ON CONTINUITY AND GENERALIZED CONTINUITY WITH RESPECT TO TWO TOPOLOGIES

Abstract

Let τ_{1} and τ_{2} be topologies in X and let $\tau=\tau_{1} \cap \tau_{2}$. Some conditions concerning the topologies τ, τ_{1} and τ_{2} and describing the relations between the τ-continuity (quasicontinuity) [cliquishness] and the τ_{i}-continuity (quasicontinuity) [cliquishness], $i=1,2$, of functions defined on X are considered.

Let \mathcal{R} denote the set of all reals and let (X, τ) be a topological space.
A function $f: X \mapsto \mathcal{R}$ is called τ-quasicontinuous (τ-cliquish) at a point $x \in X$ ([3] if for every positive real η and for every set $U \in \tau$ containing x there is a nonempty set $V \in \tau$ such that $V \subset U$ and $|f(v)-f(x)|<\eta$ for all points $v \in V\left(\operatorname{osc}_{V} f<\eta\right.$, where $\operatorname{osc}_{V} f$ denotes the diameter of the set $\left.f(V)\right)$.

We will consider two topologies \mathcal{T}_{1} and \mathcal{T}_{2} in X. Let

$$
\mathcal{T}=\mathcal{T}_{1} \cap \mathcal{T}_{2}
$$

$1 \quad \mathcal{T}$ - and \mathcal{T}_{i}-continuity

Obviously, if a function $f: X \mapsto \mathcal{R}$ is \mathcal{T}-continuous at a point $x \in X$ then it is also \mathcal{T}_{i}-continuous at x for $i=1,2$. The converse implication need not be valid.

Example 1. Let

$$
U=\bigcup_{n}\left[\frac{1}{4 n+1}, \frac{1}{4 n}\right] \cup\{0\}
$$

[^0]and
$$
V=\bigcup_{n}\left[\frac{1}{4 n+3}, \frac{1}{4 n+2}\right] \cup\{0\}
$$

Denote by \mathcal{T}_{1} the topology of subsets of $X=\mathcal{R}$ generated by the family

$$
\{(-r, r) \cap U ; r>0\}
$$

and by \mathcal{T}_{2} the topology of subsets of X generated by the family

$$
\{(-r, r) \cap V: r>0\}
$$

For $n=1,2, \ldots$, let

$$
I_{n}=\left[\frac{1}{4 n+2}, \frac{1}{4 n+1}\right]
$$

and let $f_{n}: I_{n} \mapsto[0,1]$, be a continuous function (with respect to the Euclidean topology \mathcal{T}_{e}) such that

$$
f_{n}\left(I_{n}\right)=[0,1] \wedge f_{n}\left(\frac{1}{4 n+2}\right)=f_{n}\left(\frac{1}{4 n+1}\right)=0
$$

Put

$$
f(x)=\left\{\begin{array}{cll}
f_{n}(x) & \text { for } & x \in I_{n}, n=1,2, \ldots \\
0 & \text { for } & x \in \mathcal{R} \backslash \bigcup_{n} I_{n}
\end{array}\right.
$$

and observe that the function f is \mathcal{T}_{i}-continuous at 0 for $i=1,2$. Since

$$
\mathcal{T}=\mathcal{T}_{1} \cap \mathcal{T}_{2}=\{\mathcal{R}, \emptyset\}
$$

the function f is not even \mathcal{T}-cliquish at 0 .
Theorem 1. Let $x \in X$ be a point. Suppose that the topologies \mathcal{T}_{1} and \mathcal{T}_{2} satisfy to the following condition

$$
\begin{equation*}
\forall_{x \in A \in \mathcal{T}_{1}} \forall_{x \in B \in \mathcal{T}_{2}} \exists_{x \in E \in \mathcal{T}} E \subset A \cup B \tag{1}
\end{equation*}
$$

If a function $f: X \mapsto \mathcal{R}$ is \mathcal{T}_{i}-continuous at the point x for $i=1,2$ then f is also \mathcal{T}-continuous at x.

Proof. Fix a positive real η. From \mathcal{T}_{i}-continuity of the function f at x, $i=1,2$, follows that there are sets $A_{i} \in \mathcal{T}_{i}$ such that $x \in A_{i}$ and for each point $t \in A_{i}$ the inequality

$$
|f(t)-f(x)|<\eta
$$

holds. By the condition (1) there is a set $E \in \mathcal{T}$ with

$$
x \in E \subset A_{1} \cup A_{2} .
$$

Evidently,

$$
|f(t)-f(x)|<\eta
$$

for all points $t \in E$ and the proof is completed.
We will show the necessity of condition (1) for Theorem 1 to hold.
Remark 1. Let $x \in X$ be a point. If there are sets $A_{i} \in \mathcal{T}_{i}, i=1,2$, such that $x \in A_{1} \cap A_{2}$ and

$$
\forall_{x \in A \in \mathcal{T}} A \backslash\left(A_{1} \cup A_{2}\right) \neq \emptyset
$$

then there is a function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}_{i}-continuous at x for $i=1,2$ and which is not \mathcal{T}-continuous at x.

Proof. Put

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \in A_{1} \cup A_{2} \\
1 & \text { for } & x \in X \backslash\left(A_{1} \cup A_{2}\right)
\end{array}\right.
$$

and observe that f is \mathcal{T}_{i}-continuous at x for $i=1,2$. Since

$$
\forall_{\emptyset \neq A \in \mathcal{T}} \operatorname{osc}_{A \cup\{x\}} f=1,
$$

the function f is not even \mathcal{T}-quasicontinuous at x. This completes the proof.

2 Quasicontinuity

Example 2. Let $X=\mathcal{R}$ and let the sets U, V be the same as these from Example 1. Denote by \mathcal{T}_{1} and \mathcal{T}_{2} the topologies generated by family

$$
\{U \cap(0, r) ; r>0\}
$$

and respectively by the family

$$
\{V \cap(0, r) ; r>0\}
$$

Let the function f be the same as that from Example 1. Then the topologies \mathcal{T}_{1} and \mathcal{T}_{2} satisfy to the condition (1) from Theorem 1 , the function f is \mathcal{T}_{i}-quasicontinuous at the point 0 (even everywhere) for $i=1,2$, but f is not \mathcal{T}-quasicontinuos at 0 (it is not even \mathcal{T}-cliquish at 0).

So, Theorem 1 is not true for quasicontinuity.
For the case of quasicontinuity we recall the following notion:
A set $A \subset X$ is said τ-semiopen if

$$
A \subset \operatorname{cl}_{\tau}\left(\operatorname{int}_{\tau}(A)\right)
$$

where cl_{τ} and int ${ }_{\tau}$ respectively denote the operations of the closure and the interior with respect to the topology τ.

Let $S(\tau)$ be the family of all τ-semiopen sets $A \subset X$.
It is well known ([3]) that a function $f: X \mapsto \mathcal{R}$ is τ-quasicontinuous at a point x if and only if for every positive real η there is a τ-semiopen set $A \subset X$ containing x such that for each point $t \in A$ the inequality

$$
|f(t)-f(x)|<\eta
$$

is true.
Theorem 2. Let $x \in X$ be a point. Suppose that the topologies \mathcal{T}_{1} and \mathcal{T}_{2} satisfy to the following condition

$$
\begin{equation*}
\forall_{x \in A \in S\left(\mathcal{T}_{1}\right)} \forall_{x \in B \in S\left(\mathcal{T}_{2}\right)} \exists_{\emptyset \neq E \in \mathcal{T}} E \subset A \cup B \tag{2}
\end{equation*}
$$

If a function $f: X \mapsto \mathcal{R}$ is \mathcal{T}_{i}-quasicontinuous at x for $i=1,2$, then f is also \mathcal{T}-quasicontinuous at x.

Proof. Fix a positive real η and a set $A \in \mathcal{T}$ containing x. By the $\mathcal{T}_{i^{-}}$ quasicontinuity of the function f at x for $i=1,2$, there are nonempty sets

$$
A_{i} \in S\left(\mathcal{T}_{i}\right), \quad i=1,2
$$

containing x and such that for all points $t \in A_{i}, i=1,2$, the inequality

$$
|f(t)-f(x)|<\eta
$$

holds. Observe that

$$
A \cap A_{i} \in S\left(\mathcal{T}_{i}\right)
$$

for $i=1,2$. By the condition (2) there is a nonempty \mathcal{T}-open set

$$
B \subset A \cap\left(A_{1} \cup A_{2}\right)
$$

Evidently,

$$
\forall_{t \in B}|f(t)-f(x)|<\eta
$$

So, the proof is completed.

Remark 2. Let $x \in X$ be a point. Suppose that there are nonempty sets $A_{i} \in S\left(\mathcal{T}_{i}\right), i=1,2$, containing x and such that

$$
\forall \emptyset \neq A \in \mathcal{T} A \backslash\left(A_{1} \cup A_{2}\right) \neq \emptyset
$$

Then there is a function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}_{i}-quasicontinuous at the point x for $i=1,2$ and which is not \mathcal{T}-quasicontinuous at the point x.

Proof. The construction of such a function is the same as the construction of the function f in the proof of Remark 1.

Observe that the case of quasicontinuity is different from the case of continuity. If a function f is \mathcal{T}-continuous at a point x then it is also \mathcal{T}_{i}-continuous at x for $i=1,2$. For quasicontinuity the situation is different.

Example 3. Let $\mathcal{T}_{1}=\mathcal{T}_{e}^{+}$and respectively $\mathcal{T}_{2}=\mathcal{T}_{e}^{-}$be the topologies generated by the families

$$
\{[x, x+r) ; x \in \mathcal{R}, \quad r>0\}
$$

and

$$
\{(x-r, x] ; x \in \mathcal{R}, \quad r>0\}
$$

Then

$$
\mathcal{T}=\mathcal{T}_{1} \cap \mathcal{T}_{2}=\mathcal{T}_{e}
$$

and the function

$$
f(t)=\left\{\begin{array}{lll}
0 & \text { for } \quad t \geq 0 \\
1 & \text { for } \quad t<0
\end{array}\right.
$$

is \mathcal{T}-quasicontinuous at 0 and is not \mathcal{T}_{2}-quasicontinuous at 0 . Analogously, the function

$$
g(t)=f(-t), \quad t \in \mathcal{R}
$$

is \mathcal{T}-quasicontinuous at 0 and is not \mathcal{T}_{1}-quasicontinuous at 0 .
Theorem 3. Let $x \in X$ be a point. Then the following conditions are equivalent:
(2') every function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}-quasicontinuous at x is also \mathcal{T}_{i}-quasicontinuous at x for $i=1,2$;
($2^{\prime \prime}$) every \mathcal{T}-semiopen set containing x contains also \mathcal{T}_{i}-semiopen sets $U_{i}, i=1,2$, containing x.

Proof. $\left(2^{\prime}\right) \Rightarrow\left(2^{\prime \prime}\right)$. If $\left(2^{\prime \prime}\right)$ does not hold then there are a \mathcal{T}-semiopen set U containing x and an index $i \leq 2$ such that for every \mathcal{T}_{i}-semiopen set V containing x the relation

$$
V \backslash U \neq \emptyset
$$

holds. Let

$$
f(t)=\left\{\begin{array}{lll}
0 & \text { for } & t \in U \\
1 & \text { for } & t \in X \backslash U
\end{array}\right.
$$

Then f is \mathcal{T}-quasicontinuous at x, but it is not \mathcal{T}_{i}-quasicontinuous at x. So, we obtain a contradiction with $\left(2^{\prime}\right)$.
$\left(2^{\prime \prime}\right) \Rightarrow\left(2^{\prime}\right)$. Suppose that a function $f: X \mapsto \mathcal{R}$ is \mathcal{T}-quasicontinuous at x. Fix a positive real η and an index $i \leq 2$. From the \mathcal{T}-quasicontinuity of f at x follows the existence of an \mathcal{T}-semiopen set U containing x and such that

$$
|f(t)-f(x)|<\eta
$$

for each point $t \in U$. By $\left(2^{\prime \prime}\right)$ there is a \mathcal{T}_{i}-semiopen set $V \subset U$ containing x. Since

$$
|f(t)-f(x)|<\eta
$$

for all points $t \in V$, the function f is \mathcal{T}_{i}-quasicontinuous at x and the proof is completed.

3 Cliquishness

Remark 3. Assume all hypotheses of Remark 2. Moreover suppose that for each nonempty set $A \in \mathcal{T}$ there are sets B, D which are dense (with respect to the topology \mathcal{T}) in A and such that

$$
B \cap D=\emptyset \wedge B \cup D=A
$$

Then there is a function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}_{i}-quasicontinuous at the point x for $i=1,2$ and which is not \mathcal{T}-cliquish at x.

Proof. If

$$
E=\operatorname{int} \mathcal{T}\left(X \backslash\left(A_{1} \cup A_{2}\right)\right) \neq \emptyset
$$

then let

$$
E=B \cup D
$$

where the sets B, D are disjoint and dense (with respect to the topology \mathcal{T}) in E. If $E=\emptyset$ we put

$$
B=X \backslash\left(A_{1} \cup A_{2}\right)
$$

Define

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { for } & x \in B \\
0 & \text { for } & x \in X \backslash B
\end{array}\right.
$$

Then f is \mathcal{T}_{i}-quasicontinuous at x for $i=1,2$, but f is not \mathcal{T}-cliquish at x.

The following example shows that all hypotheses of Remark 3 are essential.
Example 4. Let

$$
\begin{aligned}
& X=\{0,1,2,3\} \\
& \mathcal{T}_{1}=\{\emptyset,\{0,1\},\{3\},\{0,1,3\}, X\}, \text { and } \mathcal{T}_{2}=\{\emptyset,\{0,2\},\{3\},\{0,2,3\}, X\}
\end{aligned}
$$

Then

$$
\mathcal{T}=\{\emptyset,\{3\}, X\}
$$

Let $f: X \mapsto \mathcal{R}$ be a function which is \mathcal{T}_{i}-quasicontinuous at the point 0 for $i=1,2$. Then the function f is also \mathcal{T}_{i}-continuous at 0 for $i=1,2$ and

$$
f(0)=f(1)=f(2)
$$

If $0 \in A \in \mathcal{T}$, then

$$
A=X \wedge\{3\} \subset A
$$

and osc ${ }_{\{3\}} f=0$. So f is \mathcal{T}-cliquish at the point 0 .
Moreover,

$$
\begin{aligned}
& 0 \in U=\{0,1\} \\
& 0 \in \mathcal{T}_{1} \\
& 0 \in W=\{0,2\} \in \mathcal{T}_{2}, \text { and } \forall \emptyset \neq A \in \mathcal{T} A \backslash(U \cup W) \neq \emptyset
\end{aligned}
$$

Theorem 4. Let $x \in X$ be a point. Suppose that
(3) there is a set $A \in \mathcal{T}$ containing x and such that for all nonempty sets $A_{i} \in \mathcal{T}_{i}, i=1,2$, contained in A there exists a nonempty set $D \in \mathcal{T}$ contained in $A_{1} \cup A_{2}$ and for all nonempty disjoint sets $B_{i} \in \mathcal{T}_{i}$, $i=1,2$, there are an index $i \leq 2$ and a nonempty set $E \in \mathcal{T}$ with

$$
E \subset B_{1} \quad \vee \quad E \subset B_{2}
$$

If a function $f: X \mapsto \mathcal{R}$ is \mathcal{T}_{i}-cliquish at the point x for $i=1,2$, then f is also \mathcal{T}-cliquish at x.

Proof. Fix a positive real η and a set U with

$$
x \in U \in \mathcal{T} .
$$

Let a set A satisfies to the condition (3). The \mathcal{T}_{i}-cliquishness of f at x implies the existence of a nonempty sets $B_{i} \subset U \cap A, i=1,2$, with

$$
\operatorname{osc}_{B_{i}} f<\frac{\eta}{2} \wedge B_{i} \in \mathcal{T}_{i}, \quad i=1,2 .
$$

Observe that

$$
B_{1} \cap B_{2} \neq \emptyset \Rightarrow \operatorname{osc}_{B_{1} \cup B_{2}} f<\eta .
$$

By (3) there is a nonempty set $E \in \mathcal{T}$ such that:

$$
B_{1} \cap B_{2}=\emptyset \Rightarrow \exists_{i \leq 2} E \subset B_{i}
$$

or

$$
B_{1} \cap B_{2} \neq \emptyset \Rightarrow E \subset B_{1} \cup B_{2} .
$$

Since in both cases osc ${ }_{E} f<\eta$, the proof is completed.
Remark 4. Let $x \in X$ be a point. Suppose that the topologies $\mathcal{T}, \mathcal{T}_{1}$ and \mathcal{T}_{2} are such that for each point $t \neq x$ there are sets $U_{1} \in \mathcal{T}_{1}, U_{2} \in \mathcal{T}_{2}$ and $U_{3} \in \mathcal{T}$ for which $U_{1} \cap U_{3}=\emptyset, U_{2} \cap U_{3}=\emptyset, x \in U_{3}$ and $t \in U_{1} \cap U_{2}$. Moreover we assume that there is a countable base of neighborhoods of x for the topology \mathcal{T} and that for which set $A \in \mathcal{T}$ containing $x \in X$ there are nonempty sets $A_{i}(A) \in \mathcal{T}_{i}, i=1,2$, such that:

$$
\begin{gathered}
A_{1}(A) \cap A_{2}(A) \neq \emptyset \Rightarrow \forall \emptyset \neq B \in \mathcal{T} B \backslash\left(A_{1}(A) \cup A_{2}(A)\right) \neq \emptyset, \\
A_{1}(A) \cap A_{2}(A)=\emptyset \Rightarrow \forall_{\emptyset \neq B \in \mathcal{T}} \forall_{i \leq 2} B \backslash A_{i}(A) \neq \emptyset,
\end{gathered}
$$

and

$$
G=X \backslash \bigcup\left\{A_{1}(A) \cup A_{2}(A) ; x \in A \in \mathcal{T}\right\} \backslash\{x\}=H \cup K,
$$

where $H \cap K=\emptyset$ and H, K are dense in G with respect to the topology \mathcal{T}. Then there is a function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}_{i}-cliquish at the point x for $i=1,2$ and which is not \mathcal{T}-cliquish at x.
Proof. At the beginning we assume that $\{x\}$ is not in \mathcal{T}_{i} for $i=1,2$. Let

$$
W_{1}, \ldots, W_{n}, \ldots
$$

be an enumeration of all elements of some basis of neighborhoods of x in the topology \mathcal{T}. Let

$$
A_{i}\left(W_{1}\right) \in \mathcal{T}_{i}, \quad i=1,2,
$$

be nonempty sets satisfying our hypothesis for $A=W_{1}$. Since in this case there are points $t_{i} \in A_{i}\left(W_{1}\right), i=1,2$, we can find nonempty sets $V_{1, i} \in \mathcal{T}_{i}$, $i \leq 2$, and $V_{1,3} \in \mathcal{T}$ with $t_{i} \in V_{1, i}, i \leq 2, x \in V_{1,3}$, and

$$
V_{1,3} \cap\left(V_{1,1} \cup V_{1,2}\right)=\emptyset
$$

If $V_{1,1} \cap V_{1,2}=\emptyset$ we put

$$
f(t)=(-1)^{i}, \quad t \in V_{1, i}, \quad i \leq 2
$$

In the contrary case, where $V_{1,1} \cap V_{1,2} \neq \emptyset$, we put

$$
f(t)=1, \quad t \in V_{1,1} \cup V_{1,2}
$$

Analogously, for $n>1$ we find nonempty sets $V_{n, i} \in \mathcal{T}_{i}, i \leq 2$, and $V_{n, 3} \in \mathcal{T}$ such that:

$$
\begin{gathered}
x \in V_{n, 3} \subset X \backslash\left(V_{n, 1} \cup V_{n, 2}\right), \\
V_{n, 1} \cup V_{n, 2} \subset W_{n} \cap V_{1,3} \cap \ldots \cap V_{n-1,3}, \\
V_{n, 1} \cap V_{n, 2} \neq \emptyset \Rightarrow \forall_{\emptyset \neq B \in \mathcal{T}} B \backslash\left(V_{n, 1} \cup V_{n, 2}\right) \neq \emptyset,
\end{gathered}
$$

and

$$
V_{n, 1} \cap V_{n, 2}=\emptyset \Rightarrow \forall \emptyset \neq B \in \mathcal{T} \forall_{i \leq 2} B \backslash V_{n, i} \neq \emptyset
$$

If $V_{n, 1} \cap V_{n, 2}=\emptyset$ then we put

$$
f(t)=(-1)^{i} n, \quad t \in V_{n, i}, \quad i \leq 2
$$

In the contrary case, where $V_{n, 1} \cap V_{n, 2} \neq \emptyset$ we put

$$
f(t)=n, \quad t \in V_{n, 1} \cup V_{n, 2} .
$$

Moreover, let

$$
\begin{aligned}
f(x) & =0 \\
f(t) & =0, \quad t \in H, \text { and } f(t)=\frac{1}{2}
\end{aligned}
$$

at all other points of the space X.
Observe that the function f satisfies all requirements.
Evidently,

$$
\neg\left(\{x\} \in \mathcal{T}_{1} \cap \mathcal{T}_{2}\right)
$$

In the case, where $\{x\} \in \mathcal{T}_{i}$ for $i=1$ or $i=2$, the construction of such a function f is simpler, since starting from some index n we find only one set $V_{k, i_{0}}$ instead a pair $\left(V_{k, 1}, V_{k, 2}\right)$.

Theorem 5. Let $x \in X$ be a point. Suppose that
(a) all sets A with

$$
x \in A \in \mathcal{T}_{1} \cup \mathcal{T}_{2}
$$

contains some sets $B \in \mathcal{T}$ with $x \in B$.
Then every function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}-cliquish at x is also \mathcal{T}_{i}-cliquish at x for $i=1,2$.

Proof. Fix an index $i \leq 2$, a positive real η and a set $U \in \mathcal{T}_{i}$ with $x \in U$. By our hypothesis there is a set $B \in \mathcal{T}$ such that

$$
x \in B \subset U
$$

Since f is \mathcal{T}-cliquish at x, there is a nonempty set $V \in \mathcal{T}$ such that

$$
V \subset B \wedge \operatorname{osc}_{V} f<\eta
$$

So,

$$
V \subset U \wedge V \in \mathcal{T}_{i} \wedge \operatorname{osc}_{V} f<\eta
$$

and the proof is completed.
The next example shows that hypothesis (a) from the last theorem is not necessary.

Example 5. Let

$$
\begin{aligned}
& X=\{0,1,2,3\} \\
& \mathcal{T}_{1}=\{\emptyset, X,\{1\}\}, \text { and } \mathcal{T}_{2}=\{\emptyset, X,\{2\}\}
\end{aligned}
$$

Then

$$
\mathcal{T}=\{\emptyset, X\}
$$

every function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}-cliquish at x is constant and the condition (a) is not satisfied.

The proof of the next theorem gives a characterization of the cliquishness.
Remark 5. Let τ be a topology of subsets of X and let $x \in X$ be a point. A function $f: X \mapsto \mathcal{R}$ is τ-cliquish at x if and only if for each positive real η there are τ-open sets $A_{s}, s \in S$, where S is a set of indexes, such that x belongs to the τ-closure $\operatorname{cl}_{\tau}\left(\bigcup_{s \in S} A_{s}\right)$ of the set $\bigcup_{s \in S} A_{s}$ and for every $s \in S$ the inequality $\operatorname{osc}_{A_{s}} f<\eta$ is true.

Proof. Fix a positive real η. If f is τ-cliquish at x then for every set $U \in \tau$ containing x there is a nonempty τ-open set $B(U) \subset U$ with osc ${ }_{B(U)} f<\eta$. If

$$
\left\{U_{s} ; s \in S\right\}
$$

is a directed family of all τ-open sets contained the point x, then the family

$$
\left\{A_{s}=B\left(U_{s}\right) ; s \in S\right\}
$$

satisfies all the required conditions.
The proof of the second implication is evident.
Theorem 6. Let $x \in X$ be a point. Suppose that the topologies \mathcal{T}_{1} and \mathcal{T}_{2} satisfy the following condition
(3') for each \mathcal{T}-open set A such that $x \in \operatorname{cl}_{\mathcal{T}}(A)$ and for each index $i \leq 2$ the point $x \in \operatorname{cl}_{\mathcal{T}_{i}}(A)$.

If a function $f: X \mapsto \mathcal{R}$ is \mathcal{T}-cliquish at x then it is also \mathcal{T}_{i}-cliquish at x for $i=1,2$.

Proof. Fix a positive integer $i \leq 2$ and a positive real η. Since f is \mathcal{T}-cliquish at x, by the last Remark there are nonempty sets $A_{s} \in \mathcal{T}$, where S is a set of indexes, such that

$$
x \in \operatorname{cl}_{\mathcal{T}}\left(\bigcup_{s \in S} A_{s}\right)
$$

and for every $s \in S$ the inequality $\operatorname{osc}_{A_{s}} f<\eta$ is true.
From (3') follows the existence of a \mathcal{T}_{i}-open set $D \subset \bigcup_{s \in S} A_{s}$ with

$$
x \in \operatorname{cl}_{\mathcal{T}_{i}}(D)
$$

For $s \in S$ the sets

$$
D_{s}=D \cap A_{s} \in \mathcal{T}_{i}
$$

Let

$$
S^{\prime}=\left\{s \in S ; D_{s} \neq \emptyset\right\} .
$$

Since for $s \in S^{\prime}$ the inequality

$$
\operatorname{osc}_{D_{s}} f<\eta
$$

is true and since

$$
x \in \operatorname{cl}_{\mathcal{T}_{i}}\left(\bigcup_{s \in S^{\prime}} D_{s}\right)
$$

by the last Remark f is \mathcal{T}_{i}-cliquish at x. So, the proof is completed.

Remark 6. Let $x \in X$ be a point. Suppose that there are an index $i \leq 2$, a set $V \in \mathcal{T}_{i}$, disjoint sets $Y, Z \subset V$ and a set $U \in \mathcal{T}$ such that

$$
U \cap V=\emptyset \quad \wedge \quad x \in \operatorname{cl}_{\mathcal{T}}(U) \cap V
$$

and

$$
x \in Y \wedge \operatorname{cl}_{\mathcal{T}_{i}}(Y)=\operatorname{cl}_{\mathcal{T}_{i}}(Z)=\operatorname{cl}_{\mathcal{T}_{i}}(V)
$$

Then there is a function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}-cliquish at x and which is not \mathcal{T}_{i}-cliquish at x.
Proof. The function

$$
f(t)=\left\{\begin{array}{lll}
1 & \text { if } & t \in Z \\
0 & \text { if } & t \in X \backslash Z
\end{array}\right.
$$

is \mathcal{T}-cliquish at x, but it is not \mathcal{T}_{i}-cliquish at x. So, the proof is completed.
The following example shows the importance of all hypothesis of the last remark.

Example 6. Let

$$
\begin{aligned}
& X=\{0,1,2\} \\
& \mathcal{T}_{1}=\{\emptyset, X,\{1\}\}, \text { and } \mathcal{T}_{2} \quad=2^{X}
\end{aligned}
$$

Then $\mathcal{T}=\mathcal{T}_{1}$ and for

$$
x=0 \wedge A=\{1\} \wedge B=\{0\}
$$

we have

$$
A \in \mathcal{T} \wedge B \in \mathcal{T}_{2} \wedge A \cap B=\emptyset
$$

and

$$
x \in B \wedge x \in \operatorname{cl}_{\mathcal{T}}(A)
$$

Moreover, each function $f: X \mapsto \mathcal{R}$ is \mathcal{T}_{2}-continuous at the point 0 , because $\{0\} \in \mathcal{T}_{2}$. So, every function $f: X \mapsto \mathcal{R}$ which is \mathcal{T}-cliquish at 0 is also \mathcal{T}_{2}-cliquish at 0 .

References

[1] R. Engelking, General Topology, Warsaw PWN, 1976.
[2] J. L. Kelly, General Topology, New York 1955.
[3] T. Neubrunn, Quasi-continuity, Real Anal. Exch. 14 (1988-89), 259-306.

[^0]: Key Words: bitopological continuity, quasicontinuity, cliquishness
 Mathematical Reviews subject classification: Primary: 54C08, 54C30, 54C05
 Received by the editors September 17, 1997
 *Supported by Bydgoszcz Pedagogical University grant 1997

