. µ is absolutely continuous with respect to Lebesgue measure.

c. There is a sequence of closed sets Fn whose union is all of [a, b] such
that µ(Fn) <∞ for each n.

d. µ(B) = µf (B) =
∫
B
|f ′(x)| dx for every Borel set B ⊂ [a, b].

Conversely, if a measure µ satisfies conditions (a)–(c) then there exists an
ACG∗ function f for which the representation (d) is valid.

Proof. Suppose first that f is ACG∗ on the interval [a, b] and let µf denote
its total variation measure. We know already that this is a Borel measure and
to verify assertion (a) we need to check that it is σ-finite. But this follows
from (c) and so it will be enough to check that.

Fix ε > 0. Since f is ACG∗ it can be represented as a Denjoy-Perron
integral

f(x)− f(a) =

∫ x

a

g(x) dx

where g = f ′ a.e. By the well-known Saks–Henstock Lemma (e.g., see [3,
p. xxx]) for any ε > 0 there is a gauge δ on [a, b] with the property that

n∑
i=i

|f(bi)− f(ai)− g(ξi)(bi − ai)| < ε (2)

for any sequence of disjoint subintervals (ai, bi) of (a, b) and points ξi ∈ (ai, bi)
with bi − ai < δ(ξi). Let

En = {x ∈ [a, b] : |g(x)| ≤ n and δ(x) > 1/n}.

Then En is an increasing sequence of subsets of [a, b], whose union is all of
[a, b].

We prove assertion (b). Let N be a subset of [a, b] of measure zero. There
must be an open set G ⊃ N so that |G| < ε. Choose a gauge δ′ on En so that
δ′ ≤ δ and so that (x − δ′(x), x + δ′(x)) ⊂ G for every x ∈ N . We estimate
V (f,En ∩N, δ′). Consider any sequence of intervals {(ai, bi)} for which there
is a point ξi ∈ En ∩N ∩ (ai, bi) satisfying bi − ai < δ′(ξi). By the way δ′ was
defined we see that each interval (ai, bi) appearing is a subset of G. Thus,
using (2) and the fact that each ξi ∈ En, we have

n∑
i=i

|f(bi)− f(ai)| <
n∑
i=i

|g(ξi)| (bi − ai) + ε ≤ n|G|+ ε < ε(n+ 1).
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It follows that

µ∗f (En ∩N) ≤ V (f,En ∩N, δ′) ≤ ε(n+ 1).

Since ε is arbitrary, each µ∗f (En ∩N) = 0. As the sequence of sets {En} cover
all of N it follows that µ∗f (N) = 0. This shows that µ is absolutely continuous
with respect to Lebesgue measure, establishing assertion (b).

Let us prove assertion (c) by showing that, for each n, µ(En) <∞. Define
a gauge δ′ on En to agree with δ on En and on the remaining points in En to be
1/n. We estimate V (f,En, δ

′). Consider any sequence of intervals {(ai, bi)} for
which there is a point ξi ∈ En ∩ (ai, bi) satisfying bi − ai < δ′(ξi). By the way
En and δ′ were defined we may consider that ξi ∈ En and that bi−ai < δ′(ξi),
since we can replace any such point with a nearby one in En.

Thus, again using (2), we have

n∑
i=i

|f(bi)− f(ai)| <
n∑
i=i

|g(ξi)| (bi − ai) + ε ≤ n(b− a) + ε.

It follows that

µ(En) ≤ V (f,En, δ
′) ≤ n(b− a) + ε <∞

as we desired. This establishes assertion (c).
Finally to prove (d) we require the representation

µf (B) =

∫
B

|g(x)| dx. (3)

Let E be a measurable subset of [a, b], at each point x of which

0 ≤ d ≤ |g(x)| ≤ c.

We show that

µ∗f (E) ≤ c|E| (4)

and that

d|E| ≤ µ∗f (E). (5)

Choose an open set G ⊃ E so that |G| < |E| + ε. Choose a gauge δ′ on
E so that δ′ ≤ δ and so that (x − δ′(x), x + δ′(x)) ⊂ G for every x ∈ E. We
estimate V (f,E, δ′). Consider any sequence of intervals {(ai, bi)} for which
there is a point ξi ∈ E ∩ (ai, bi) satisfying bi − ai < δ′(ξi). By the way δ′ was
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defined we see that each interval (ai, bi) appearing is a subset of G. Thus,
using (2), we have

n∑
i=i

|f(bi)− f(ai)| <
n∑
i=i

|g(ξi)| (bi − ai) + ε ≤ c|G|+ ε.

It follows that

µ∗f (E) ≤ V (f,E, δ′) ≤ c(|E|+ ε) + ε.

Since ε is arbitrary, assertion (4) follows.
Now let δ′ be any gauge on E. Write δ′′ = min{δ, δ′}. Let V denote the

collection of all intervals [α, β] such that (α, β) contains a point ξ ∈ E for
which β − α < δ′′(ξ). Note that V forms a Vitali cover of the measurable
set E. By the Vitali covering theorem there must exist a disjoint sequence of
intervals {(ai, bi)} and points ξi ∈ E ∩ (ai, bi) with bi − ai < δ′′(ξi) so that∑

i

(bi − ai) ≥ |E|.

Thus, using (2), we have

d|E| ≤ d
∑
i

(bi − ai) ≤
∑
i

|g(ξi)| (bi − ai) ≤
∑
i

|f(bi)− f(ai)|+ ε.

It follows that

V (f,E, δ′) ≥ V (f,E, δ′′) ≥ d|E| − ε

for every gauge δ′ on E. Hence, since ε is arbitrary, assertion (5) follows.
¿From assertion (4) and (5) we obtain assertion (3) by ordinary measure

theoretic arguments. For example if h1 and h2 are simple, nonnegative mea-
surable functions on [a, b] with h1 ≤ g ≤ h2 then we have∫ b

a

h1(t) dt ≤ µ∗f (E) ≤
∫ b

a

h2(t) dt.

¿From this then assertion (3) follows by taking appropriate sequences of such
simple functions converging to g. This completes the proof of (d) and so one
direction of the theorem is established.

Let us now prove the converse of the theorem. We suppose that a measure
µ is given with the properties (a), (b) and (c) and we wish to construct the
function f so that (d) holds. Let En be an expanding sequence of closed sets
whose union is equal to [a, b] and with each µ(En) <∞.
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By the Radon-Nikodym theorem there is a nonnegative, measurable func-
tion g1 on [a, b] so that

µ(E1 ∩B) =

∫
B

g1(x) dx.

We can assume that g1 = 0 off of E1. Construct a function F1, absolutely
continuous on [a, b], so that
(i) F1(a) = F1(b).
(ii) F ′1(x) = |g1(x)| for a.e. x ∈ (a, b).
(iii) |F1(x)− F (a)| ≤ b− a for each x ∈ (a, b).

To achieve (ii) it would be enough to take F1(x) =
∫ x

a
g1(t) dt. But this will

not give (i) and (iii). For that simply choose an appropriate function h that
assumes only the values ±1 and write F1(x) =

∫ x

a
g1(t)h(t) dt. (For example

partition [a, b] into a finite number of subintervals in the correct manner and
set h to be +1 and −1 on alternate intervals.)

Note that F1 is constant on each interval complementary to E1 in [a, b].
On these complementary intervals we now change F1. Again, by the Radon-
Nikodym theorem there is a nonnegative, measurable function g2 on [a, b] so
that

µ((E2 \ E1) ∩B) =

∫
B

g2(x) dx.

We can assume that g2 = 0 off of E2. Construct a function F2, absolutely
continuous on [a, b], that agrees with F1 on E1 and, for each interval (α, β)
complementary to E1, we arrange that
(i) F2(α) = F2(β) = F1(α) = F1(β).
(ii) F ′2(x) = |g2(x)| for a.e. x ∈ (α, β).
(iii) |F2(x)− F2(α)| ≤ β − α for x ∈ (α, β).
The method of construction is identical to that used to produce F1.

This procedure is continued inductively and so defines a function F agree-
ing with each Fn on each En. We claim that F is ACG∗ on [a, b], that
F ′(x) = gn(x) for a.e. x ∈ En \ En−1 and that assertion (4) holds.

Observe that F and Fn are identical on the closed set En and that the
oscillations of the function F on intervals complementary to En in [a, b] form
a convergent series (because of the requirement (iii) in the construction). Con-
sequently F is AC∗ on each En and so ACG∗ on [a, b].

Let us check the derivative of F at points in E1. We have defined F1 in
such a way that |F ′1(x)| = g1(x) for a.e. x ∈ E1. But F and F1 differ on the
intervals complementary to E1 and this may affect the derivative, so it is not
clear that F ′(x) and F ′1(x) must agree. Note that the oscillation of F on any
interval (α, β) contiguous to E1 cannot exceed 2(β − α).
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Take a point x ∈ E1 at which F ′(x) exists and suppose, moreover, that
x is a point of nonporosity1 of E1. Consider (F (yn) − F (x))/(yn − x) for
appropriate sequences yn decreasing to x. (The argument on the left side is
similar.) We need not worry if yn ∈ E1 since F and F1 agree there. So let
yn ∈ (αn, βn) where these are intervals contiguous to E1.

Our assumptions allow us to assert that

F (αn)− F (x)

αn − x
→ F ′(x), (6)

|F (yn)− F (αn)| < 2(βn − αn) (7)

and
βn − αn

αn − x
→ 0 and

αn − x
yn − x

→ 1. (8)

Putting (6)–(8) together we have, after some simple computations, that

F (yn)− F (x)

yn − x
→ F ′1(x). (9)

From (9) we have now that F ′(x) = F ′1(x) = |g1(x)| for a.e. x ∈ E1 since a.e.
point in E1 is both a point of existence of F ′(x) and a point of nonporosity of
E1.

Precisely the same argument applies to points in E2 \E1 at the next stage
of the construction and so on inductively. Thus |F ′(x)| is a.e. equal to gn(x)
on the set En \ En−1. For any Borel set B we have

µ(B ∩ (En \ En−1)) =

∫
B∩(En\En−1)

gn(t) dt =

∫
B∩(En\En−1)

|F ′(t)| dt.

From this the representation

µ(B) =

∫
B

|F ′(t)| dt

now follows. The final step requires merely for us to note that

µF (B) =

∫
B

|F ′(t)| dt

for any function F that is ACG∗.

1Porosity is defined, for example, in [2, p. 325].
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