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RESTRICTIONS TO CONTINUOUS AND
POINTWISE DISCONTINUOUS

FUNCTIONS

Abstract

We compare some of the restriction properties that can be found
throughout the literature. For example, theorem 10 is a common gener-
alization of three theorems: Blumberg’s theorem [2], Baldwin’s strength-
ening of Blumberg’s theorem [1], and a related Brown-Prikry’s result [8]
on Marczewski’s (s)-measurable functions.

1 Introduction

In 1922 Blumberg [2] proved that for every function f : R → R there exists
a dense set X ⊆ R, such that f |X is continuous. Since then many similar
results involving domains and codomains other than R were obtained. Also
many papers can be found, where “continuous” was changed to “differentiable”
or “pointwise discontinuous” (i.e., f : X → R is pointwise discontinuous
(abbreviated PWD) if {x ∈ X : f is continuous at x} is dense in X, see [10]
p.105). For a recent comprehensive account of these results see [6]. In this
note we would like to compare some restriction properties of real functions
defined on separable metric spaces. R is the set of all real numbers and Q is
the set of rationals. For a set S and a cardinal κ, [S]κ = {S′ ⊆ S : |S′| = κ}.
If F ⊆ P(S) and S′ ⊆ S, then F|S′ = {F ∩ S′ : F ∈ F}. If F1,F2 ⊆ P(S),
then F1 4F2 = {F1 4 F2 : Fi ∈ Fi, for i = 1, 2}. Unless stated otherwise, X
will always denote an uncountable, separable metric space, J will be a proper
σ-ideal on X, and A will be a σ- algebra of subsets of X.

Our goal is to show that given a space X, σ-algebra A, and a σ-ideal
J then for every A−measurable function f : X → R there exists a “large”
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set W ⊆ X such that the restricted function f |W is continuous or pointwise
discontinuous. The following six different notions of largeness associated with
an ideal J can be found in restriction theorems stated in [6], [5], [1], [8], [14],
and other papers. W is a subset of X.

W is non-J dense in X (D)

↙ ↘

W is non-J dense in W (DI) clX(W ) is non-J dense in X (WD)

↓ ↘ ↓

W /∈ J (N) clX(W ) is non-J dense in clX(W ) (WDI )

↘ ↙

clX(W ) /∈ J (WN)

W is non-J dense in X if W ∩U /∈ J for every nonempty open subset U ⊆ X.
clX(W ) stands for the closure of W in X. We shall refer to these properties
using the bold abbreviations in parenthesis. Here is the key: D=non-J -Dense,
DI=non-J -Dense in I tself, N=Not in J , WN=W eakly Not in J (i.e., not
in J after taking the closure of W ), etc. In general all six are different classes
of sets and the above diagram indicates all inclusions.

If L is one of those properties (i.e. D, DI, ..., WN), we define a Contin-
uous Restriction Property (C-RP) or a PointWise Discontinuous Restriction
Property (PWD-RP) related to L. Namely, a function f : X → R has a L-C-
RP [resp. L-PWD-RP] if there exists a set W ∈ L such that f |W is continuous
[resp. PWD]. We shall say that a pair (A,J ) has a L-C-RP [resp. L-PWD-
RP] if every A -measurable function f : X → R has the same property. (A,J )
has A-L-C-RP [resp. A-L-PWD-RP] if the witness set W can be found in A.

Let B(X) be the family of all Borel subsets of X and let BR(X) be the
family of all sets with Baire property whileM(X) is the ideal of all subsets of
X meager in X. So for subsets X1 ⊆ X,M(X1) is the family of all relatively
meager subsets of X1. We haveM(X1) ⊆M(X)|X1 . For X ⊆ R let L(X) and
N (X) be the Lebesgue measurable and null subsets of X. Classic theorems
imply that (BR(R),M(R)) has BR(R)-D-C-RP, while the (L(R),N (R)) only
has L(R)-DI-C-RP. (See [8] for more details.)



Continuous and Pointwise Discontinuous Functions 163

2 Continuous Restrictions

For an arbitrary pair (A,J ) on a separable metric space X we have the fol-
lowing implications.

D-C-RP

↙ ↘

DI-C-RP WD-C-RP

l (?) ↘ ↓
N-C-RP WDI-C-RP

↘ ↙
WN-C-RP

Examples of pairs (A,J ) indicating that, except for (?), none of these impli-
cations may be reversed, can be easily found.

2.1 A = P(X)

In 1923 W. Sierpinski and A. Zygmund [17] proved that whenever |X| = c,
then there exists a function z : X → R such that z|Y is not continuous for any
Y ∈ [X]c. This implies that under CH (P(X),J ) can not have N-C-RP for
any σ-ideal J containing all singletons. Without CH however (P(R), [R]≤ω)
as well as (P(R),M(X)) may have D-C-RP. (See [1], [15], and Theorem 2
below.) In ZFC Bradford and Goffman [3] proved that whenever an ideal
J does not contain open sets, then (P(X), J ) has WD-C-RP iff X has no
meager open subsets. In general we have the following theorem.

Theorem 1. (P(X),J ) has WDI-C-RP.

Proof. Let f : X → R and suppose that (P(X),J ) does not have the WDI-
C-RP. By Brown’s theorem 2, [5] p.132, we may assume that there exists a
subset X1 ⊆ X, X1 /∈ J such that M(X1) ⊆ J |X1

. Take X ′1 = X1 \
⋃
{V ⊆

X1 : V is open in X1 and V ∈ J }. We have M(X ′1) ⊆ M(X1) ⊆ J and
the last does not contain open subsets of X ′1. Hence we may apply the above
mentioned Bradford-Goffman theorem, [3] p. 667, to X ′1 and obtain a dense
subset W ⊆ X ′1, such that f |W is continuous. Clearly clX(W ) ⊇ X ′1 and
whenever U is open in X, U ∩ clX(W ) 6= ∅, then U ∩X ′1 /∈ J by the definition
of X ′1.

It is known (see [5], p. 128) that for uncountable separable metric spaces X
and any f : X → R there exists a set W ⊆ X such that f |W is continuous and
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|W∩U | ≥ ω for every nonempty open set U.Observe that by taking J = [X]≤ω

in Theorem 1 above we obtain proposition (C) of [5] and additional property
that clX(W ) is uncountably dense in itself.

If J1 and J2 are ideals on a set X and Y ⊆ X, then we say that J1 is
orthogonal to J2 on Y if Y = Y1 ∪ Y2 where Yi ∈ Ji, i = 1, 2. We write
“J1 ⊥ J2 on Y ”. Let us consider the following property of a space X and an
ideal J :

X = X1 ∪X2 where X1 ∈M(X) and M(X2) ⊆ J . (1)

It follows from Theorem 1 of [5] that if open subsets of X do not have property
(1), then (P(X),J ) has D-PWD-RP. In this context the following theorem is
somewhat surprising.

Theorem 2. Suppose that X and J satisfy (1) and that J ⊥�M(X) on any
open set. Let f : X → R be such that for every Borel set B ∈ B(X) \ J the
restricted function f |B has N-C-RP with respect to J |B . Then f has D-C-RP
with respect to J .

Proof. Let X = X1 ∪ X2 be a partition as in (1). By enlarging X1 to a
Borel meager set we may assume that X1, X2 ∈ B(X). Let U = (Un)n<ω be
an open basis for X2. Non-orthogonality of J andM(X) on open sets implies
that Un /∈ J . Since Un is Borel in X, by the N-C-RP of f |Un we obtain
sets An ⊆ Un, An /∈ J such that f |An is continuous. Let Tn = {x ∈ Un :
∃Eopen ⊂ Un(x ∈ E and An ∩ E ∈ J )}. X is separable so Tn ∩ An ∈ J
and clUn(Tn)\Tn ∈ M(X2) ⊆ J . Furthermore, since X1 is meager, J and
M(X) are non-orthogonal on Un. Take Vn = Un \ clUn(Tn) and observe that
Cn = An ∩ Vn is nonempty and non-J dense in Vn for all n < ω.

Now let Wn = Cn \
⋃
k<n clX(Vk) and W =

⋃
n<ωWn. Notice that Wn =

(Vn ∩W ) \
⋃
k<n clX(Vk). Hence Wn are open in W. f |Wn is continuous for all

n < ω which implies that f |W is also continuous.
To see that W is non-J dense in X take an arbitrary nonempty open

set T ⊆ X. Since X2 is residual in X, T2 = X2 ∩ T contains some Uk. Let
k0 = min{k : Vk∩T2 6= ∅}. We clearly have Ck0∩T2 /∈ J but also Wk0∩T2 /∈ J
as all sets of the form clX(Vk) \ Vk are nowhere dense in X2 and are in J by
(1). Naturally W ∩ T /∈ J .

For separable spaces Shelah’s theorem 1.4, [15], p. 8, gives the following:

Theorem 3. (Shelah [15]) It is relatively consistent with ZFC that for every
function f : 2ω → 2ω there exists a non-meager subset of A ⊆ 2ω such that
f |A is continuous.

Suppose that X is a complete space. Shelah’s theorem 3 implies that
whenever B /∈ M(X) is a Borel subset of X,, then there exists a set A ∈
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P(B)\M(B) such that f |A is continuous. Theorems 3 and 2 yield the following
fact.

Corollary 4. It is consistent that for any complete space (or a Borel subset
of a complete space without open meager sets) X the pair (P(X),M(X)) has
D-C-RP.

Remark 1. It is worth noting that ideals which are ccc in Borel sets have
property ( 1). Suppose that J is any ccc in Borel sets ideal on X (i.e. B(X)\J
does not contain uncountable pairwise disjoint subfamilies) and suppose that
M(X) * J . Let X0

1 ∈ M(X) \ J be Borel. For an ordinal α try to find a

set X α
1 ∈ B(X \

⋃
β<αX

β
1 ) ∩ (M(X) \ J ). By the ccc property this attempt

must fail after α0 < ω1 steps. Sets X1 =
⋃
α<α0

X α
1 and X2 = X \X1 have

the desired properties.

Corollary 4 shows that CH can not be eliminated from Theorem 1 of [5].
Namely in Shelah’s model (P(R),M(R)) has D-C-RP (in particular it has
D-PWD-RP) and R does not satisfy condition (B’) of [5] with property P=
M(R).

2.2 A-Measurable Functions

Now we would like to prove a theorem similar to 2 without assuming (1). To
compensate for that we are going to work with A-measurable functions and
assume A-N-C-RP of f |A for all A ∈ A\J i.e., assume that there exists a set
B ∈ A|A \ J such that f |B is continuous. Following Bradford and Goffman
[3] (see also [13]) we introduce the following definitions: Let E ⊆ X, and let
x ∈ X. Then x is non-J relative to E if for every open V 3 x we have
E ∩ V /∈ J . x is J -heavy relative to E if there exists an open set U 3 x such
that all y ∈ U are non-J relative to E. The first two lemmas are straight
forward generalizations of Lemmas 2 and 3 of [3].

Lemma 5. Any subset E ⊆ X can be written as a disjoint union of sets
E = A ∪ B1 ∪ B2 such that all members of A are J -heavy relative to E,
B1 ∈ J , and B2 is nowhere dense in X.

Proof. Let us define B1 = {x ∈ E : ∃Uopen ⊆ X x ∈ U & (U ∩ E) ∈ J }.
X is separable. Hence B1 ∈ J . Now let B2 = {x ∈ E : x is non-J but not
J -heavy relative to E}. Take an arbitrary open set T ⊆ X and let x ∈ B2∩T.
Since x is not J -heavy, there exists y ∈ T which is not non-J relative to E.
So there exists an open neighborhood V of y such that E ∩ V ∈ J . We must
have V ∩B2 = ∅, which shows that B2 is nowhere dense. Clearly points of E
that are not in B1 nor B2 are J -heavy.
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For f : X → R we define

Hf (X,J ) = {x ∈ X : ∀Kopen 3 f(x)(x is J -heavy relative to f−1(K))} (2)

Properties of Hf (X,J ) were studied by Piotrowski [13] in a more general
context.

Lemma 6. Let f : X → R. There exist sets B1 ∈ J and B2 ∈ M(X) such
that Hf (X,J ) = X \ (B1 ∪B2).

Proof. Let (Gn)n<ω be an open basis in R and let Sn = f−1(Gn) = An ∪
Bn1 ∪ Bn2 where the last union is like in lemma 5. Take B1 =

⋃
n<ω B

n
1 and

B2 =
⋃
n<ω B

n
2 . Now select an arbitrary x ∈ X \ (B1 ∪ B2) and an open set

K 3 f(x). Find n < ω such that Gn ⊆ K and f(x) ∈ Gn. x is J -heavy relative
to Sn so in particular it is J -heavy relative to the bigger set f−1(K). For the
other inclusion take K = Gn, n < ω and it follows immediately.

For any ideal J on a metric space X we define J ∗ to be the σ-ideal
generated by J and M(X). The next lemma is easy to verify.

Lemma 7. Let Z be a separable metric space and let J be an ideal on Z with
J ⊥�M(Z) on any open set. If U ⊆ Z is open and V ⊆ U is non-J ∗ dense in
U,, then J ⊥�M(V ) on any open subset of V.

Lemma 8. Let Z be a zero-dimensional separable metric space. Assume that
J is a σ-ideal and A ⊇ J ∪ B(Z) is a σ-algebra on Z. Suppose that an A
-measurable function f : Z → R and Y ∈ A are such that

1) J ⊥�M(Z) on any open subset of Z

2) Y is non-J dense in itself

3) Y ⊆ Hf (Z,J ∗)

4) f |Y is continuous

5) ∀A ∈ A \ J ∃B ∈ A|A \ J f |B is continuous.

If ε > 0, then there exist pairwise disjoint open subsets U = (Un)n<ω of
Z and subsets Yn ⊆ Vn ⊆ Un, Yn ∈ A such that

6) diam(Un) < ε

7)
⋃
U is dense in Z

8) Vn are non-J ∗ dense in Un
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9) Yn are non-J dense in itself

10) f |Yn is continuous

11) Y ⊆
⋃
n<ω Yn

12) Yn ⊆ Hf (Vn,J ∗)

13) |f(x)− f(x′)| < ε whenever x, x′ ∈ Vn for some n < ω.

Proof. We shall first define the even numbered sets Un, Vn, and Yn to satisfy
condition 11) and then define the odd numbered ones to satisfy 7). Select
y ∈ Y. By 3) there exists an clopen neighborhood U ′y of y with diam(U ′y) < ε
such that

f−1

((
f(y)− ε

2
, f(y) +

ε

2

))
is non-J ∗ dense in U ′y. (3)

4) implies the existence of a clopen set U ′′y 3 y such that |f(x) − f(x′)| < ε
2

whenever x, x′ ∈ Y ∩ U ′′y . Let Uy = U ′y ∩ U ′′y and observe that

Y ∩ Uy ⊆ f−1((f(y)− ε

2
, f(y) +

ε

2
)) (4)

Then (Uy)y∈Y is a clopen cover of Y. There is a countable set {yn : n < ω} ⊆
Y such that (Uyn)n<ω is a subcover of Y. Set Gn = Uyn \

⋃
k<n Uk. Then

(Gn)n<ω is a disjoint open cover of Y and by possibly deleting some sets we
may assure that Gn ∩ Y 6= ∅ for all n < ω. For each n < ω we put U2n = Gn,
V2n = U2n ∩ f−1((f(y2n)− ε

2 , f(y2n) + ε
2 )), and Y2n = U2n ∩ Y.

Assumption 2) implies that Y2n is non-J dense in itself. 4) gives continuity
of f |Y2n

. Inclusion (4) shows that

Y2n ⊆ V2n (5)

and condition (3) implies that V2n is non-J ∗ dense in U2n. Since (Gn)n<ω was
a cover of Y, the union

⋃
n<ω Y2n = Y. 13) follows from the definition of V2n.

Hence we have verified all conditions except 7) and 12). While 7) will be taken
care of by the odd Un-s, 12) for even indices follows from the following claim

Claim: Y2n ⊆ Hf (V2n,J ∗) for all n < ω.
Let x ∈ Y2n and let K 3 f(x) be an open subset of R. Take K1 = K ∩

(f(y2n)− ε
2 , f(y2n)+ ε

2 ). By (5) f(x) ∈ (f(y2n)− ε
2 , f(y2n)+ ε

2 ); so f(x) ∈ K1.
By the assumption 3) there exists an open subset U ⊆ Z such that f−1(K1)∩U
is non-J ∗ dense in U. It follows that f−1(K1) ∩ U ∩ Gn is non-J ∗ dense in
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Û = U ∩ Gn. But since f−1(K1) ∩ Gn is a subset of V2n we obtain that

f−1(K) ∩ V2n ∩ Û is non-J ∗ dense in Û . Thus x ∈ Hf (V2n,J ∗).
To define the odd Un ⊇ Vn ⊇ Yn we proceed as in lemma 4 of [3]. Let R =

{zα : α < κ} for some κ ≤ c be a well-ordering of Hf (Z \ clz(
⋃
n<ω U2n),J ∗).

Orthogonality of J andM(Z) on every open set and lemma 6 imply that R is
dense in Z \clz(

⋃
n<ω U2n). Suppose that we have defined sets U ′α ⊇ V ′α ⊇ Y ′α

for all α < β < ω1. Let zβ0
be the first element of R ∩ Z \ clz(

⋃
n<ω U2n ∪⋃

α<β U
′
α). Let U ′β be a neighborhood of zβ0

disjoint from clz(
⋃
n<ω U2n ∪⋃

α<β U
′
α), of diameter less than ε, and such that V ′β = f−1(f(zβ0

)− ε2 , f(zβ0
)+

ε
2 ) ∩ U ′β is non-J ∗ dense in U ′β . It follows from Lemma 6 that Hf (V ′β ,J ∗)
contains a subset A ∈ A \ J . By assumption 5), there exists a non-J dense
in itself subset Y ′β ∈ A|A \ J such that f |Y ′β is continuous.

After countably many steps, say γ < ω1, the choice of zγ0 will no longer be
possible and this is when

⋃
α<γ U

′
α will becomes dense in Z \ clz(

⋃
n<ω U2n).

It suffices to renumerate sets U ′α, V
′
α, and Y ′α, α < γ as U2n+1, V2n+1, and

Y2n+1, n < ω.

Lemma 9. If A contains all Borel subsets of X and an A-measurable function
f : X → R has N-C-RP with respect to J , then it also has A-N-C-RP with
respect to the same ideal.

Proof. Suppose that W ∈ P(X) \ J is such that f |W is continuous. There
exists a Gδ subset G ⊆ X and a continuous function g : G → R such that
f |W ⊆ g, see [9]. Since the difference f |G − g is also A -measurable, the set
W1 = (f |G − g)−1({0}) is in A�J . Clearly f |W1

is continuous.

Theorem 10. Let X be a separable metric space and let J a σ-ideal on X,
J ⊥�M(X) on every open set. Suppose that A ⊇ J ∪ B(X) is a σ-algebra on
X. If f : X → R is A-measurable and f |A has N-C-RP whenever A ∈ A \ J ,
then f has A- D-C-RP.

Proof. Without loss of generality we may assume that X is zero-dimensional.
(It suffices to remove a meager set to assure that.) Let ∆ = ω<ω \ {∅}. We
construct three trees of subsets of X : (U τ )τ∈∆, (Vτ )τ∈∆ , and (Yτ )τ∈∆.

Claim. There exists an A-measurable non-J dense in itself subset Y ⊆
Hf (X,J ∗) such that f |Y is continuous.
A ⊇ J ∪B(X) and Lemma 6 applied to J ∗ imply that Hf (X,J ∗) ∈ A\J ∗.

f |Hf (X,J ∗) has N-C-RP so there exists a set Y ′ ⊆ Hf (X,J ∗), Y ′ /∈ J such
that f |Y ′ is continuous. Since A ⊇ B(X), Lemma 9 may be used to extend Y ′

to a subset of Hf (X,J ∗), Y ′′ ∈ A such that f |Y ′′ is still continuous. Define
Y = Y ′′ \ {x ∈ Y ′′ : ∃E ⊆open X(x ∈ E and E ∩ Y ′′ ∈ J )}. Y ∈ A is
nonempty because X is separable and non-J dense in itself.
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To obtain the first level of the three trees apply Lemma 8 with Z = X, Y =
Y, and ε = 1. Now let k > 0. To obtain sets (Uτˆn)τ∈ωk,n∈ω, (Vτˆn)τ∈ωk,n∈ω,
and sets (Yτˆn)τ∈ωk,n∈ω, from level k + 1 we apply Lemma 8 for each τ ∈ ωk
with Z = Vτ , Y = Yτ and ε = 1

k+1 . Then simply put Uτˆn = Un, Vτˆn =
Vn, and Yτˆn = Yn, where Un, Vn, and Yn are from the Lemma and satisfy
conditions 6)-13). Observe that the assumption 1) is preserved from one step
to another due to Lemma 7.

Now let W =
⋃
k∈ω

⋃
τ∈ωk Yτ . It is easy to see that for every k ∈ ω the

union
⋃
τ∈ωk Uτ is dense in X. To show that W is non-J dense in X let T be

a nonempty open subset on X. Due to decreasing diameters of Uτ there exists
a k ∈ ω and a τ ∈ ωk such that Uτ ⊆ T . This implies that T ∩W ⊇ Yτ /∈ J .

It suffices to verify that f |W is continuous. Let x ∈W. For almost all k ∈ ω
there exist sequences τ ∈ ωk such that x ∈ Yτ . Yτ ⊆ Vτ ∩W and Vτ ∩W is
open in W with diam(f(Vτ )) < 1

k .

The following applications illustrate the strength of theorem 10.

Corollary 11. (H. Blumberg [2]) If X is a Baire space, then (P(X), {∅}) has
D-C-RP.

Proof. Apply Theorem 10 with A = P(X) and J = {∅}.

Let ω ≤ κ < c. It is well known (see [16]) that if X ∈ [R]κ and f : X → R,
then, under Martin’s Axiom, there exists a set Y ∈ [X]κ such that f |Y is
continuous. Theorem 10 gives the following.

Corollary 12. (S. Baldwin [1]) Assume Martin’s Axiom. Let ω < κ < c,
cf(κ) > ω. Suppose that X ⊆ R contains no meager open subsets and f : X →
R. Then (P(X), [X]<κ) has D-C-RP.

Proof. Clearly, under Martin’s Axiom [X]<κ ⊥�M(X) on every open set.
Apply theorem 10 with A = P(X) and J = [X]<κ.

A set S ⊆ X is called (s)-measurable if for every perfect set P ⊆ X there
exists a perfect subset P ′ ⊆ P such that either P ′ ∩ S = ∅ or P ′ ⊆ S. (s0) is
the ideal of hereditarily (s)-measurable sets. It is well known (see Marczewski
[11]) that whenever X is complete, then f : X → R is (s)-measurable iff
for every perfect set P ⊆ X there exists a perfect subset Q ⊆ P such that
f |Q is continuous. It follows that f is (s)-measurable iff f |A has (s)-N-C-RP
whenever A ∈ (s)\ (s0). The following corollary follows from the more general
theorem 3 of [8]:

Corollary 13. (Brown and Prikry [8]) If X is a complete space without iso-
lated points, then ((s), (s0)) has (s)-D-C-RP.
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Proof. It is well known that (s0) ⊥�M(X) on any open subset of X and that
(s) contains all Borel subsets. Theorem 10 completes the proof.

3 PWD Restrictions

Now we would like to look at the diagram of pointwise discontinuous restriction
properties.

D-PWD-RP

↙ (1) ↘ (2)

DI-PWD-RP WD-PWD-RP

↓ (3) ↘ (4) ↓ (5)

N-PWD-RP WDI-PWD-RP

↘ (6) ↙ (7)

WN-PWD-RP

Clearly for any class L the L-C-RP implies the corresponding L-PWD-RP. In
addition to that, the following properties are equivalent.

• WD-C-RP ⇐⇒WD-PWD-RP

• WDI-C-RP ⇐⇒WDI-PWD-RP

• WN-C-RP ⇐⇒WN-PWD-RP

Hence, we are going to focus on the left side of the diagram. The original
Blumberg’s theorem [2] implies that (P(R),J ) has WD-C-RP for any ideal J
without open sets. The following theorem shows that WD-C-RP6⇒ N-PWD-
RP ((4) can not be turned by −90◦).

Theorem 14. Let J = {M∪C : M ∈M(R) and C ∈ [R]
<c}. Then (P(R),J )

does not have the N-PWD-RP.

Proof. Let z : R → R be the Zygmund-Sierpinski function [17]. Let A ⊆ R
and suppose that G = {x ∈ A : z|A is continuous at x} is dense in A. Since G
is a relative G δ subset of A, A \G ∈M(A) ⊆ J . z is the Zygmund-Sierpinski
function; so G ∈ [A]<c ⊆ J . It follows that A ∈ J .
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Example 15. Implication (1) can not be reversed. Let K ⊆ R be a nowhere
dense perfect set. Take X = K ∪Q and J = [X]≤ω. X =

⋃
n<ωXn where Xn

are pairwise disjoint and nowhere dense in X. Assume X1 = K. Let f : X → R,
f(x) = n for x ∈ Xn. Well known arguments (see [3] p. 667) shows that
(P(X),J ) does not have D-PWD-RP. On the other hand (P(K), [K]≤ω) has
D-PWD-RP (see [4]); so (P(X),J ) has DI-PWD-RP.

Remark 2. Assume that J contains all singletons. Under CH (P(X),J ) has
DI-PWD-RP iff it has N-PWD-RP. Suppose that (P(X),J ) does not have DI
-PWD-RP. By Brown’s theorem 2 of [5] X =

⋃
n<ωXn where M(Xn) ⊆ J .

Take z : X → R to be the Zygmund-Sierpinski function on X. Suppose that
z|A is pointwise discontinuous for some A ∈ P(X) \ J . There exists an n < ω
such that A∩Xn /∈ J . We can find a set B, A ⊇ B ⊇ A∩Xn such that z|B is
PWD and |B \ (A ∩Xn)| ≤ ω. The set G = {x ∈ B : z|B is continuous at x}
is a dense G δ in B. Hence B \G ∈ M(B) ⊆ J . Since B /∈ J , |G| > ω which
contradicts the Zygmund-Sierpinski property under CH.

4 Baire, Lebesgue, and Other Measurable Functions

If A is the Baire, Lebesgue, universally measurable, or other classic σ-algebra
of sets, then restriction properties for (A,JA), where JA is the ideal of sets
hereditarily in A, are discussed in [8]. Here we look at restriction properties
for A with arbitrary ideals J other than JA.

If X is meager on itself, then BR(X) = P(X) and this case has been
discussed above. It follows from a well known theorem of Nikodym [12] that if
X does not contain nonempty meager open subsets, then (BR(X),M(X)) has
BR(X)-D-C-RP. Using the same technique we can show that (BR(X)4J ,J ∗)
has (BR(X)4J )-D-C-RP as long as J ⊥�M(X) on every open set. It remains
to examine pairs (BR(X),J ) where J ⊥ M(X). In such case there exists a
nowhere dense set F /∈ J . It is easy to find a discrete set D ⊆ X \F, such that
clX(D) ⊇ F. This last observation may be applied in a more general situation
and yields the following facts.

Proposition 16. If M(X) * J , then the pair (P(X),J ) has BR(X)-N-
PWD-RP.

Corollary 17. (BR(X),J ) has N-PWD-RP for any σ-ideal J .

In general N-PWD-RP is the best restriction property that we can hope
for (BR(X),J ) where J ⊥M(X).

Example 18. Let X = R = P ∪̇S where P is some nowhere dense perfect set.
LetMC(P ) = {P ′ ∪P ′′ : P ′ ∈M(P ) and P ′′ ∈ [P ]<c}. Define J = {P ′ ∪ S′ :
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P ′ ∈ MC(P ) and S′ ⊆ S}. Clearly M(X) ⊥ J on X. (BR(X),J ) does not
have DI-PWD-RP because of the following BR(X)-measurable function

f(x) =

{
0 if x ∈ S

z(x) if x ∈ P,

where z is the Zygmund-Sierpinski function on P. If W was a non-J dense
in itself, then W ⊆ P. If f |W was PWD, then the set G = {x ∈ W : f |W is
continuous at x} is a dense G δ subset of W so W \G ∈ M(P ). This implies
that G /∈ J and in particular |G| = c, but that contradicts the Zygmund-
Sierpinski property.

From Proposition 16 we easily obtain

Corollary 19. If X has positive outer measure, then (P(X),N (X)) has N-
PWD-RP.

Here also no stronger restriction property is provable due to Example 18.
Corollary 19 also follows from Theorem E of [7] on points of differentiability.
More couterexamples for other σ-algebras follow from the next theorem.

Theorem 20. Let A be a σ-algebra of subsets of R and assume that there
exists a set X /∈ MC = {M ∪ C : M ∈ M(R) and C ∈ [R]<c} such that
P(X) ⊆ A. If we define MCX = {A ⊆ R : A ∩ X ∈ MC}, then (A,MCX)
does not have the N-PWD-RP.

Proof. Follow Example 18 with P = X.

Corollary 21. There exists a σ-ideal J on R such that (L(R),J ) does not
have N-PWD-RP.

Proof. Use Theorem 20 withX being a second category measure zero set.

Corollary 22. Assume CH. If A is one of the following σ-algebras: (s) -
measurable, universally measurable, or B(R)4UN (R) = {B4N : B ∈ B(X)
and N is universally null}, then there exists a σ-ideal J such that (A,J ) does
not have the N-PWD-RP.

Proof. Use Theorem 20 with X being a Lusin set.

Remark 3. In the random real model (B(R)4 UN (R),J ) has N-PWD-RP
for all J . Recall that in this model UN (R) ⊆ [R]≤ω1 ⊆M(R). It follows that
B(R)4UN (R) ⊆ BR(R) and Corollary 17 implies N-PWD-RP.

The authors are very grateful to Zbyszek Piotrowski for interesting dis-
cussions. We also would like to thank Jack Brown. His comments eliminated
several errors and clarified some of our proofs.
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