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FUNCTIONS

Abstract

The purpose of this work is to ascertain when arithmetic operations
with periodic functions whose domains may not coincide with the whole
real line preserve periodicity.

1 Introduction and Preliminaries.

The problem under research is when the arithmetic operations with periodic
functions of one real variable whose domains may not coincide with the real
line will give periodic functions. The answer is well known in the case when
two nonconstant periodic functions are defined and continuous on the whole
real line and the operation is addition. In this case the sum is periodic if and
only if the periods of summands are commensurable. But it may be false if
the domains of summands are proper subsets of reals.

In the following, the function f defined on the set D ⊂ R is called periodic
(or T -periodic) if D+T = D and f(x+T ) = f(x) for all x ∈ D hold for some
real number T 6= 0. In this case D is called T -invariant (or T -periodic), and
T is called a period of f and D. The periods will be always assumed to be
positive unless otherwise stated. The smallest positive period of f and D (if
such exists) is called fundamental.
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If D is T -invariant and f(x + T ) = f(x) for a.e. x ∈ D only, we say that
f is a.e. periodic (with period T ).

The function f with domain D(f) is called not a.e. constant if for every
c the set {x ∈ D(f)|f(x) 6= c} has a positive Lebesgue measure. N, Z, Q,
and R stand for sets of natural numbers, integers, rational numbers, and reals
respectively, µ stands for Lebesgue measure on R. Below we require that all
functions considered have nonempty domains.

For our purposes the question on the commensurability of periods of peri-
odic function is important. The following example shows that the answer to
this question may be negative.

Example 1.1. Let D := Z +
√

2Z +
√

3Z. The function on D defined by the
equality

f(k + l
√

2 +m
√

3) = (−1)m

is bounded and has two incommensurable periods 1 and
√

2.

At the same time, the next statement is well known (see, e.g., [3]).

Theorem 1.1. If a periodic function f is continuous and nonconstant on
D(f), then f has fundamental period. In particular, every two periods off are
commensurable.

We mention two other conditions, which are sufficient for commensurability
of the periods of periodic function.

Theorem 1.2. Consider a set D 6= R, intD 6= ∅. If D is periodic then it has
the fundamental period. In particular, if a periodic function f is defined on
D, then f has the fundamental period, too. Thus every two periods of f are
commensurable.

Proof. The set G of all periods of D is an additive subgroup of R (we consider
negative periods and zero as a period of D, too). Suppose that G is not
discrete. Then it is dense in R (see, e.g., [1]). Choose a /∈ D. The set
−intD + a intersects G, so −d + a = t for some d in D and t in G; i.e.
a = d + t ∈ D, a contradiction. Therefore G = T0Z for some T0 ∈ R, T0 6= 0
(see ibid). This completes the proof.

Theorem 1.3. If an a.e. periodic function f is defined, measurable, and not
a.e. constant on a set D of positive measure, then every two periods of f are
commensurable.
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Proof. Let T1, T2 be two periods of f, S = R(modT1); i.e. S is a circle with
radius r = T1/2π. The set D1 = D(modT1) is the subset of S of positive
measure. One can assume that f is defined on D1. The rotation RαO of S with
the angle α = T2/r = (T2/T1)2π, which maps D1 on itself, corresponds to
the shift x 7→ x + T2 of the real line. If T1 and T2 are incommensurable, RαO
is an ergodic transformation of D1 by virtue of the equation α/2π = T2/T1

(see, e.g., [7], Section II. 5). Since the function f on D1 is RαO-invariant
(that is f(RαOx) = f(x) for a.e. x ∈ D1), it is an a.e. constant ([7], ibid), a
contradiction.

Note that Burtin’s Theorem [2], [4] could be used to prove Theorem 1.3,
too.

2 Sums of Several Periodic Functions with the Common
Domain.

It is well known that the sum of two continuous periodic functions on R is
periodic if and only if their periods are commensurable. In this section, we
study the periodicity of sums of several periodic functions fi(i = 1, ..., n) in
the case where D(f1) = . . . = D(fn) may not coincide with R. The following
example shows that the situation in this case is more complicated.

Example 2.1. Let D := Z +
√

2Z +
√

3Z as in Example 1.1. Two functions
on D defined by the equalities

f1(k + l
√

2 +m
√

3) =
1

|l|+ 1
− 1
|m|+ 1

,

f2(k + l
√

2 +m
√

3) =
1

|k|+ 1
+

1
|m|+ 1

are bounded and periodic, their periods are incommensurable, but the sum
f1 + f2 is periodic.

If the periods Ti of several periodic functions fi (i = 1, ..., n) are commen-
surable, it is easy to prove that the sum f1 + · · ·+fn is periodic. The converse
is false, in general. If, say, f1 + f2 = const, the sum f1 + f2 + f3 is periodic for
incommensurable T1 and T3. So for converse we should assume that all the
sums of fi’s where the number of summands is less than n are nonconstant.

Theorem 2.1. Let f1, f2, . . . , fn be continuous periodic functions, which are
nonconstant on their common domain D. If all the sums of fi’s where the
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number of summands is less than n are nonconstant, then the sum f1+ . . .+fn
is periodic if and only if the periods of the summands are commensurable.

Proof. We shall prove this theorem by induction with the following addi-
tional statement: in the case when the sum is nonconstant the periods of the
summands are commensurable with the period of the sum. First we shall
prove the conclusion of the theorem for n = 2.

Suppose that T1, T2, and T are periods of f1, f2, and f1 + f2 respectively.
Then we have for all x ∈ D

f1(x+ T ) + f2(x+ T ) = f1(x) + f2(x),

or

f1(x+ T )− f1(x) = f2(x)− f2(x+ T ). (1)

a) Suppose that both sides in (1) are nonconstant. Since the left-hand side
and the right-hand one in (1) have periods T1 and T2 respectively, Theorem
1.1 implies that these periods are commensurable. Further since T1 and T2 are
commensurable, the sum f1+f2 has certain period T ∗ which is commensurable
with T1 and T2. If f1 + f2 is nonconstant, then T and T ∗ are commensurable
by Theorem 1.1, too.

b) Assume that both sides in (1) equal to a nonzero constant c. The
iteration of the equation

f1(x+ T )− f1(x) = c (2)

implies f1(x+ nT +mT1) = f1(x) + nc for all m,n ∈ Z. We can find integers
nk and mk, with nk → ∞ such that x + nkT + mkT1 → x and we have a
contradiction with the continuity of f1 if c 6= 0.

c) If both sides of (1) are zero, then fi(x + T ) = fi(x), and Ti and T are
commensurable by Theorem 1.1 (i = 1, 2).

Now, let the conclusion of the theorem be true for all integers between 2
and n. We shall prove it for n+ 1. Two cases are possible:

1) The sum f1 + · · ·+fn+1 is constant. Then f1(x)+ · · ·+fn+1(x) = c and
f1(x) + · · ·+ fn(x) = c− fn+1(x). Because the left-hand side is nonconstant,
the inductive hypothesis implies that the periods of f1, . . . , fn and Tn+1 are
pairwise commensurable.

2) This sum is nonconstant and T -periodic. If gi(x) := fi(x+ T )− fi(x),
then
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g1(x) + · · ·+ gn+1(x) = 0. (3)

If some gi is a constant, then it equals 0 by b).
2.1) Let gi’s be nonconstant for i = 1, ..., n.
d) If the sum g1 + · · · + gn(= −gn+1) has not proper subsums which are

constant, the periods T1, . . . , Tn are commensurable by inductive hypothesis.
Then the first summand of the sum (f1+· · ·+fn)+fn+1 has period of the form
mT1, and again by inductive hypothesis T1, Tn+1, and T are commensurable.

e) If the sum g1+· · ·+gn(= −gn+1) has proper subsums which are constant,
let us choose a minimal one, say, g1 + · · · + gk = const (k > 1). Then
by inductive hypothesis, T1, . . . , Tk are commensurable. Like in d) the first
summand of the sum (f1 + · · · + fk) + (fk+1 + · · · + fn+1) has the period
of the form mT1, and by inductive hypothesis T1, Tk+1, . . . , Tn+1 and T are
commensurable.

2.2) If there exist constants among gi’s (which are equal to 0), then let us re-
index the functions such that g1, . . . , gk 6= 0 and gk+1 = . . . = gn+1 = 0 where
k < n+ 1. Since for i between k+ 1 and n+ 1 the difference fi(x+T )− fi(x)
equals 0, then by Theorem 1.1 the numbers Ti and T are commensurable. In
addition we have f1(x + T ) + · · · + fk(x + T ) = f1(x) + · · · + fk(x) where
k < n + 1. By the hypothesis of the theorem this sum is nonconstant, so by
the inductive hypothesis the periods T1, . . . , Tk are commensurable with T .
Moreover, as we have shown numbers Tk+1, . . . , Tn+1 are commensurable with
T , too.

We will employ the following lemma to prove Theorem 2.2. (As was men-
tioned by the referee, one can prove Theorem 2.2 using the Proposition 1
in [5] (see also [6]); we give an independent proof which seems to be more
elementary).

Lemma 2.1. Let the function ψ be measurable on the segment I. There is a
sequence ξk ↓ 0 such that for every sequence δk, δk ∈ (0, ξk)

lim
k→∞

ψ(x+ δk) = ψ(x) (4)

for a.e. x ∈ I.

For the proof see, e.g., [8], proof of Theorem 1.4, especially formula (1.18).

Theorem 2.2. Let a.e. Ti-periodic functions fi (i = 1, . . . , n) be defined,
measurable, and not a.e. constant on the measurable set D of positive measure.
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Suppose that all the sums of fi’s where the number of summands is less than
n are not a.e. constant. The sum f1 + · · ·+ fn is a.e. periodic if and only if
the periods of the summands are commensurable.

Proof. As in proof of Theorem 2.1 we shall prove this theorem by induction
with the following additional statement: in the case when the sum is not a.e.
constant the periods of the summands are commensurable with the period of
the sum. First we shall prove the conclusion of the theorem for n = 2.

Suppose that T1, T2, and T are periods of f1, f2 and f1 + f2 respectively.
Then (1) holds for a.e. x ∈ D.

a) Suppose that both sides in (1) are not a.e. constant. Since the left-hand
side and the right-hand one in (1) have periods T1 and T2 respectively, Theo-
rem 1.3 implies that these periods are commensurable. Further the sum f1+f2
is defined on the set of positive measure. Since T1 and T2 are commensurable,
the sum has certain period T ∗ which is commensurable with T1 and T2. If
f1 + f2 is not a.e. constant, then T and T ∗ are commensurable by Theorem
1.3, too.

b) Suppose that both sides in (1) equal a constant c a.e., so that (2) holds
for a.e. x ∈ D (T is the period of f1 + f2). Then D is T -invariant and T1-
invariant. Let ψ(x) = f1(x) for x ∈ D and ψ(x) = 0 for x ∈ R \D. We have
µ(D∩I) > 0 for some segment I ⊂ R. Let ξk ↓ 0, ξk < T1 be as in Lemma 2.1.
If T and T1 are incommensurable one can choose sequences mk, nk ∈ Z with
the property δk := nkT +mkT1 ∈ (0, ξk). Then nk 6= 0. Choose x ∈ D which
satisfies the following three conditions: (4) holds, (2) holds for y = x+iT+jT1

instead of x for arbitrary integers i, j, and f1(y + T1) = f1(y) for the same y.
Then x+ δk ∈ D and the equation (4) implies that

lim
k→∞

f1(x+ nkT +mkT1) = f1(x). (5)

On the other hand, (2) implies that for all k

f1(x+ nkT +mkT1) = f1(x) + nkc.

It follows that c = 0 and therefore f1(x + T ) = f1(x) for a.e. x ∈ D. Now
Theorem 1.3 implies that T and T1 are commensurable, a contradiction. The
same is true for T2.

Now, let the conclusion of the theorem be true for all integers between 2
and n. We shall prove it for n+ 1. Two cases are possible:

1) The sum f1 + · · ·+fn+1 is a.e. constant. Then f1(x)+ · · ·+fn+1(x) = c
and f1(x) + · · ·+ fn(x) = c− fn+1(x) a.e. So, by the inductive hypothesis the
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periods of f1, . . . , fn and the period Tn+1 of their sum are pairwise commen-
surable (their sum is not a.e. constant by the hypothesis of the theorem).

2) This sum is not a.e. constant. Let gi(x) := fi(x+ T )− fi(x). Then

g1(x) + · · ·+ gn+1(x) = 0.

2.1) Let gi’s be not a.e. constant for i = 1, ..., n+ 1.
c) If the sum g1 + · · ·+gn(= −gn+1) has not proper subsums which are a.e.

constant, the periods T1, . . . , Tn+1 are commensurable by inductive hypothesis.
Then the sum f1+· · ·+fn+1 has period of the formmT1, and again by inductive
hypothesis T1, and T are commensurable.

d) If the sum g1 + · · · + gn(= −gn+1) has proper subsums which are a.e.
constant, let us choose a minimal one, say, g1 + · · · + gk = const a.e. (k >
1). Then by inductive hypothesis, T1, . . . , Tk are commensurable. The first
summand of the sum (f1 + · · · + fk) + (fk+1 + · · · + fn+1) has the period
of the form mT1, and by inductive hypothesis T1, Tk+1, . . . , Tn+1 and T are
commensurable.

2.2) If there exist a.e. constants among gi’s for i = 1, ..., n+ 1, say g1 = c
a.e., like in b) it follows that c = 0 and T1 is commensurable with T by
Theorem 1.3. So mT1 = lT . Since the sum

f2 + · · ·+ fn+1 =
n+1∑
i=1

fi − f1

is lT -periodic and not a.e. constant by inductive hypothesis, T2, . . . , Tn+1 ,
and T are commensurable by inductive hypothesis, too.

3 The Product of Two Periodic Functions with Possibly
Different Domains.

In this section, we assume, as usual, that the product (and the sum) of several
functions with possibly different domains is defined on the intersection of the
domains. First consider the following

Example 3.1. Let D1 := Z+
√

2Z+
√

3Z+
√

5Z, D2 := Z+
√

2Z+
√

3Z+
√

7Z.
The function g1 on D1 defined by the equality

g1(k + l
√

2 +m
√

3 + n
√

5) = (|k|+ 1)(|m|+ 1)

has periods a
√

2 + b
√

5 (a, b ∈ Z), and the function g2 on D2 defined by the
equality
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g2(k + l
√

2 +m
√

3 + n
√

7) = (|l|+ 1)/(|m|+ 1)

has periods a + b
√

7 (a, b ∈ Z). But the product g1g2 is defined on the set
D1 ∩D2 = Z +

√
2Z +

√
3Z and has period

√
3.

At the same time for Di with nonempty interior there is a positive result.

Theorem 3.1. Let gi be continuous Ti-periodic functions, and the restrictions
gi|intD(gi) 6= const (i = 1, 2). The product g1g2 is periodic if and only if the
periods T1 and T2 are commensurable.

We need several lemmas to prove the theorem.

Lemma 3.1. Let fi be Ti-periodic continuous function (i = 1, .., n), D ⊆
∩ni=1D(fi),

∑n
i=1 fi 6= const. If the restriction

∑n
i=1 fi|D is T -periodic, then

the numbers T−1
1 , . . . , T−1

n , and T−1 are linearly dependent over Q.

Proof. Assume on the contrary that numbers T−1
1 , . . . , T−1

n , and T−1 are
linearly independent over Q. Since T/T1, . . . , T/Tn and 1 are linearly inde-
pendent over Q, too, Kronecker Theorem (see e.g. [1], Chapter 7, section 1,
Corollary 2 of Proposition 7) implies, that for x in D , for every y in ∩ni=1D(fi)
and k in N there exist such numbers qk and pik in Z, that

|qkT/Ti − pik − (y − x)/Ti| < 1/(kmaxTi) (i = 1, ..., n)

and so
|qkT − pikTi − (y − x)| < 1/k (i = 1, ..., n).

Therefore
lim
k→∞

(qkT − pikTi) = y − x (i = 1, ..., n).

Because for x in D

f1(x+ qkT − p1kT1) + · · ·+ fn(x+ qkT − pnkTn) = f1(x) + · · ·+ fn(x)

and fi’s are continuous, it follows that

f1(y) + · · ·+ fn(y) = f1(x) + · · ·+ fn(x)

and so
∑n
i=1 fi = const, a contradiction.

Corollary 3.1. Let f be nonconstant continuous T1-periodic function on
D(f). If its restriction to a subset D of D(f) is T -periodic, then T and T1 are
commensurable.
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Lemma 3.2. If the set D1 6= R is T1-invariant and its subset D, intD 6= ∅, is
T -invariant, then T and T1 are commensurable.

Proof. Let us suppose the contrary. Then the set G = T1Z+TZ is dense in R
by Dirichlet Theorem. Note that every shift by the element of G maps D into
D1. Choose a /∈ D1. Since the open set a− intD intersects G, a−d = t,where
d ∈ D, t ∈ G. Then a = d+ t belongs to D1, a contradiction.

The following lemma is of intrinsic interest.

Lemma 3.3. Let fi be Ti-periodic nonconstant continuous functions with open
domains Di (i = 1, 2). The sum f1 + f2 is periodic if and only if the periods
of fi’s are commensurable.

Proof. In view of Theorem 2.1 and Lemma 3.2 it remains to consider the
case D1 6= R, D2 = R. Let T be the period of the sum f1 + f2, and suppose
that T and T2 are incommensurable. By Lemma 3.2, mT = kT1 for some m, k
from Z. Replacing mT by kT1 in the first summand of the left-hand side of
the equality

f1(x+mT ) + f2(x+mT ) = f1(x) + f2(x), x ∈ D1

we have
f2(x+mT ) = f2(x), x ∈ D1.

It follows from Corollary 3.1 that T2 and T are commensurable, a contradic-
tion.

Proof of Theorem 3.1. First note that the restrictions gi|intD(gi) are Ti-
periodic, too. So we can assume that D(gi) are open. Then the sets

Di := {x ∈ D(gi)|gi(x) 6= 0} (i = 1, 2)

are open and Ti-invariant. Several cases are possible.
1) D1 ∩D2 6= ∅. Since g1g2 is periodic, the function on D1 ∩D2

log |g1g2| = log |g1|+ log |g2|

is periodic, too.
1.1). Let both functions |gi| be nonconstant. Then their periods are com-

mensurable by Lemma 3.3.
1.2). Let both functions |gi| be constants. Then Di 6= R for i = 1, 2 and

one can use Lemma 3.2.
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1.3). Let |g1| is nonconstant, and |g2| is constant (and so g2(x) = ±c 6= 0).
It was noted above that D2 6= R. In view of Lemma 3.2 we may assume that
D1 = R; i.e. g1(x) has a fixed sign. Let T be the period of g1g2, so that for
all x in D(g2) we have

g1(x+ T )g2(x+ T ) = g1(x)g2(x). (6)

Thus the numbers g2(x+ T ) and g2(x) have the same sign, too, and therefore
coincides. Now T2 and T are commensurable by Theorem 1.2. Then the
equality (6) implies g1(x+ T ) = g1(x) for all x in D(g2), and the numbers T1

and T are commensurable by Corollary 3.1.
2) D1 ∩ D2 = ∅. Suppose that T1 and T2 are incommensurable. Then

for d2 ∈ D2 one can find two integers m,n such that mT1 + nT2 ∈ D1 − d2.
Therefore d2 + nT2 = d1 + (−m)T1 for some d1 ∈ D1. This is impossible
because the left-hand side of the last equality belongs to D2, but the right-
hand one belongs to D1. This completes the proof.

Corollary 3.2. Let gi be continuous Ti-periodic functions, and the restric-
tions gi|intD(gi) 6= const (i = 1, 2). The quotient g1/g2 is periodic if and only
if the periods T1 and T2 are commensurable.

Remark 1. Let fi be periodic functions defined on the open subsets Di ⊆
R, D1 6= R and Ei the range of fi (i = 1, ..., n). If the function F (y1, . . . , yn) on
E1× . . .×En “really depends” on each yi, the composition F (f1(x), . . . , fn(x))
is periodic if and only if the periods of fi’s are commensurable. It follows
from Lemma 3.2 immediately. In general the problem on the periodicity of
the composition seems to be open.

Remark 2. The problems of generalization of Theorem 3.1 for n > 2 mul-
tipliers, for discontinuous multipliers and for general D(gi) seem to be open,
too.
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