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LOCAL CHARACTERIZATION OF
FUNCTIONS HAVING THE CANTOR
INTERMEDIATE VALUE PROPERTY

Abstract

We find the local characterizations of the Cantor intermediate value
property and the strong Cantor intermediate value property. Moreover
we show that there is no similar local characterization for the weakly
Cantor intermediate value property.

The local property of Darboux, the local connectivity and the local almost
continuity of a function have been considered by many authors (see [1], [2],
[3], [4] and [5]). There arises a question whether it is possible to define a local
Cantor intermediate value property at a point in such a way that this property
characterizes the global Cantor intermediate value property. We attempt such
a definition in this article.

First we introduce some notions and definitions.

Definition 1. We say that a function f : I → R has the Cantor intermediate
value property (we write f ∈ CIVP) if for each pair of points p, q ∈ I (p < q
and f(p) 6= f(q)) and for each Cantor set K between f(p) and f(q) there
exists a Cantor set C ⊂ (p, q) such that f(C) ⊂ K.

If, additionally, we assume that f |C is continuous, then we obtain the
definition of the strong Cantor intermediate value property (we write f ∈
SCIVP).

Definition 2. We say that a function f : I → R has the weak Cantor inter-
mediate value property (we write f ∈ WCIVP) if for all p, q ∈ I (p < q and
f(p) 6= f(q)) there exists a Cantor set C ⊂ (p, q) such that f(C) is contained
between f(p) and f(q).
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Clearly

SCIVP ⊂ CIVP ⊂WCIVP.

By C(f, x), C−(f, x) and C+(f, x) we denote the cluster set of a function
f at a point x, the left cluster set of f at x and the right cluster set of f at x,
respectively.

Recall that C(f, x) = C−(f, x) ∪ C+(f, x).
For any function f : I → R, we define a multifunction F : I → R by

F (x) = C(f, x) for all x ∈ I.
In the standard way one can prove the next two theorems.

Theorem 1. If a function f : I → R fulfills the conditions

(1) C(f, x) is connected

(2) f(x) ∈ C(f, x)

for each x ∈ I, then F ((p, q)) is connected for all intervals (p, q) ⊂ I.

Theorem 2. If a function f : I → R has the Cantor intermediate value
property or the strong Cantor intermediate value property, then for all x ∈ I
the cluster sets C(f, x), C−(f, x) and C+(f, x) are connected and

f(x) ∈ C−(f, x) ∩ C+(f, x).

Now we introduce local definitions of the Cantor intermediate value prop-
erty and the strong Cantor intermediate value property.

Definition 3. We say that a function f : I → R has the left-sided Cantor
intermediate value property at a point xo (we write xo ∈ CIVP−(f)) if

1. f(xo) ∈ C−(f, xo)

2. for all a, b ∈ C−(f, xo), for an arbitrary Cantor set K ⊂ (a, b) and
positive ε > 0 there exists a Cantor set C ⊂ (xo − ε, xo) such that
f(C) ⊂ K.

In an analogous manner we define the notion of the right Cantor interme-
diate value property at a point xo (we write xo ∈ CIVP+(f)). The function
that has the left and the right Cantor intermediate value property at a point
xo is said to have the Cantor intermediate value property at the point xo.
Then we write xo ∈ CIVP(f).

If in the above definitions we assume additionally that f|C is continu-
ous than we obtain definitions the left, the right and the bilateral strong
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Cantor intermediate value property at the point xo. Then we shall write
xo ∈ SCIVP−(f), xo ∈ SCIVP+(f) and xo ∈ SCIVP(f), respectively.

One can observe that if f is continuous at a point xo (from one or both
sides), then it has the Cantor intermediate value property and the strong
Cantor intermediate value property at xo from the same side.

Now we shall prove that the local and global properties of the Cantor
intermediate value property are compatible.

Theorem 3. A function f : I → R has the Cantor intermediate value property
if and only if f has the Cantor intermediate value property at every point of
the interval I.

Proof. Let us assume that f has the Cantor intermediate value property
and suppose that there exists a point xo such that xo 6∈ CIVP+(f). It is easy
to see that f(xo) ∈ C+(f, xo). Then there exists a Cantor set K such that

1. K ⊂ (a, b) ⊂ C+(f, xo)

2. there exists positive number ε such that f(C) is not contained in K for
every Cantor set C included in the interval (xo, xo + ε).

Let x1, x2 ∈ (xo, xo + ε) be chosen in such a way that f(x1) < inf K and
f(x2) > supK. Then K ⊂ (f(x1), f(x2)). Therefore there exists a Cantor set
C ⊂ (x1, x2) such that f(C) ⊂ K (because f has the Cantor intermediate
value property). A contradiction.

Now we assume that f does not have the Cantor intermediate value prop-
erty and x ∈ CIVP(f) for all x ∈ I. There exist an interval (x, y) ⊂ I and
a Cantor set K ⊂ (f(x), f(y)) such that f(C) 6⊂ K for every Cantor set
C ⊂ (x, y).

Let us consider two possibilities.

1. There exists a point xo ∈ (x, y) such that IntC+(f, xo) ∩ K 6= ∅ or
IntC−(f, xo) ∩K 6= ∅.

2. IntC+(f, xo) ∩K = ∅ and IntC−(f, xo) ∩K = ∅ for each xo ∈ (x, y).

where IntA denotes the interior of the set A.
In the first case (for example let IntC+(f, xo) ∩K 6= ∅) there exist points

a, b ∈ C+(f, xo) such that K1 = (a, b) ∩ K is a Cantor set. There exists a
Cantor set C ⊂ (xo, y) such that f(C) ⊂ K1 ⊂ K. A contradiction.

Let us consider the second case. Let t ∈ K be a point of bilateral ac-
cumulation of the set K. By Theorem 1, there is xo ∈ f−1(t) ∩ (x, y). Then
C(f, xo) = {f(xo)}; so f is continuous at x0. Let K1 be the set of all points
of bilateral accumulation of the set K. Then f−1(K1) ∩ (x, y) ⊂ C(f), where
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C(f) denotes the set of all points of continuity of the function f. The set K1

is a Borel set of the power of continuum, f−1(K1) ∩ (x, y) is a Borel set in
C(f) and so f−1(K1)∩ (x, y) is a Borel set of power of continuum. Then there
exists a Cantor set C ⊂ f−1(K1) ∩ (x, y). So f(C) ⊂ K1 ⊂ K.

In the similar way we can prove the following.

Theorem 4. A function f : I → R has the strong Cantor intermediate value
property if and only if f has the strong Cantor intermediate value property at
every point of the interval I.

Now we start to discuss the problem of local characterization of the WCIVP
property. First we may say that a function f : I → R has a (local) property
W at a point xo, if for each neighborhood U of the point xo every extension
of the function f|U has this property at xo. We shall write, then f ∈ W(xo).

Let us consider the following example. Let f : I → (0, 1) be a function
from the class WCIVP, which transforms each subinterval (a, b) of I onto the
interval (0, 1). This function takes on its supremum at no point of the interval
I. Let xo be a given point from the interval I. Consider the function defined
by

g(x) =

{
f(x) for x 6= xo,

2 for x = xo.

The function g has also WCIVP property.

Theorem 5. There exists no local propertyW(x) which characterizes a prop-
erty W, i.e. such that f ∈WCIVP if and only if f ∈ W(x) for each x ∈ I.

Proof. If there exists a local property W(x) which characterizes functions
with WCIVP, then the function f from the above example should have it at
each point x ∈ I. Then the function g from the same example would have
the property W(x) at each point, in particular at the point xo. It means that
the substitution of any value in the place of f(xo) has no effect on the local
propertyW(x0). Let x1, x2 be distinct points from the interval I. The function
h defined by

h(x) =


f(x) for x 6= xi, i = 1, 2,

2 for x = x1,

3 for x = x2.

has the property W(x) at each point of x ∈ I and it should have the property
WCIVP, which is impossible.

Theorem 6. For any function f : I → R the set CIVP+(f)4CIVP−(f) is at
most countable, where 4 means the symmetric difference of sets.
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Proof. Since the set of x ∈ R at which C−(f, x) 6= C+(f, x) or f(x) 6∈
C(f, x) is at most countable ([6]), it is enough to consider only the set A of
all points of x ∈ R at which f(x) belongs to C(f, x), C−(f, x) = C+(f, x)
and x ∈ CIVP−(f) \ CIVP+(f). Let An (for each n ∈ N) denote the set of
all those points x of A for which f(x) ∈ C+(f, x) and there exists a Cantor
set K ⊂

[
inf C+(f, x) + 1

n , supC+(f, x)− 1
n

]
such that f(C) 6⊂ K for every

Cantor set C contained in
[
x, x + 1

n

]
, One can see immediately that A =⋃∞

n=1 An. Now we shall show that none of the sets An contains its left-sided
points of accumulation. Suppose that there exists a sequence (xk) and a point
xo such that xk ∈ An, xk → xo, xk < xk+1 < xo and xo ∈ An. Then there is
ko ∈ N such that

[
inf C+(f, xko) + 1//n, supC+(f, xko)− 1

n

]
⊂ IntC−(f, xo)

and xo ∈
(
xko , xko + 1

n

)
.

Let ε be a positive number for which ε < xo−xko . Now let K be a Cantor set
contained in

[
inf C(f, xko) + 1//n, supC(f, xko)− 1

n

]
. Since xo ∈ CIVP−(f),

then there exists a Cantor set C ⊂ (xo − ε, xo) for which f(C) ⊂ K. A
contradiction.

Thus each of the sets An is countable, and consequently so is A. This proves
that the set CIVP−(f) \ CIVP+(f) is countable.

Similarly one can prove that the set CIVP+(f) \ CIVP−(f) is countable,
what proves the theorem.

In the same way one can prove the next theorem

Theorem 7. For each function f : R→ R the set SCIVP+(f)4SCIVP−(f) is
countable.

Theorem 8. For every function f : R→ R the set CIVP(f) is of the type Gδ.

Proof. Let A = R \ CIVP(f). Let

A1 = CIVP+(f)4CIVP−(f)

A2 = {x ∈ R : f(x) 6∈ C(f, x)} ∪ {x ∈ R \ CIVP(f) : C+(f, x) 6= C−(f, x)}

A3 = R \ (CIVP+(f) ∪A2)

A4 = R \ (CIVP−(f) ∪A2)

We can see that A = A1 ∪ A2 ∪ A3 ∪ A4. Of course, the sets A1 and A2 are
countable ([6]).

Consider the set A3. Let Bn denote the set of all those points x from A3 for
which there exists a Cantor set K ⊂ [inf C(f, x) + 1//n, supC(f, x)− 1//n]
such that f(C) 6⊂ K for each Cantor set C ⊂ [x, x + 1//n] . Then A3 =
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⋃∞
n=1 Bn. We shall show that if x is a point of left-sided accumulation of Bn,

then x ∈ Bn+1. Let z ∈ Bn satisfy

0 < x− z <
1

n(n + 1)
,

[inf C(f, z) + 1/n, supC(f, z)− 1/n] ⊂[
inf C(f, x) +

1

n + 1
, supC(f, x)− 1

n + 1

]
.

Then (x, x + 1/n + 1) ⊂ (z, z + 1/n) . Since there exists a Cantor set K ⊂
[inf C(f, z) + 1/n, supC(f, z)− 1/n] such that f(C) 6⊂ K, for every Cantor
set C ⊂ (z, z + 1/n) , then the Cantor set K is chosen correctly for the point
x. So x ∈ Bn+1. It follows now that the set A3 is of the type Fσ.

Similarly one can prove that the set A4 is type Fσ also. Hence the set A
is of the type Fσ.

In the same way one can prove the last theorem

Theorem 9. For each function f : R→ R the set SCIVP(f) is of the type Gδ
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