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Abstract
In this paper we prove a uniform boundedness theorem and use it to
show that if fg is non-absolutely integrable on an interval in Euclidean
space for each non-absolute integrable function f, then g is almost ev-
erywhere a function of strongly bounded variation on F.

1 Introduction

A general form of a bounded linear functional on the space of all Henstock
integrable function was first given in [7, Theorem 3.2] and was used to show
that if fg is Henstock integrable on a compact interval E in Euclidean space
for each Henstock integrable function f, then g is almost everywhere a func-
tion of strongly bounded variation on E. The integration by parts formula [7,
Theorem 3.1, equation (4)] is a key tool used to prove [7, Theorem 3.2]. How-
ever it is not clear whether integration by parts holds for other non-absolute
integrals, and so the method used in [7] does not seem to generalize easily to
other non-absolute integrals. In this paper, we shall prove a uniform bounded-
ness theorem and use it to extend [7, Theorem 5.1] to some other non-absolute
integrals.

2 Preliminaries

By R and R* we denote the real line and the positive real line respectively. Let
m be a fixed positive integer. The m-dimensional Euclidean space is denoted
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by R™. Let E = [][a;,bi] be a compact interval in R™ with a; < b; for
i=1

m
1 < i < m. By an interval Fy we mean a compact set of the form ][] [s;, ;]
i=1

with s; < t; for 1 < i < m. If X C R™, then int(X), diam X, X and Y,
denote the interior, the diameter, the closure, the characteristic function of
X respectively. If Z is a subset of F and £ € E, then dist(£, Z) denotes
the distance of ¢ from Z. The m-dimensional Lebesgue measure of the set
X C R™ is denoted by |X|. We shall say that the intervals E; and Fy are
non-overlapping if int(E;) N int(E2) = 0. A figure is a finite union of non-
overlapping intervals. Also, B(£,r) denotes the open ball with center £ and
radius r in R™. If the intervals I, C F, i = 1,2,...,k are non-overlapping,
then we say that the set D = {I; : i = 1,2, ...k} is a partial division of E. If,
in addition, U¥_,I; = E, we say that D is a division of E. Given a function
§ : E — R and a partial division D, we say that D is d-fine if for each
interval I from D we have I C B(&,6(€)) where £ is a vertex of I, and we
write D = {(1,£)}. In [2, p.42], it is shown that a J-fine division of E exists
for each § : £ — RT. Let G be an open set in E. A figure Ij is called a non-
absolute subset of G if there exits § : E — R such that I is the complement
of a d-fine cover of '\ G.

All functions considered in this paper will be real-valued. A function
f + E — R is Henstock integrable on FE if there is a real number A with
the following property: for every & > 0, there exists § : E — RT such that
|(D)>> (&) |I| — A] < e for each d-fine division D = {(I,£)} of E, and we
write A = [ g [+ The family of all Henstock integrable functions on £ will be
denoted by H(E). If I is a subinterval of E, we denote the Henstock integral
of fonIby [,f. We denote by L(E) the family of all Lebesgue integrable
functions f on F, or equivalently, the family of all absolutely Henstock inte-
grable functions on E. It is known that L(E) C H(E) (see, for example,|2,
p.37)).

For each measurable functionf : E — R, the set of all non-absolute inte-
grability points of f is defined to be

NA(f)={x € E: f ¢ L(J) for each J x & int J}.

In [1], it is shown that for each f € H(FE), f is Lebesgue integrable on a
portion of E, so we see that NA(f) is a proper closed subset of E. We say
that f is Cauchy-Lebesgue integrable on F if f € CL(FE), where

CL(E) ={f € H(E) : NA(f) is a finite set}.

It is easy to see that L(E) C CL(E) C H(E).
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An interval function F is said to satisfy the (SL) condition if for each subset
W C E of measure zero and ¢ > 0, there exists  : W — R¥ such that for any
o-fine partial division D = {(I,£)} of W, we have (D) |F(I)| < e.

For a definition of strongly bounded variation, see [3, Definition 1.1.4]. For
the two dimensional definition of strongly bounded variation, see [7, Section
3].

3 Main Results

In this section, we prove a Banach-Steinhaus Theorem (Theorem 3.6), and an
application will be given in section 4. We begin with a definition.

Definition 3.1. Let {c¢x} C F, where ¢ = (c,(gl),c,(f),c,(f),...70,(;”)). For a
nondegenerate subinterval Fy C E with opposite vertices ¢y, cx4+1 , we write
Er =< c¢g,cp11 >. We say that {Ej} is monotone if {cgj)}z';l is strictly
monotone for each j = 1,2,...,m. In this case, we say that {c,} is strictly
monotone.

We remark that the two-dimensional version of Definition 3.1 is given in
[7, Section 4].

Throughout this paper, (u,v) will denote a subinterval of E.

Let X be a linear space of integrable functions whose domain is F, and
equip X with a norm || - || x. Suppose the following axioms hold for X.

(I) If f € X, then fy, € X for each subinterval I of E.

) Every f € X is measurable.

(III) G is a dense linear subspace of X, and if f € G, then so is fy;,.
)

If {I,,} is a monotone sequence of subintervals of E, and {f,} C G,
where f,(x) = 0 for each « ¢ I,,, and the series > ||fx||x converges,
k=1
then f = > fr € X.
k=1

(V) For each f € X, | fx, — Xy llx = 0as ¢, —d.

c,cn)

(VI) For each f € X, | fx,|lx = 0 as |I| — 0, where I is a subinterval of E.

(VII) There exists v > 0 such that ||fx,|lx < 7| fllx for every subinterval I
of E.
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Two functions fi, fo € X are regarded as identical if f; = fo almost
everywhere in F. For each subinterval J of E, we let
X(J)={f € X : f vanishes outside J}.

and
G(J) ={f € G : f vanishes outside J}.

A function g defined on E is said to be a multiplier for X if fg € X for each
f € X. Let Y be a normed space.

Definition 3.2. A linear operator T': X — Y is said to be nice if the following
conditions are satisfied.

(N1) Given any subinterval J of E and f € X(J), there exists {f} C G(J)
such that ||f — fllx = 0 and || T(fx,) = T(fx,)lly = 0 as n — oo for
each subinterval I of J.

(N2) Let ¢,d € E. If {¢,} C int(< c,d >) is strictly monotone with ¢, — d.
Then

HT(fX(c,cn>) - T(fX<c,d>)||Y =0

as n — 00.
(N3) If f € X, then [|T(fx,)|ly = 0as |I| = 0.

If T:X — Y is a nice operator, we write T' € N (X,Y). We shall use the
concept of nice operator to prove a uniform boundedness theorem for X. We
need some lemmas and theorems.

Lemma 3.3. Let T : X — Y be a nice operator. If py is a positive integer
and f € X(< ¢,d >) with ||f|lx <1 and ||T(f)|ly > 4P°, then there exist
¢p € int(< ¢,d >) and f, € G(< ¢,¢p >) such that

(i) 1fpllx < m55-

(i) IT(fp)lly > 2%°.

PROOF. Let {¢,} C int(< ¢,d >) be strictly monotone with ¢, — d. Since T
is a nice operator, by (N2) condition,

IT(fXceens) = T Xcoas )y =0 (1)

as n — 0o, (1) implies that

1T X cren )y = 1T (X)) ly 2)
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as n — 00, By Axiom (V), we have

X ceens = FXcasllx =0 3)

as ¢, — d. From (3), we have

||fX(c,cn>||X — ||fX(c,d)||X (4)

as n — 0.
By our hypothesis, || f|lx <1 and ||T(fx_,.,..)lly > 47°, so by (4) and (2),
we may choose a sufficiently large integer, say p, so that

”fX(c,cp) ||X <1 (5)

and
IT(fX ooy Iy > 47, (6)

Then ¢, € int({c,d)). Since T is a nice operator, by (N1) condition, there
exists {f} C G({c,¢p)) such that

If7 _fX(c,cp>||X —0 (7)
and
IT(faXcerps) = T X ey )y =0 (®)
as n — oo. From (7), we have
Ifallx = 1/ X ey lIxas 1= 00, 9)
From (8), we have
IT(faXceop)ly = IT(FXce, )y as n— oo (10)

By (5), (9), (6) and (10), we may choose a sufficient large integer N = N (p, po)
so that || fxllx <1 and HT(thIX@,Cm)”Y > 4P0 Put fp, = z%ofﬁ,xqvcp. O

Lemma 3.4. Let {I,;}¥_; be a division of E and Y a normed space. If T C
N(X,Y) satisfies sup{||T|| : T € T} = oo, then there exists I, such that

sup{||T | : T €T} =o0.
X(Ip)

PROOF. Suppose not. Then for each 1 < p < k, we have

sup{||T |:TeT}<oo. (11)
X(Iy)
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Recall that every two elements of X almost everywhere equal on F are regarded
as identical, and {I;}¥_, be a division of E, we have

k
T(f) = T(fx;,) (12)

i=1

k
and thus by (12) [T(f)lly < iy ||T‘ Ilfllx and so suprer |IT] <
X (1)
Zle supper | T || < oo by (11) a contradiction to our original hypothe-
X (1)

sis. O

Lemma 3.5. Let Y be a normed space. If T C N (X,Y) satisfies

sup{||T|| : T € T} < 0,

then for each subinterval Ey of E, we have sup{||T |: TeT} < oo.
X (Eo)

PRrROOF. Note that by (I), fx,, € X for each f € X. Then we have for each
TeT,

1T ( )(f)HY =T X))y < ITI X ) x <ANTfllx by (VIT).
X(Eo

Consequently, supper ||T‘ | <~ supper |7 < oo. O
X (Eo)

Theorem 3.6. Let Y be a normed space. If T C N(X,Y) such that for each
feX, M(f)=sup{||T(f)lly : T €T} < oo, thensup{||T|| : T € T} < 0.

PROOF. Suppose the conclusion is false. By Lemma 3.4, there exists a subin-

terval J; of E such that sup{||T || : T € T} = co By Lemma 3.4, there
X(J1)

| : T € T} = o0. By
X (J2)
induction, we can construct a decreasing sequence {J;} of subintervals of £

with ﬁlji = {y} and for each i,
]:

exists a subinterval Jy of Jy such that sup{||T

sup{||T‘ |:TeT}=o0. (13)
X (Ji)
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We may choose z¢ € E so that |< zg,y > NJ;| > 0 and

sup{||T |:TeT}t=x (14)
X ((zo,y)NJi)

for infinitely many i. Put
I =min{i: |< xo,y > NJ;| > 0 and (14) holds for infinitely many i}.

Then for each w € int({zg,y)NJ;) , we have < w,y >D< zg,y > NJ, for some
p and (14) holds with ¢ = p. By (14) and Lemma 3.5,

sup{||T |:TeT}=o0. (15)
X ((w,y))

Choose x1 € int({xg,y)). Then by (15) with w = =z, there exists f; €
X({z1,y)) and Th € T such that ||fi||x <1 and [|[T1(f7)|ly > 4. By Lemma
3.3 with pg = 1, there exists z2 € int((z1,¥)), f1 € G({z1,z2)) such that
[fillx < 3 and ||Ty(f1)|ly > 2 By (15) with w = =z, there exists f3 €
X ({z2,y)) and Ty € T such that || f5||x <1 and ||T2(f5)|ly > 4. By Lemma
3.3 with pp = 2, there exists x5 € int((z2,¥)), fo € G({z2,x3)) such that
[ f2llx < 2 and ||T2(f2)|ly > 22. Proceeding in this way and and by Lemma
3.3, we can construct

(i) a strictly monotone sequence of points {x,} in (< x1,y >) converging
to y with z,41 € int(< z,,,y >) and

(ii) a sequence {f,} C G and {T},} C T such that f, € G(< zp, Tny1 >)
with || fallx < g and [T (fa)lly > 2"
o)
Since Y [|fxllx < oo, by (i), (ii) and (IV), we have f =7, fr € X Claim.
k=1
There is a subsequence { f,,, } such that for &k > 1 :

k
(a) ||Tnk+1(f7lk+1)||y >14+k+ ZM(fnJ) and

j=1
(b) sup [T, (fur)lly <27F70
1<i<k
The proof of the claim is done by induction. Choose n; = 1. Since f € X,

and |< p, Tpt1 >| — 0 as n — oo, by (VI), ||fX<wn,mn+1>”X — 0 as n — oo.
By (N3), ||T(fx<zm%+1>)||Y — 0 for each T' € T. Note that we have f, =
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FX(ono sy, for all n. Recall also that 1T (fu)lly > 2™ for all n > 1. We may
choose fr, € {fn} and T, such that

Tz (fro)lly > 1+ 1+ M(f1) and [T, (fuo)lly <2771

so the claim holds when k = 1.

Now suppose that the claim is valid for some positive integer k = ¢ for
some {f1, frys s fngs frngin b and {T1,Tp,,..., Ty, }. Since f € X, and
|< Zp, Tpy1 > = 0 as n — oo, by (VI), [[fx,,,. Ln+1>||X — 0 as n — oc.
By (N3), [|T(fx..,.., .,y = 0 for each T € T. Note that fn = fx,, . .,
and ||T,(fn)|ly > 2" for all n > 1. We may choose f,,,, € {f.} and T, .,
such that

q+1
[T pes (Frgea) Iy > 1Hq+14> M (fn)) and  sup [T (fo,)ly <27 ()=
j=1 Sisqt

so the clalm holds when k = ¢+ 1. By 1nductlon the claim is proved.

Since Z”kaX < 00, the series Z”fnk”X < o0, so by Axiom (IV),
k=1

fo= Efnk € X. Now, for k> 1,
k=1

|| nk+1(f0 HY - HZTnk+1 f’ﬂj) nk+1 fnk+1 Z Tnk+1 fnJ)HY

j=1 j=k+2
:HTnk+1 fnk+1 { ZTnk+1 fn - Z Tnk+1(f’nj)}||y
j=k+2
k oo
> HTnk+1(fnk+1)HY - ” ZTnk+l(fnj) + Z Tnk+1 (fTLJ)HY
j=1 j=k+2
k k 00
>1+k+ Y M(fa) = M)+ 1 D Tufuy v}
j=1 j=1 j=k+2
>1+k— Y 277>k
j=k+2
So we have M(fo) > supy>1 || T, (fo)|| = 0o a contradiction. O

In Section 4, we shall give an application in which Theorem 3.6 holds
but the classical Banach-Steinhaus Theorem (Corollary 3.7) does not seem to
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apply. Denoting the space of all bounded linear operators from X into Y by
B(X,Y), we have the following assertion.

Corollary 3.7. Let Y be a normed space. If T C B(X,Y) such that for each
feX, M(f)=sup{||T(f)lly : T € T} < oo, then sup{||T|| : T € T} < oc.

Proor. By (I), (IIT), (V), (VI) and (VII), every bounded linear operator is
nice. O

4 An Application

Definition 4.1. An interval function F' is said to be continuous if whenever
|I| — 0, we have |F(I)] — 0.

By using [8, Theorem 6], it is easy to see that if f € H(FE), then the
interval function F' defined by F(I) = [, f is continuous on E. Hence the
space H(F) as well as its subspace CL(F) can be equipped with the norm
I 1I, where || f]| = sgp |[; f| for each f € H(E), where the supremum is taken

over all subinterval I of E.

The next result gives a characterization of all Cauchy-Lebesgue integrable
functions on E.

Lemma 4.2. f € CL(E) <= there exists an additive continuous interval
function F and a finite subset Q of E such that f is Lebesgue integrable on
every subinterval J with [, f = F(J), where J N Q = 0.

PROOF. (=) For each f € CL(E), welet F(I) = (CL) [, f for every interval
I C E, and Q = NA(f).

(«<=) Since @ is finite and since F' is continuous, it is easy to verify that F'
satisfies (SL) condition on Q. Hence for € > 0, there exists J : @ — R such
that for any d0-fine partial division D = {(I,£)} of Q, we have (D) > |F(I)| <
e. We claim that [6, Theorem 3| applies here. Define dp : E — RT by §o(&) =
0(§)if € € Q and §p(§) = dist(€, Q) otherwise. Take A = F(F) and G = E—Q.
Then for any non-absolute subset I of G involving dg, we have for some dy-fine
cover Do = {(I,&)} of Q,

IP(o) = FE) = (Do) S F(D| < (Do) 1P <

since F' is an additive interval function satisfying (SL). Since f is Lebesgue
integrable on every subinterval .J with [, f = F(J), where J N Q = 0, [6,
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Theorem 3] holds. Thus f is Henstock integrable on E with F(I) = [, f for
each subinterval I of E. Hence Q = NA(f) and consequently f € CL(E).

Lemma 4.2. If f € CL(E), then there exists a sequence {K,} of figures
(oo}
such that for all n, K,, C K,41 C E with JK, = E, f € L(K,) and

n=1

hmn—ﬂ)onXK,,L - f” =0.

PrROOF. Let F(I) = (CL) [, f and Q = NA(f) = {@1,22,...,2}. Since F
satisfies (SL) on @, for each n, there exists §, : @ — R* such that for any
bn-fine division D,, of @, we have (D,)> |F(I)| < X. We may assume that
01 > 09 > -+ >0, > .... For each n, we fix a d,-fine division D,, of Q. Put
P, = U{J : (J,x) € D,}. Then there are at most /2™ interval-point pairs
in each D,,, and |8P | =0. Put K,, = E— P,. Then {K,} is a sequence

of figures with UK = E. Note that as n — o0, |P,| = |[E— K,| — 0.

Consequently, by the continuity of F, we have [[fx, — fll = [[fx, | =
0 asn — .

Lemma 4.3. If g is a multiplier for CL(E), and {K,} be given as in Lemma
4.8. Then lim, ol fgx,, — f9ll = 0.

PrOOF. Repeat the proof of Lemma 4.3 with the following modifications.

(a) f is replaced by fg and

I) = [, f is replaced by Fi(I) = (CL) [, fg.
Observing that F; satisfies (SL) on @, we have the result. O

We shall next apply our uniform boundedness theorem (Theorem 3.6) to
prove Theorem 4.5. Note that Corollary 3.7 does not seem to apply.

Theorem 4.4. If g is a multiplier for CL(E), then T : CL(E) — R defined
by T(f) = fE fg is a bounded linear functional on CL(E).

ProOF. We first show that T : CL(E) — R is a nice operator (see Definition
3.2) with G = L(E), X = CL(E) and Y = R. Since each f € CL(E) C H(E),
we see that T satisfies conditions (N2), (N3) of definition 3.2. It remains to
verify that condition (N1) holds for T. Now, let J be any subinterval of F
P, = J; £ < £%s, — ] which tends to
zero as n — oo by Lemma 4.3. So the first condition of (N1) is satisfied.

Next we will prove that the second condition of (N1) is satisfied. We
observe that
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which tends to zero by Lemma 4.4. Thus (N1) condition is satisfied. The
theorem then follows from Theorem 3.6 with X (E) = CL(E), G(E) = L(E),
Axioms (I) to (VII) hold and note that Axiom (IV) holds by [7, Lemma 4.1]
and Lemma 4.2. O

Corollary 4.5. If fg € CL(E) for each f € CL(FE), then g is almost every-
where a function of strongly bounded variation on E.

PrROOF. By Theorem 4.5, the linear functional T' : CL(E) — R defined by
T(f) = [, fg is bounded on CL(E). Although the spaces (CL(E), || - ||) and
(H(E), |- |I) are not complete, we may still apply the Hahn-Banach Theorem
to normed spaces. See, for example, [9, Theorem 3.3]. By Hahn-Banach
Theorem [9, Theorem 3.3.], there exists a bounded linear functional T; on
H(FE) such that T'(f) = Ty (f) for all f € CL(E). By [7, Theorem 3.2], there
exists a function gy of strongly bounded variation on E such that

Tl(f):/Efgo for all f € H(E).

As T(f) = Tv(f) for all f € L(E) C CL(E), we have [, fg = [ fgo for all
f € L(E). Hence g = gy almost everywhere on E and we are done. O

From the proof of Corollary 4.6, we also have the following.

Corollary 4.6. If T € CL(E)*, the conjugate space of CL(E), then there
exists a function of strongly bounded variation on E such that T(f) = fE fg
for all f € CL(E).

We can now give the main result of this section.

Theorem 4.7. Suppose CL(E) C X (FE). If g is a multiplier for X, then g is
almost everywhere a function of strongly bounded variation on E.

PrOOF. By (II) and repeating the proof of [5, Theorem 12.8], g is almost
everywhere bounded on E. Since ¢ is almost everywhere bounded on E, we
can verify that NA(fg) C NA(f). Note that f € CL(FE), NA(f) is a finite
set and so is NA(fg). By the continuity of the X-primitive of fg ((VI)) and
Lemma 4.2, fg € CL(E). By Corollary 4.6, we have the result. O

5 Remarks on One Dimensional Results

The first theorem is well known.
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Theorem 5.1. If g € BV([a,b]) and F is continuous on [a,b], then g is
Riemann-Stieltjes integrable with respect to F on [a,b] with

b b
(BS) [ g dF = F)g(t) - Fla)g(a) - (RS) | Fdg.
a a
By using the integration by substitution theorem for non-absolute integral
(see for example [4, page 186, Exercise 2], we have the next theorem.

Remark 5.2. Every function of bounded variation on [a, b] is a multiplier for
non-absolute integral (with a continuous primitive).

By Corollary 4.6 and Remark 5.2, we see that the multipliers for non-
absolute integrals (with a continuous primitive) are essentially the space of all
essentially bounded variation on [a, b].
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