Zbigniew Grande, Institute of Mathematics, Pedagogical University, plac Weyssenhoffa 11, 85-072, Bydgoszcz, Poland e-mail: grande@wsp.bydgoszcz.pl

ON CONTINUITY AND GENERALIZED CONTINUITY WITH RESPECT TO TWO TOPOLOGIES

Abstract

Let τ_1 and τ_2 be topologies in X and let $\tau = \tau_1 \cap \tau_2$. Some conditions concerning the topologies τ , τ_1 and τ_2 and describing the relations between the τ -continuity (quasicontinuity) [cliquishness] and the τ_i -continuity (quasicontinuity) [cliquishness], i = 1, 2, of functions defined on X are considered.

Let \mathcal{R} denote the set of all reals and let (X, τ) be a topological space.

A function $f: X \mapsto \mathcal{R}$ is called τ -quasicontinuous (τ -cliquish) at a point $x \in X$ ([3] if for every positive real η and for every set $U \in \tau$ containing x there is a nonempty set $V \in \tau$ such that $V \subset U$ and $|f(v) - f(x)| < \eta$ for all points $v \in V$ (osc $_V f < \eta$, where osc $_V f$ denotes the diameter of the set f(V)). We will consider two topologies \mathcal{T}_1 and \mathcal{T}_2 in X. Let

 $\mathcal{T} = \mathcal{T}_1 \cap \mathcal{T}_2.$

1 \mathcal{T} - and \mathcal{T}_i -continuity

Obviously, if a function $f: X \mapsto \mathcal{R}$ is \mathcal{T} -continuous at a point $x \in X$ then it is also \mathcal{T}_i -continuous at x for i = 1, 2. The converse implication need not be valid.

Example 1. Let

$$U = \bigcup_{n} \left[\frac{1}{4n+1}, \frac{1}{4n} \right] \cup \{0\}$$

Key Words: bitopological continuity, quasicontinuity, cliquishness

Mathematical Reviews subject classification: Primary: 54C08, 54C30, 54C05

Received by the editors September 17, 1997

^{*}Supported by Bydgoszcz Pedagogical University grant 1997

and

$$V = \bigcup_{n} \left[\frac{1}{4n+3}, \frac{1}{4n+2} \right] \cup \{0\}.$$

Denote by \mathcal{T}_1 the topology of subsets of $X = \mathcal{R}$ generated by the family

$$\{(-r,r)\cap U; r>0\}$$

and by \mathcal{T}_2 the topology of subsets of X generated by the family

$$\{(-r,r) \cap V : r > 0\}.$$

For n = 1, 2, ..., let

$$I_n = \left[\frac{1}{4n+2}, \frac{1}{4n+1}\right]$$

and let $f_n: I_n \mapsto [0, 1]$, be a continuous function (with respect to the Euclidean topology \mathcal{T}_e) such that

$$f_n(I_n) = [0,1] \land f_n\left(\frac{1}{4n+2}\right) = f_n\left(\frac{1}{4n+1}\right) = 0.$$

Put

$$f(x) = \begin{cases} f_n(x) & \text{for } x \in I_n, n = 1, 2, \dots \\ 0 & \text{for } x \in \mathcal{R} \setminus \bigcup_n I_n \end{cases}$$

and observe that the function f is \mathcal{T}_i -continuous at 0 for i = 1, 2. Since

$$\mathcal{T} = \mathcal{T}_1 \cap \mathcal{T}_2 = \{\mathcal{R}, \emptyset\},\$$

the function f is not even \mathcal{T} -cliquish at 0.

Theorem 1. Let $x \in X$ be a point. Suppose that the topologies \mathcal{T}_1 and \mathcal{T}_2 satisfy to the following condition

(1)
$$\forall_{x \in A \in \mathcal{T}_1} \forall_{x \in B \in \mathcal{T}_2} \exists_{x \in E \in \mathcal{T}} E \subset A \cup B.$$

If a function $f: X \mapsto \mathcal{R}$ is \mathcal{T}_i -continuous at the point x for i = 1, 2 then f is also \mathcal{T} -continuous at x.

PROOF. Fix a positive real η . From \mathcal{T}_i -continuity of the function f at x, i = 1, 2, follows that there are sets $A_i \in \mathcal{T}_i$ such that $x \in A_i$ and for each point $t \in A_i$ the inequality

$$|f(t) - f(x)| < \eta$$

holds. By the condition (1) there is a set $E \in \mathcal{T}$ with

$$x \in E \subset A_1 \cup A_2.$$

Evidently,

$$|f(t) - f(x)| < \eta$$

for all points $t \in E$ and the proof is completed.

We will show the necessity of condition (1) for Theorem 1 to hold.

Remark 1. Let $x \in X$ be a point. If there are sets $A_i \in \mathcal{T}_i$, i = 1, 2, such that $x \in A_1 \cap A_2$ and

$$\forall_{x \in A \in \mathcal{T}} A \setminus (A_1 \cup A_2) \neq \emptyset,$$

then there is a function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}_i -continuous at x for i = 1, 2and which is not \mathcal{T} -continuous at x.

PROOF. Put

$$f(x) = \begin{cases} 0 & \text{for} \quad x \in A_1 \cup A_2\\ 1 & \text{for} \quad x \in X \setminus (A_1 \cup A_2) \end{cases}$$

and observe that f is \mathcal{T}_i -continuous at x for i = 1, 2. Since

 $\forall_{\emptyset \neq A \in \mathcal{T}} \operatorname{osc}_{A \cup \{x\}} f = 1,$

the function f is not even \mathcal{T} -quasicontinuous at x. This completes the proof.

2 Quasicontinuity

Example 2. Let $X = \mathcal{R}$ and let the sets U, V be the same as these from Example 1. Denote by \mathcal{T}_1 and \mathcal{T}_2 the topologies generated by family

$$\{U\cap(0,r);r>0\}$$

and respectively by the family

$$\{V \cap (0,r); r > 0\}.$$

Let the function f be the same as that from Example 1. Then the topologies \mathcal{T}_1 and \mathcal{T}_2 satisfy to the condition (1) from Theorem 1, the function f is \mathcal{T}_i -quasicontinuous at the point 0 (even everywhere) for i = 1, 2, but f is not \mathcal{T} -quasicontinuous at 0 (it is not even \mathcal{T} -cliquish at 0).

437

So, Theorem 1 is not true for quasicontinuity.

For the case of quasicontinuity we recall the following notion: A set $A \subset X$ is said τ -semiopen if

$$A \subset \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(A)),$$

where cl_{τ} and int_{τ} respectively denote the operations of the closure and the interior with respect to the topology τ .

Let $S(\tau)$ be the family of all τ -semiopen sets $A \subset X$.

It is well known ([3]) that a function $f: X \mapsto \mathcal{R}$ is τ -quasicontinuous at a point x if and only if for every positive real η there is a τ -semiopen set $A \subset X$ containing x such that for each point $t \in A$ the inequality

$$|f(t) - f(x)| < \eta$$

is true.

Theorem 2. Let $x \in X$ be a point. Suppose that the topologies \mathcal{T}_1 and \mathcal{T}_2 satisfy to the following condition

(2)
$$\forall_{x \in A \in S(\mathcal{T}_1)} \forall_{x \in B \in S(\mathcal{T}_2)} \exists_{\emptyset \neq E \in \mathcal{T}} E \subset A \cup B.$$

If a function $f: X \mapsto \mathcal{R}$ is \mathcal{T}_i -quasicontinuous at x for i = 1, 2, then f is also \mathcal{T} -quasicontinuous at x.

PROOF. Fix a positive real η and a set $A \in \mathcal{T}$ containing x. By the \mathcal{T}_i quasicontinuity of the function f at x for i = 1, 2, there are nonempty sets

$$A_i \in S(\mathcal{T}_i), \ i = 1, 2$$

containing x and such that for all points $t \in A_i$, i = 1, 2, the inequality

$$|f(t) - f(x)| < \eta$$

holds. Observe that

$$A \cap A_i \in S(\mathcal{T}_i)$$

for i = 1, 2. By the condition (2) there is a nonempty \mathcal{T} -open set

$$B \subset A \cap (A_1 \cup A_2).$$

Evidently,

$$\forall_{t \in B} |f(t) - f(x)| < \eta.$$

So, the proof is completed.

Remark 2. Let $x \in X$ be a point. Suppose that there are nonempty sets $A_i \in S(\mathcal{T}_i)$, i = 1, 2, containing x and such that

$$\forall_{\emptyset \neq A \in \mathcal{T}} A \setminus (A_1 \cup A_2) \neq \emptyset.$$

Then there is a function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}_i -quasicontinuous at the point x for i = 1, 2 and which is not \mathcal{T} -quasicontinuous at the point x.

PROOF. The construction of such a function is the same as the construction of the function f in the proof of Remark 1.

Observe that the case of quasicontinuity is different from the case of continuity. If a function f is \mathcal{T} -continuous at a point x then it is also \mathcal{T}_i -continuous at x for i = 1, 2. For quasicontinuity the situation is different.

Example 3. Let $\mathcal{T}_1 = \mathcal{T}_e^+$ and respectively $\mathcal{T}_2 = \mathcal{T}_e^-$ be the topologies generated by the families

$$\{[x, x+r); x \in \mathcal{R}, \ r > 0\}$$

and

$$\{(x-r,x]; x \in \mathcal{R}, r > 0\}.$$

Then

$$\mathcal{T} = \mathcal{T}_1 \cap \mathcal{T}_2 = \mathcal{T}_e$$

and the function

$$f(t) = \begin{cases} 0 & \text{for} \quad t \ge 0\\ 1 & \text{for} \quad t < 0 \end{cases}$$

is \mathcal{T} -quasicontinuous at 0 and is not \mathcal{T}_2 -quasicontinuous at 0. Analogously, the function

$$g(t) = f(-t), \ t \in \mathcal{R},$$

is \mathcal{T} -quasicontinuous at 0 and is not \mathcal{T}_1 -quasicontinuous at 0.

Theorem 3. Let $x \in X$ be a point. Then the following conditions are equivalent:

- (2') every function $f : X \mapsto \mathcal{R}$ which is \mathcal{T} -quasicontinuous at x is also \mathcal{T}_i -quasicontinuous at x for i = 1, 2;
- (2") every \mathcal{T} -semiopen set containing x contains also \mathcal{T}_i -semiopen sets U_i , i = 1, 2, containing x.

PROOF. $(2') \Rightarrow (2'')$. If (2'') does not hold then there are a \mathcal{T} -semiopen set U containing x and an index $i \leq 2$ such that for every \mathcal{T}_i -semiopen set V containing x the relation

 $V \setminus U \neq \emptyset$

holds. Let

$$f(t) = \begin{cases} 0 & \text{for } t \in U \\ 1 & \text{for } t \in X \setminus U. \end{cases}$$

Then f is \mathcal{T} -quasicontinuous at x, but it is not \mathcal{T}_i -quasicontinuous at x. So, we obtain a contradiction with (2').

 $(2'') \Rightarrow (2')$. Suppose that a function $f: X \mapsto \mathcal{R}$ is \mathcal{T} -quasicontinuous at x. Fix a positive real η and an index $i \leq 2$. From the \mathcal{T} -quasicontinuity of f at x follows the existence of an \mathcal{T} -semiopen set U containing x and such that

$$|f(t) - f(x)| < \eta$$

for each point $t \in U$. By (2") there is a \mathcal{T}_i -semiopen set $V \subset U$ containing x. Since

$$|f(t) - f(x)| < \eta$$

for all points $t \in V$, the function f is \mathcal{T}_i -quasicontinuous at x and the proof is completed. \Box

3 Cliquishness

Remark 3. Assume all hypotheses of Remark 2. Moreover suppose that for each nonempty set $A \in \mathcal{T}$ there are sets B, D which are dense (with respect to the topology \mathcal{T}) in A and such that

$$B \cap D = \emptyset \land B \cup D = A.$$

Then there is a function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}_i -quasicontinuous at the point x for i = 1, 2 and which is not \mathcal{T} -cliquish at x.

Proof. If

$$E = \operatorname{int}_{\mathcal{T}}(X \setminus (A_1 \cup A_2)) \neq \emptyset$$

then let

$$E = B \cup D,$$

where the sets B, D are disjoint and dense (with respect to the topology \mathcal{T}) in E. If $E = \emptyset$ we put

$$B = X \setminus (A_1 \cup A_2).$$

Define

$$f(x) = \begin{cases} 1 & \text{for } x \in B\\ 0 & \text{for } x \in X \setminus B. \end{cases}$$

Then f is \mathcal{T}_i -quasicontinuous at x for i = 1, 2, but f is not \mathcal{T} -cliquish at x. \Box

The following example shows that all hypotheses of Remark 3 are essential.

Example 4. Let

$$X = \{0, 1, 2, 3\},$$

$$\mathcal{T}_1 = \{\emptyset, \{0, 1\}, \{3\}, \{0, 1, 3\}, X\}, \text{ and } \mathcal{T}_2 = \{\emptyset, \{0, 2\}, \{3\}, \{0, 2, 3\}, X\}.$$

Then

$$\mathcal{T} = \{\emptyset, \{3\}, X\}.$$

Let $f: X \mapsto \mathcal{R}$ be a function which is \mathcal{T}_i -quasicontinuous at the point 0 for i = 1, 2. Then the function f is also \mathcal{T}_i -continuous at 0 for i = 1, 2 and

$$f(0) = f(1) = f(2).$$

If $0 \in A \in \mathcal{T}$, then

$$A=X \ \land \ \{3\} \subset A$$

and $\operatorname{osc}_{\{3\}} f = 0$. So f is \mathcal{T} -cliquish at the point 0.

Moreover,

$$0 \in U = \{0, 1\} \in \mathcal{T}_1, 0 \in W = \{0, 2\} \in \mathcal{T}_2, \text{ and } \forall_{\emptyset \neq A \in \mathcal{T}} A \setminus (U \cup W) \neq \emptyset.$$

Theorem 4. Let $x \in X$ be a point. Suppose that

(3) there is a set $A \in \mathcal{T}$ containing x and such that for all nonempty sets $A_i \in \mathcal{T}_i, i = 1, 2$, contained in A there exists a nonempty set $D \in \mathcal{T}$ contained in $A_1 \cup A_2$ and for all nonempty disjoint sets $B_i \in \mathcal{T}_i$, i = 1, 2, there are an index $i \leq 2$ and a nonempty set $E \in \mathcal{T}$ with

$$E \subset B_1 \quad \forall \quad E \subset B_2.$$

If a function $f: X \mapsto \mathcal{R}$ is \mathcal{T}_i -cliquish at the point x for i = 1, 2, then f is also \mathcal{T} -cliquish at x.

PROOF. Fix a positive real η and a set U with

$$x \in U \in \mathcal{T}$$

Let a set A satisfies to the condition (3). The \mathcal{T}_i -cliquishness of f at x implies the existence of a nonempty sets $B_i \subset U \cap A$, i = 1, 2, with

$$\operatorname{osc}_{B_i} f < \frac{\eta}{2} \quad \land \quad B_i \in \mathcal{T}_i, \quad i = 1, 2.$$

Observe that

$$B_1 \cap B_2 \neq \emptyset \Rightarrow \operatorname{osc}_{B_1 \cup B_2} f < \eta.$$

By (3) there is a nonempty set $E \in \mathcal{T}$ such that:

$$B_1 \cap B_2 = \emptyset \Rightarrow \exists_{i < 2} E \subset B_i$$

or

$$B_1 \cap B_2 \neq \emptyset \Rightarrow E \subset B_1 \cup B_2.$$

Since in both cases osc $_E f < \eta$, the proof is completed.

Remark 4. Let $x \in X$ be a point. Suppose that the topologies \mathcal{T} , \mathcal{T}_1 and \mathcal{T}_2 are such that for each point $t \neq x$ there are sets $U_1 \in \mathcal{T}_1$, $U_2 \in \mathcal{T}_2$ and $U_3 \in \mathcal{T}$ for which $U_1 \cap U_3 = \emptyset$, $U_2 \cap U_3 = \emptyset$, $x \in U_3$ and $t \in U_1 \cap U_2$. Moreover we assume that there is a countable base of neighborhoods of x for the topology \mathcal{T} and that for which set $A \in \mathcal{T}$ containing $x \in X$ there are nonempty sets $A_i(A) \in \mathcal{T}_i$, i = 1, 2, such that:

$$A_1(A) \cap A_2(A) \neq \emptyset \Rightarrow \forall_{\emptyset \neq B \in \mathcal{T}} B \setminus (A_1(A) \cup A_2(A)) \neq \emptyset,$$
$$A_1(A) \cap A_2(A) = \emptyset \Rightarrow \forall_{\emptyset \neq B \in \mathcal{T}} \forall_{i \leq 2} B \setminus A_i(A) \neq \emptyset,$$

and

$$G = X \setminus \bigcup \{A_1(A) \cup A_2(A); x \in A \in \mathcal{T}\} \setminus \{x\} = H \cup K$$

where $H \cap K = \emptyset$ and H, K are dense in G with respect to the topology \mathcal{T} . Then there is a function $f : X \mapsto \mathcal{R}$ which is \mathcal{T}_i -cliquish at the point x for i = 1, 2 and which is not \mathcal{T} -cliquish at x.

PROOF. At the beginning we assume that $\{x\}$ is not in \mathcal{T}_i for i = 1, 2. Let

$$W_1,\ldots,W_n,\ldots$$

be an enumeration of all elements of some basis of neighborhoods of x in the topology \mathcal{T} . Let

$$A_i(W_1) \in \mathcal{T}_i, \quad i = 1, 2,$$

be nonempty sets satisfying our hypothesis for $A = W_1$. Since in this case there are points $t_i \in A_i(W_1)$, i = 1, 2, we can find nonempty sets $V_{1,i} \in \mathcal{T}_i$, $i \leq 2$, and $V_{1,3} \in \mathcal{T}$ with $t_i \in V_{1,i}$, $i \leq 2$, $x \in V_{1,3}$, and

$$V_{1,3} \cap (V_{1,1} \cup V_{1,2}) = \emptyset.$$

If $V_{1,1} \cap V_{1,2} = \emptyset$ we put

$$f(t) = (-1)^i, t \in V_{1,i}, i \le 2.$$

In the contrary case, where $V_{1,1} \cap V_{1,2} \neq \emptyset$, we put

$$f(t) = 1, t \in V_{1,1} \cup V_{1,2}.$$

Analogously, for n > 1 we find nonempty sets $V_{n,i} \in \mathcal{T}_i$, $i \leq 2$, and $V_{n,3} \in \mathcal{T}$ such that:

$$x \in V_{n,3} \subset X \setminus (V_{n,1} \cup V_{n,2}),$$
$$V_{n,1} \cup V_{n,2} \subset W_n \cap V_{1,3} \cap \ldots \cap V_{n-1,3},$$
$$V_{n,1} \cap V_{n,2} \neq \emptyset \Rightarrow \forall_{\emptyset \neq B \in \mathcal{T}} B \setminus (V_{n,1} \cup V_{n,2}) \neq \emptyset,$$

and

$$V_{n,1} \cap V_{n,2} = \emptyset \Rightarrow \forall_{\emptyset \neq B \in \mathcal{T}} \forall_{i < 2} B \setminus V_{n,i} \neq \emptyset.$$

If $V_{n,1} \cap V_{n,2} = \emptyset$ then we put

$$f(t) = (-1)^i n, \ t \in V_{n,i}, \ i \le 2.$$

In the contrary case, where $V_{n,1} \cap V_{n,2} \neq \emptyset$ we put

$$f(t) = n, t \in V_{n,1} \cup V_{n,2}.$$

Moreover, let

$$f(x) = 0,$$

 $f(t) = 0, t \in H, \text{ and } f(t) = \frac{1}{2}$

at all other points of the space X.

Observe that the function f satisfies all requirements. Evidently,

$$\neg(\{x\} \in \mathcal{T}_1 \cap \mathcal{T}_2).$$

In the case, where $\{x\} \in \mathcal{T}_i$ for i = 1 or i = 2, the construction of such a function f is simpler, since starting from some index n we find only one set V_{k,i_0} instead a pair $(V_{k,1}, V_{k,2})$.

Theorem 5. Let $x \in X$ be a point. Suppose that

(a) all sets A with

 $x \in A \in \mathcal{T}_1 \cup \mathcal{T}_2$

contains some sets $B \in \mathcal{T}$ with $x \in B$.

Then every function $f: X \mapsto \mathcal{R}$ which is \mathcal{T} -cliquish at x is also \mathcal{T}_i -cliquish at x for i = 1, 2.

PROOF. Fix an index $i \leq 2$, a positive real η and a set $U \in \mathcal{T}_i$ with $x \in U$. By our hypothesis there is a set $B \in \mathcal{T}$ such that

$$x \in B \subset U.$$

Since f is \mathcal{T} -cliquish at x, there is a nonempty set $V \in \mathcal{T}$ such that

$$V \subset B \land \operatorname{osc}_V f < \eta$$

So,

$$V \subset U \land V \in \mathcal{T}_i \land \operatorname{osc}_V f < \eta,$$

and the proof is completed.

The next example shows that hypothesis (a) from the last theorem is not necessary.

Example 5. Let

$$X = \{0, 1, 2, 3\},$$

$$\mathcal{T}_1 = \{\emptyset, X, \{1\}\}, \text{ and } \mathcal{T}_2 = \{\emptyset, X, \{2\}\}.$$

Then

 $\mathcal{T} = \{\emptyset, X\},\$

every function $f: X \mapsto \mathcal{R}$ which is \mathcal{T} -cliquish at x is constant and the condition (a) is not satisfied.

The proof of the next theorem gives a characterization of the cliquishness.

Remark 5. Let τ be a topology of subsets of X and let $x \in X$ be a point. A function $f: X \mapsto \mathcal{R}$ is τ -cliquish at x if and only if for each positive real η there are τ -open sets A_s , $s \in S$, where S is a set of indexes, such that x belongs to the τ -closure $\operatorname{cl}_{\tau}(\bigcup_{s \in S} A_s)$ of the set $\bigcup_{s \in S} A_s$ and for every $s \in S$ the inequality $\operatorname{osc}_{A_s} f < \eta$ is true.

PROOF. Fix a positive real η . If f is τ -cliquish at x then for every set $U \in \tau$ containing x there is a nonempty τ -open set $B(U) \subset U$ with $\operatorname{osc}_{B(U)} f < \eta$. If

$$\{U_s; s \in S\}$$

is a directed family of all τ -open sets contained the point x, then the family

$$\{A_s = B(U_s); s \in S\}$$

satisfies all the required conditions.

The proof of the second implication is evident.

Theorem 6. Let $x \in X$ be a point. Suppose that the topologies \mathcal{T}_1 and \mathcal{T}_2 satisfy the following condition

(3') for each \mathcal{T} -open set A such that $x \in \operatorname{cl}_{\mathcal{T}}(A)$ and for each index $i \leq 2$ the point $x \in \operatorname{cl}_{\mathcal{T}_i}(A)$.

If a function $f: X \mapsto \mathcal{R}$ is \mathcal{T} -cliquish at x then it is also \mathcal{T}_i -cliquish at x for i = 1, 2.

PROOF. Fix a positive integer $i \leq 2$ and a positive real η . Since f is \mathcal{T} -cliquish at x, by the last Remark there are nonempty sets $A_s \in \mathcal{T}$, where S is a set of indexes, such that

$$x \in \operatorname{cl}_{\mathcal{T}}(\bigcup_{s \in S} A_s)$$

and for every $s \in S$ the inequality $\operatorname{osc}_{A_s} f < \eta$ is true.

From (3') follows the existence of a \mathcal{T}_i -open set $D \subset \bigcup_{s \in S} A_s$ with

$$x \in \operatorname{cl}_{\mathcal{T}_i}(D).$$

For $s \in S$ the sets

$$D_s = D \cap A_s \in \mathcal{T}_i.$$

Let

$$S' = \{ s \in S; D_s \neq \emptyset \}.$$

Since for $s \in S'$ the inequality

$$\operatorname{osc}_{D_s} f < \eta$$

is true and since

$$x \in \operatorname{cl}_{\mathcal{T}_i}(\bigcup_{s \in S'} D_s),$$

by the last Remark f is \mathcal{T}_i -cliquish at x. So, the proof is completed.

Remark 6. Let $x \in X$ be a point. Suppose that there are an index $i \leq 2$, a set $V \in \mathcal{T}_i$, disjoint sets $Y, Z \subset V$ and a set $U \in \mathcal{T}$ such that

 $U \cap V = \emptyset \land x \in \operatorname{cl}_{\mathcal{T}}(U) \cap V,$

and

$$x \in Y \land \operatorname{cl}_{\mathcal{T}_i}(Y) = \operatorname{cl}_{\mathcal{T}_i}(Z) = \operatorname{cl}_{\mathcal{T}_i}(V).$$

Then there is a function $f: X \mapsto \mathcal{R}$ which is \mathcal{T} -cliquish at x and which is not \mathcal{T}_i -cliquish at x.

PROOF. The function

$$f(t) = \begin{cases} 1 & \text{if } t \in Z \\ 0 & \text{if } t \in X \setminus Z \end{cases}$$

is \mathcal{T} -cliquish at x, but it is not \mathcal{T}_i -cliquish at x. So, the proof is completed. \Box

The following example shows the importance of all hypothesis of the last remark.

Example 6. Let

$$X = \{0, 1, 2\},$$

$$\mathcal{T}_1 = \{\emptyset, X, \{1\}\}, \text{ and } \mathcal{T}_2 \qquad = 2^X.$$

Then $\mathcal{T} = \mathcal{T}_1$ and for

$$x=0 \quad \wedge \quad A=\{1\} \quad \wedge \quad B=\{0\}$$

we have

$$A \in \mathcal{T} \land B \in \mathcal{T}_2 \land A \cap B = \emptyset$$

and

$$x \in B \land x \in \operatorname{cl}_{\mathcal{T}}(A).$$

Moreover, each function $f: X \mapsto \mathcal{R}$ is \mathcal{T}_2 -continuous at the point 0, because $\{0\} \in \mathcal{T}_2$. So, every function $f: X \mapsto \mathcal{R}$ which is \mathcal{T} -cliquish at 0 is also \mathcal{T}_2 -cliquish at 0.

References

- [1] R. Engelking, General Topology, Warsaw PWN, 1976.
- [2] J. L. Kelly, General Topology, New York 1955.
- [3] T. Neubrunn, *Quasi-continuity*, Real Anal. Exch. 14 (1988-89), 259–306.