RESEARCH

Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, U.S.A. email: hrosen@bama.ua.edu

ALMOST CONTINUOUS MULTI-MAPS AND M-RETRACTS

In memory of Professor O. G. Harrold

Abstract

We give results about almost continuous multi-valued functions and a characterization of compact almost continuous M-retracts of the Hilbert cube Q, where almost continuity is in the sense of Stallings instead of Husain. For instance, each connectivity or almost continuous point to closed-set valued multi-function $f: I \to I$, where I = [0, 1], has a fixed point; i.e., a point $x \in I$ such that $x \in f(x)$. When Y is a compact subset of Q, a sufficient condition is given for a continuous multifunction $r: Y \to Y$, with $x \in r(x) \ \forall x \in Y$, to have an almost continuous multivalued extension $r: Q \to Y$.

Given a metric space (X, d), let S(X), CB(X) and 2^X denote, respectively, the collection of all nonempty closed subsets of X, the collection of all nonempty closed and bounded subsets of X and the collection of all nonempty compact subsets of X, each with the Hausdorff metric H on it. By definition,

 $N(A, \epsilon) = \left\{ x \in X : d(x, a) < \epsilon \text{ for some } a \in A \right\},\$

and for $A, B \in CB(X)$,

 $H(A,B) = \inf \{ \epsilon > 0 : A \subset N(B,\epsilon) \text{ and } B \subset N(A,\epsilon) \}.$

A single-valued function $f : X \to Y$ has a *fixed point* if X is a subset of Y and there exists x such that x = f(x). Given arbitrary metric spaces X and Y, a *multi-valued function* $T : X \to Y$ maps each point x of X to a

Mathematical Reviews subject classification: Primary: 54C05, 54H25, 26E25, 54C60 Key words: *M*-retracts, fixed points, continuous, connectivity, almost continuous multivalued functions

Received by the editors November 16, 2008 Communicated by: Udayan B. Darji

⁴⁷¹

unique nonempty subset T(x) of Y, and if each T(x) is closed in Y, T can be treated as a single-valued function $T: X \to S(Y)$. A multi-valued function $T: X \to X$ (or its corresponding single-valued function $T: X \to S(X)$ when each T(X) is closed in X) is said to have a fixed point x_0 if $x_0 \in T(x_0)$. Schauder's theorem [8] states that every compact convex nonempty subset Xof a normed space has the fixed point property for single-valued continuous maps $T: X \to X$ (abbr. f.p.p.), and in [3, Cor. 2], Girolo shows such a space X has the fixed point property for single-valued connectivity functions $T: X \to X$. Strother [10, Thm. 1] shows that I has the fixed point property for point to closed set continuous multi-functions (abbr. F.p.p.) but gives an example showing I^2 does not have the F.p.p. His example can be modified to hold also for I^n , $n \ge 3$, by replacing the 90° rotation of the unit circle S there with the antipodal map of S^{n-1} . Plunkett actually shows that a Peano continuum has the F.p.p. if and only if it is a dendrite [6]. Also non-Peano arc-like continua have the F.p.p. [12]. Smithson shows that a biconnected point-closed multi-valued function F on a tree into itself has a fixed point. (A multi-valued function $F: X \to Y$ is called *biconnected* if

$$F(C) = \bigcup \left\{ F(x) : x \in C \right\} \text{ and } F^{-1}(D) = \left\{ x \in X : F(X) \cap D \neq \emptyset \right\}$$

are connected sets whenever C and D are connected subsets of X and Y respectively.) We show that each connectivity or almost continuous $f: I \to 2^I$ has a fixed point.

For $M \subset X$, M is a retract of X if there exists a single-valued continuous function $f: X \to M$ such that $f(x) = x \ \forall x \in M$. Wojdyslawski [13] proves that M is a retract of a compact space X implies S(M) is a retract of S(X). The converse is false. For, in [11], Strother defines $M \subset X$ to be an M-retract of X if there exists a continuous multi-valued function $F: X \to M$ such that $F(x) = \{x\} \ \forall x \in M$ and then uses his construction in [10] to show that the unit circle S^1 is an M-retract of the unit disc B^2 and 2^{S^1} is a retract of 2^{B^2} even though S^1 is, of course, not a retract of B^2 . He also shows in [11, Thm. 8] that for a metric continuum, these are equivalent:

- 1) X is a Peano space;
- 2) X is an $MCAR^*$ (i.e., \forall Hausdorff space Y, closed set $Y_0 \subset Y$, and continuous multi-valued function $F : Y_0 \to X$, \exists continuous extension $F_1 : Y \to X$);
- 3) X is homeomorphic to an M-retract of a Tychonoff cube.

We give results about fixed points of connectivity or almost continuous multifunctions and a characterization of compact almost continuous M-retracts of the Hilbert cube Q, where the *M*-retraction $F: Q \to M$ is required to be almost continuous in place of continuous. We deal with multifunctions obeying Stallings' definition of almost continuity given below instead of obeying Husain's nonequivalent definition.

If $A \subset X$, a multifunction $F : X \to A$ is called an ϵ -multi-retraction if $\forall x \in A, d(x, F(x)) < \epsilon$ and diam $F(x) < \epsilon$, and A is called an ϵ -multi-retract of X. It is well known that if X has the f.p.p. and Y is a retract of X, then Y has the f.p.p., too. For completeness, we verify the known generalization of this to ϵ -multi-retracts.

Lemma 1. If A is a compact subset of a metric space (X, d) and $T : A \to 2^A$ is continuous and if for every $\epsilon > 0$ there is $x(\epsilon) \in A$ such that

$$d(x(\epsilon), T(x(\epsilon))) < \epsilon,$$

then T has a fixed point x.

PROOF. Since T(A) is compact, there exists a sequence $\epsilon_n \to 0$ such that $T(x(\epsilon_n)) \to Y \in 2^A$. Therefore

$$H(Y, T(x(\epsilon_n))) \to 0 \text{ as } n \to \infty, \text{ and } d(x(\epsilon_n), T(x(\epsilon_n))) < \epsilon_n.$$

Let $y_1 \in Y$ and $y_2 \in T(x(\epsilon_n))$ such that

$$d(x(\epsilon_n), T(x(\epsilon_n))) = d(x(\epsilon_n), y_2)$$
 and $d(y_2, Y) = d(y_2, y_1)$

Then

$$d(x(\epsilon_n), Y) \le d(x(\epsilon_n), y_1)$$
(1)

$$\leq d(x(\epsilon_n), y_2) + d(y_2, y_1) \tag{2}$$

$$= d\left(x(\epsilon_n), T\left(x(\epsilon_n)\right)\right) + d(y_2, Y)$$
(3)

$$\leq d\Big(x(\epsilon_n), T\big(x(\epsilon_n)\big)\Big) + H\Big(T\big(x(\epsilon_n)\big), Y\Big).$$
(4)

Therefore $d(x(\epsilon_n), Y) \to 0$ as $n \to \infty$. Since A is compact, some subsequence $x(\epsilon_{n_k})$ converges to some $x \in A$. Since Y is closed, $x \in Y$, and since T is continuous, $T(x(\epsilon_{n_k})) \to T(x) = Y$. This shows $x \in T(x)$.

Theorem 1. If A is a compact subset of a metric space (X, d), if X has the F.p.p., and if $\forall \epsilon > 0$, \exists a continuous ϵ -multi-retraction $r : X \to A$, then A has the F.p.p.

PROOF. Suppose $T: A \to A$ is a continuous multi-function and $t: 2^A \to 2^A$ is its united extension defined whenever $B \subset A$ by $t(B) = \bigcup_{b \in B} T(b)$. Since $tr: X \to X$ is a continuous multi-valued function and X has the F.p.p., there exists $w \in X$ such that

$$w \in tr(w) = \bigcup_{b \in r(w)} T(b)$$

and so $w \in T(b)$ for some $b \in r(w)$. There exists $b' \in r(w)$ such that d(w, b') = d(w, r(w)). Therefore

$$d(b, T(b)) \le d(b, w) \le d(b, b') + d(b', w) < 2\epsilon$$

because $w \in T(b)$, $b \in r(w)$, $d(w, r(w)) < \epsilon$ and $diam r(w) < \epsilon$. By Lemma 1, T has a fixed point.

For topological spaces X and Y, we define the following "Darboux-like" classes of functions $f: X \to Y$ (where Y could possibly equal S(X), CB(X), or 2^X):

f is Darboux (abbr. $f \in D$) if f(C) is connected for each connected $C \subset X$.

f is almost continuous $(f \in AC)$ if each open subset of $X \times Y$ containing the graph of f also contains the graph of a continuous function $g: X \to Y$.

f is a connectivity function $(f \in Conn)$ if the graph of the restriction $f_{|C}$ is a connected subset of $X \times Y$ for each connected subset C of X.

f is extendable $(f \in Ext)$ if there is a connectivity function $F : X \times I \to Y$ such that F(x, 0) = f(x) for every $x \in X$.

f is peripherally continuous $(f \in PC)$ if for every $x \in X$ and for all open sets U containing x and V containing f(x), there exists an open set W containing x such that $W \subset U$ and $f(bd(W)) \subset V$.

According to [4], if $X = I^n$, then $Y = 2^{I^n}$ is a Peano space and is uniformly locally *p*-connected for all p > 0, which means that for every $\epsilon > 0$ there exists a $\delta > 0$ such that for each $y \in Y$ and for each integer $k = 0, 1, 2, \ldots, p$, every continuous $\varphi : S^k \to N(y, \delta)$ can be extended to a continuous $\Phi : B^{k+1} \to N(y, \epsilon)$, where S^k is the boundary of the closed unit ball B^{k+1} in Euclidean (k + 1)-space \mathbb{R}^{k+1} . This helps to see that for any $n \geq 1$, the relationships given in [2, pp. 496 and 513] between the above classes of Darboux-like single-valued functions $I^n \to I^n$ are exactly the same for Darboux-like closed-set valued multi-functions $I^n \to I^n$. In particular, for any $n \geq 2$, in the class of all functions $f : I^n \to 2^{I^n}$, we have $PC \subset AC$. This follows from Stallings' Theorem 5 in [9] which states that if X is a locally peripherally connected polyhedron of dimension n, Y is a uniformly locally (n-1)-connected metric space, and $f : X \to Y$ is a peripherally continuous function, then f is almost continuous. What is left to verify next is that in the class of all functions $f : I \to 2^I$, $AC \subset Conn$.

We list these four propositions from [9]:

Stallings' Proposition 1. If $f : X \to Y$ is almost continuous and $g : Y \to Z$ is continuous, then $g \circ f : X \to Z$ is almost continuous.

In fact, he shows that for each open set N containing the graph of $g \circ f$, there exists a continuous function $F: X \to Y$ such that $g \circ F \subset N$.

Stallings' Proposition 2. If $f : X \to Y$ is almost continuous and C is closed in X, then $f_{|C} : C \to Y$ is almost continuous.

Stallings' Proposition 3. If $X \times Y$ is a completely normal T_2 space, X is connected, and $f : X \to Y$ is almost continuous, then the graph of f is connected.

Stallings' Proposition 4. If X is a compact T_2 space, Y a T_2 space, and Z a topological space and if $f: X \to Y$ is continuous and $g: Y \to Z$ is almost continuous, then $g \circ f: X \to Z$ is almost continuous.

Theorem 2. Each almost continuous function $f : I \to 2^I$ is a connectivity function.

PROOF. For each closed subinterval K of I, $f_{|K}$ is almost continuous and therefore connected by Stallings' Propositions 2 and 3. Every subinterval J of I is the union of a sequence $J_1 \subset J_2 \subset J_3 \subset \ldots$ of closed subintervals of I. Since each $f_{|J_i|}$ is connected and $f_{|J_1|} \subset f_{|J_i|}$ for $i \ge 1$, then

$$f_{|J} = f_{|\bigcup_{i=1}^{\infty} J_i} = \bigcup_{i=1}^{\infty} f_{|J_i|}$$

is connected. This shows f is a connectivity function.

The next result generalizes Strother's Theorem 1 in [10] from continuous functions to connectivity functions, and a referee for an earlier version of my paper gives this simpler proof.

Theorem 3. Each connectivity function $f: I \to 2^I$ has a fixed point.

PROOF. This follows from the fact that if $F, g: C \to X$ are continuous functions where F is onto and C is connected, then there exists $x \in C$ such that F(x) = g(x). Pick F to be the projection from the connected graph C of the given connectivity function f onto X = I and define $g: f \to I$ by $g(x, f(x)) = \min f(x)$. This shows that there exists a point $x \in C$ such that $x = \min f(x)$ and so $x \in f(x)$.

Example 1. Let $g: I \to I$ be the almost continuous function

$$g(x) = \begin{cases} \frac{1}{2} \left(1 + \sin \frac{1}{x} \right) & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \,. \end{cases}$$

Define the almost continuous discontinuous function $f: I \to 2^I$ by f(x) = [0, g(x)] for each $x \in I$. (We let $[0, 0] = \{0\}$.) Since g has infinitely many fixed points, so does f. We could have applied either Theorem 3 or Theorem 4 below to conclude that this almost continuous function f has at least one fixed point.

Next, interior and boundary of a cell are its combinatorial ones.

Lemma 2. [7, Thm. 3] Suppose D_1, D_2, D_3, \ldots are topological n-cells in I^n with pairwise disjoint interiors such that each BdD_i is the union of (n-1)-cells E_i and B_i with

$$B_i = Bd(D_i) - Int(E_i)$$
 and $E_i \subset BdI^n$.

Let

$$M = I^n - \bigcup_{i=1}^{\infty} (D_i - B_i).$$

Then there exists an almost continuous retraction $r: I^n \to I^n$ of I^n onto M.

Example 2. Let g be the function in Example 1, $X = I^2$, and

$$M = cl(g) \bigcup \left(\left[\frac{1}{2\pi}, \frac{1}{\pi} \right] \times \left\{ \frac{1}{2} \right\} \right)$$

 ${\cal M}$ contains a simple closed curve

$$J = g_{\left\lfloor \left[\frac{1}{2\pi}, \frac{1}{\pi}\right] \cup \left(\left[\frac{1}{2\pi}, \frac{1}{\pi}\right] \times \left\{\frac{1}{2}\right\}\right)},$$

which is the boundary of a disk D in X. M is not an M-retract of X because M is not locally connected [11, Thm. 8], and M is not an almost continuous single-valued retract of X because M separates \mathbb{R}^2 [7, Thm.1]. However, M is an almost continuous M-retract of X due to the multifunction $F: X \to M$ defined by

$$F(x) = \begin{cases} F_1(x) & \text{if } x \in D \\ \\ \{F_2(x)\} & \text{if } x \in X \setminus D \end{cases}$$

where F_1 is a *J*-retraction of *D* given by [10] and F_2 is an almost continuous single-valued retraction of *X* onto $M \cup D$ given by Lemma 2.

Example 3. We construct an almost continuous function $f: I \to 2^I$ with graph dense in $I \times 2^I$. Let $\{F_\alpha : \alpha < c\}$ be a well ordering of all blocking sets of $I \times 2^I$ such that each F_α has less than *c*-many predecessors. A blocking set K of $I \times 2^I$ is a closed subset of $I \times 2^I$ that misses the graph of some function $I \to 2^I$ but meets the graph of every continuous function $I \to 2^I$, and as in the proof of [5, Thm. 5.2] and using 2^I is an AR because of [14], one can show that the projection $p(F_\alpha)$ of each F_α into I contains a nondegenerate interval. A function $f: I \to 2^I$ is almost continuous if and only if there exists no blocking set of $I \times 2^I$ missing f. For each α , pick a point $x_\alpha \in p(F_\alpha) \setminus \{x_\xi : \xi < \alpha\}$ and pick $f(x_\alpha) \in 2^I$ such that $(x_\alpha, f(x_\alpha)) \in F_\alpha$. Define f arbitrarily on $I \setminus \{x_\alpha : \alpha < c\}$. Assume f were not almost continuous function $g: I \to 2^I$ meets $(I \times 2^I) \setminus U$. Therefore $(I \times 2^I) \setminus U$ misses f and is one of these blocking sets F_α for some $\alpha < c$, a contradiction. Therefore f must be almost continuous and, by construction, is dense in $I \times 2^I$.

Theorem 4. If the metric space X has the F.p.p. and $f : X \to CB(X)$ is almost continuous, then f has a fixed point.

PROOF. Assume f has no fixed point. To see that the "diagonal"

$$\Delta = \{ (x, A) \in X \times CB(X) : x \in A \}$$

is closed in $X \times CB(X)$, suppose $(x_n, A_n) \in \Delta$ and $(x_n, A_n) \to (x_0, A_0)$ in $X \times CB(X)$. Then $x_n \in A_n, x_n \to x_0$ in X, and $A_n \to A_0$ in CB(X). For every $\epsilon > 0$, there exists N such that for all n > N, $d(x_n, x_0) < \frac{\epsilon}{2}$ and $H(A_n, A_0) < \frac{\epsilon}{2}$. Pick n > N. There exists $y \in A_0$ such that $d(x_n, y) < \frac{\epsilon}{2}$. Therefore

$$d(y, x_0) \le d(y, x_n) + d(x_n, x_0) < \epsilon.$$

Since A_0 is a closed subset of X, $x_0 \in A_0$ and so $(x_0, A_0) \in \Delta$. The open set $(X \times CB(X)) \setminus \Delta$ contains f and therefore contains a continuous $g: X \to CB(X)$. So g has no fixed point, a contradiction to X having the F.p.p.

Cornette shows that each single-valued connectivity retract of a unicoherent Peano continuum is again a unicoherent Peano continuum [1, Thm. 3]. According to [5] or Lemma 2, there is a single-valued almost continuous retraction $r: I^2 \to I^2$ of I^2 onto Knaster's indecomposable continuum with one endpoint, but it is an unsolved problem whether there is a single-valued almost continuous retraction of I^2 onto a pseudoarc. Does there exist an almost continuous *M*-retraction $r: I^2 \to I^2$ of I^2 onto a pseudoarc *M*?

A compactum Y is an ϵAR means that whenever Y is homeomorphic to a closed subset Y' of a space X, then Y' is an ϵ -retract of X; i.e., $\forall \epsilon > 0$, \exists continuous single-valued function $r: X \to Y'$ such that

$$d(x, r(x)) < \epsilon \quad \forall x \in Y'$$

According to Kellum [5], for single-valued functions, a compactum Y is an $\epsilon AR \Leftrightarrow$ whenever $f': X' \to Y$ is continuous where X' is a closed subset of a space X, then \exists continuous function $f: X \to Y$ such that

$$d(f(x), f'(x)) < \epsilon \ \forall x \in X'$$

Our final result is based on his arguments given there.

Theorem 5. Suppose a compact subset Y of Q obeys this general Tietze multivalued approximate extension property:

(1) If $f': X' \to Y$ is a continuous multi-valued function, where X' is a closed subset of a space X, then for each $\epsilon > 0$ there exists a continuous multi-valued function $f: X \to Y$ such that $H(f(x), f'(x)) < \epsilon \,\forall x \in X'$, where H is the Hausdorff metric on 2^Y .

Then

(2) each continuous multi-valued function $r: Y \to Y$, such that $x \in r(x)$ $\forall x \in Y$, has an almost continuous multi-valued extension $r: Q \to Y$.

PROOF. Let Θ be the collection of all closed subsets S of $Q \times 2^Y$ such that the projection p(S) of S into Q contains c-many points not in Y. So we can by transfinite induction define $r: Q \to 2^Y$ such that if $x \in Y$ then $x \in r(x)$ as already defined, and if $S \in \Theta$ then $r \cap S \neq \emptyset$. Assume r is not almost continuous. Then there exists a minimal blocking set K of $Q \times 2^Y$ that misses r, and p(K) is nondegenerate because K meets every constant function from Q into 2^Y . Assume p(K) is not connected. Then $p(K) = A \cup B$ for some separated sets A and B.

$$K_1 = K \setminus \left(K \cap p^{-1}(B) \right)$$
 and $K_2 = K \setminus \left(K \cap p^{-1}(A) \right)$

are closed proper subsets of K and so cannot be blocking sets. Therefore there are continuous functions $g_1, g_2 : Q \to 2^Y$ such that $g_1 \cap K_2 = \emptyset$ and $g_2 \cap K_1 = \emptyset$, $p(g_1 \cap K) \subset A$, and $p(g_2 \cap K) \subset B$. Let X = Q and X' = p(K). The function

$$f' = (g_{1|B}) \cup (g_{2|A}) : p(K) \to 2^Y$$

is continuous, and f' and K are disjoint closed subsets of the compact space $X \times 2^Y$. There exists $\epsilon > 0$ such that if $g' : X' \to 2^Y$ is continuous and

$$H(g'(x), f'(x)) < \epsilon \quad \forall x \in X'$$

then $g' \cap K = \emptyset$, too. By hypothesis, for this ϵ , there exists a continuous function $f: Q \to 2^Y$ such that

$$H(f(x), f'(x)) < \epsilon \quad \forall x \in X'.$$

Therefore $f \cap K = \emptyset$, which is a contradiction. Since p(K) is connected and $K \notin \Theta$, $p(K) \subset Y$. Since $r \cap K = \emptyset$, there exists $\epsilon > 0$ such that if $g: p(K) \to 2^Y$ is continuous and

$$H(g(x), r(x)) < \epsilon \quad \forall x \in p(K),$$

then $g \cap K = \emptyset$. By hypothesis for this ϵ , there exists a continuous function $f: Q \to 2^Y$ such that

$$H(f(x), r(x)) < \epsilon \quad \forall x \in p(K).$$

Therefore $f \cap K = \emptyset$, a contradiction. So r is almost continuous after all. \Box

By letting $r(x) = x \ \forall x \in Y$ in Theorem 5, it follows that for a compact subset Y of Q, $(1) \Rightarrow (3)$ Y is an almost continuous M-retract of Q.

A straightforward proof that $(3) \Rightarrow (1)$ for a compact subset Y of Q can be given based on Kellum's proof of sufficiency for Theorem 3.1 in [5] and using Stallings' Propositions 1 and 4.

References

- J. Cornette, Connectivity functions, and images on Peano continua, Fund. Math., 58 (1966), 183–192.
- [2] R. Gibson, T. Natkaniec, *Darboux like functions*, Real Anal. Exchange, 22(2) (1996-1997), 492–533.
- [3] J. Girolo, The Schauder fixed point theorem for connectivity maps, Colloq. Math., 44 (1981), 59–64.
- [4] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc., 52 (1942), 22–36.
- [5] K. R. Kellum, The equivalence of absolute almost continuous retracts and ϵ -absolute retracts, Fund. Math., **96** (1977), 229–235.
- [6] R. L. Plunkett, A fixed point theorem for continuous multi-valued transformations, Proc. Amer. Math. Soc., 7 (1956), 160–163.
- [7] H. Rosen, Nonseparating almost continuous retracts of Iⁿ, Proc. Amer. Math. Soc., 91 (1984), 118–122.
- [8] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math., 2 (1930), 171–180.
- [9] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math., 47 (1959), 249–263.
- [10] W. L. Strother, On an open question concerning fixed points, Proc. Amer. Math. Soc., 4 (1953), 988–993.
- W. L. Strother, Fixed points, fixed sets, and M-retracts, Duke Math. J., 22 (1955), 551–556.
- [12] L. E. Ward, A fixed point theorem, Amer. Math. Monthly, 65 (1958), 271–272.

- [13] M. Wojdyslawski, Sur la contractilité des hyperespaces de continus localement connexes, Fund. Math., 30 (1938), 247–252.
- [14] M. Wojdyslawski, *Rétractes absolus et hyperespaces des continus*, Fund. Math., **32** (1939), 184–192.

HARVEY ROSEN