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TYPICAL CONTINUOUS FUNCTIONS ARE
NOT CHAOTIC IN THE SENSE OF

DEVANEY

Abstract

We show that typical continuous functions of the form f : M →M ,
where M is a compact metric space with the fixed-point property and
the absolute-retract property, are not chaotic in the sense of Devaney.
Typical continuous functions on the compact interval have been shown
to be chaotic in terms of other definitions of chaos. Results are also pre-
sented concerning the chain recurrent set for typical continuous functions
and concerning functions for which the chain recurrent set is the entire
space.

1 Definitions and Preliminaries

For general background and notation, we refer the reader to [1] and [2]. In
this paper we shall refer to certain known results in the monograph of Block
and Coppel [2] by chapter and number, and ask the reader to consult the
bibliography of the monograph for information on the original papers. We
let f : M → M represent a continuous function on a compact metric space
M , with metric d, where M has the fixed-point property, and where M has
the absolute-retract property. No additional properties are put on M , unless
otherwise indicated. We say that a compact metric space has the absolute-
retract property if every closed ball in M is a retract of M . Compact n-cells
in Rn are examples of spaces which have the fixed-point property and the
absolute-retract property. We recall that every retract of a space with the
fixed-point property also has the fixed-point property.
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We let C denote the set of all continuous functions of the form f : M →M .
By “typical continuous functions”, we mean all functions in some residual
subset S of C, where the complement of the residual set S is the count-
able union of closed nowhere dense sets. If we equip C with the sup metric
D(f, g) = sup{d(f(x), g(x)) : x ∈ M}, then C is a complete metric space,
and our residual subset S is dense in C.

The iterates of a function f : M → M are defined inductively such that
f(fn(x)) = fn+1(x), where fn is the n-fold composition of f . The trajectory
of x in M is the sequence {f(x)}∞n=0, where f0(x) = x. The orbit of f at x,
denoted by γ(x, f), is the point set {fn(x) : n ≥ 0}. The omega-limit set of
f at x, denoted by ω(x, f), is the set of all subsequential limit points of the
orbit. We denote the closure of a set A by Cl(A). A continuous function on
a compact interval will be denoted by f : I → I, where f has no additional
properties unless otherwise indicated. We shall denote the set of all continuous
functions on a compact interval by C(I, I).

A function f : M → M is transitive if for every pair of non-empty open
sets U and V in M , there is a positive integer k such that fk(U) ∩ V 6= ∅.
A function f : M → M is transitive iff there is a point x in M such that
ω(x, f) = M . [2]. There are many examples in the literature of transitive
functions, including the tent map on the unit interval and the logistic function
(sometimes called the population equation) h(x) = rx(1 − x) for r = 4. A
function f : M → M has sensitive dependence on initial conditions if there
exists δ > 0 such that for any x in M , and for any open set U containing x,
there exists y in U and a positive integer n such that d(fn(x), fn(y)) > δ.
In Devaney’s definition of chaos [7], a function f : X → X, where X is an
arbitrary compact metric space, is chaotic if f has sensitive dependence on
initial conditions, has a dense set of periodic points, and is transitive.

2 Devaney’s Chaos and Chain Recurrence

Theorem 1. Let M be any compact metric space with fixed-point property, and
the absolute-retract property. Let C denote the set of all continuous functions
of the form f : M → M . Then there is a residual subset S in C such that
every function in S is not transitive.

Proof. Since M is a compact metric space, there is a countable dense subset
D ⊂M . For each point x in D, and for each rational distance γ > 0, we define
an open ball B(x, γ) with center x and radius γ. Since there are countably
many such open balls, we may enumerate them. Let Bi be any such open ball.
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For each Bi we define the set Si to be the set

{f ∈ C :either f has no fixed point in Cl(Bi); or if f has a fixed point in
Cl(Bi), then there is an open ball Ui ⊂ Cl(Bi) such that
f(Cl(Ui)) ⊂ Ui}.

We first show that Si is an open subset of C. Let ε > 0 be given. Let g be
any function in Si. There are two cases:
Case 1: Suppose that g has a fixed point in Cl(Bi). Since g ∈ Si, we have
g(Cl(Ui)) ⊂ Ui for some open ball Ui ⊂ Cl(Bi). Since g(Cl(Ui)) is compact,
there is a positive distance δ > 0 between the compact set g(Cl(Ui)) and
the boundary of Ui. Then for any continuous function h ∈ C such that
D(g, h) < min{δ/2, ε}, h(Cl(Ui)) ⊂ Ui. Also, since M has the fixed-point
property and the absolute-retract property, h has a fixed point in Cl(Bi).
Then h is an element of Si.
Case 2: Suppose g has no fixed point in Cl(Bi). Since g(x) 6= x for any x in
Cl(Bi), there is a positive distance between g(x) and x for each x in Cl(Bi).
Since Cl(Bi) is compact, we may let δ = min{d(g(x), x) : x ∈ Cl(Bi)}. Let
h be any function in C such that D(g, h) < min{δ/2, ε}. Then for any x in
Cl(Bi),

d
(
g(x), x

)
≤ d

(
g(x), h(x)

)
+ d

(
h(x), x

)
,

which implies that

d
(
g(x), x

)
− d

(
g(x), h(x)

)
≤ d

(
h(x), x

)
.

Since d(g(x), x) is greater than or equal to δ, and since d(g(x), h(x)) < δ/2,
this implies that δ − δ/2 = δ/2 ≤ d(h(x), x). It follows that h does not have
a fixed point in Cl(Bi). Hence Si is open in C.

To show that Si is dense in C, let f be any element in C. We show that
there is a function h in Si, arbitrarily close to f in C. Let ε > 0 be given.
Either f has a fixed point in Cl(Bi) or it does not. Suppose that f has a fixed
point in Cl(Bi). Let xo be the fixed point of f in Cl(Bi). We construct the
function h so that h(xo) = xo; that is, h also has a fixed point at xo. At all
points in the closed ball Cl(B(xo, ε/2)), we make h constant, so that h(x) = xo

for all x in Cl(B(xo, ε/2)). At all other points of the domain of h, we only
require that h be ε-close to f . Then we may assume that h is continuous
and h is contained in an ε-neighborhood of f . Let U∗i be the open ball which
is centered at xo and has radius ε/4. Since xo could sit in the boundary of
Cl(Bi), we define Ui to be U∗i ∩Cl(Bi). Then we have that h(Cl(Ui)) ⊂ Ui. It
follows that h is in Si. Suppose that f does not have a fixed point in Cl(Bi).
Then we proceed as in Case 2 above to show that there is a function h in Si,
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arbitrarily close to f , such that h does not have a fixed point in Cl(Bi). Hence,
Si is dense in C. Since Si was chosen arbitrarily, we conclude that every Si is
open and dense in C.

Let S = ∩∞i=1Si. Then S is residual in C. Now let g be any element of S.
Since g has a fixed point in M , for some open ball U in M , g(Cl(U)) ⊂ U .
Hence, since U ∩M is a proper subset of M , no iterate gk(U) of U meets
any other nonempty open set which is disjoint from U , and g is not transitive
on M .

Remark 2. We remark that in [1] it is shown that typical continuous functions
of the form f : I → I are not transitive, and a related result was obtained in
[10] for measure-preserving homeomorphisms of the closed unit square.

Corollary 3. There is a residual subset S of the set C of all continuous
functions of the form f : M →M such that all functions in S are not chaotic
in the sense of Devaney.

Remark 4. An excellent survey of various definitions of chaos is contained
in [8]. In contrast to the result in Corollary 3, in [6] and [9] it is shown
that functions which are chaotic in the sense of Li and Yorke (L-Y chaos) are
residual in C(I, I). In [2] it is shown that functions which are chaotic in the
sense of Block and Coppel (B-C chaos) comprise an open subset of C(I, I). It
follows that the set of functions which are not B-C chaotic cannot be residual
in C(I, I), again in contrast to the result in Corollary 3 above. In [5] Bruckner
and Ceder introduce a notion of chaos which is strictly intermediate between
B-C chaos and L-Y chaos; they show that a continuous function f : I → I
is chaotic iff it has the property that all of its infinite omega-limit sets are
perfect.

Corollary 5. There is a residual subset E of C(I, I) such that every function
in E is Li-Yorke chaotic but is not chaotic in the sense of Devaney.

Proof. The intersection of two residual subsets is again residual.

Let f : X → X, where X is a compact metric space. Following [2], we say
that a non-empty closed set A ⊂ X is Lyapunov-stable if for each open set U
containing A, there exists an open set V containing A such that γ(x, f) ⊂ U for
every x in V . The set A is asymptotically-stable if it is Lyapunov-stable and,
in addition, there exists an open set Uo containing A such that ω(x, f) ⊂ A for
every x ∈ Uo. Asymptotically stable sets are sometimes called “attractors”.

Theorem 6. There is a residual subset S of the set C of all continuous
functions of the form g : M → M such that all functions in S have an
asymptotically-stable set.



Typical Continuous Functions Are Not Chaotic 951

Proof. This follows immediately from the fact that the typical function g in
the proof of Theorem 1 above has an inward set. That is, since g(Cl(U)) ⊂ U ,
we consider the set A = ∩n≥0 g

n(Cl(U)). For each n, gn(Cl(U)) is nonempty
and closed, and gn(Cl(U)) ⊃ gn+1(Cl(U)). Then since M is compact, the set
A is nonempty, and by [2, V. 13], A is asymptotically stable.

Corollary 7 deals with the concept of chain recurrence. Let f : M → M
and let x and y be points in M such that x 6= y. An ε-chain from x to y is a
finite sequence of points {x0, x1, . . . , xn}, where

x = x0 and y = xn and d
(
f(xi−1), xi

)
< ε for i = 0, 1, . . . , n .

If for any ε > 0 there exists an ε-chain from x to y, then we say that x can
be chained to y. If x can be chained to itself, then x is a chain recurrent
point. The set of all chain recurrent points is called the chain recurrent set.
We denote the chain recurrent set of a function f by CR(f).

Corollary 7. There is a residual subset S of the set C of all continuous
functions of the form f : M → M , where M is also connected, such that for
every function f in S, CR(f) 6= M .

Proof. See Lemma 1 of [3] and apply Theorem 6.

For the next result, we let C(X,X) denote the set of continuous functions
of the form f : X → X with the sup metric, where X is a compact metric
space. The lemma shows that if any two functions in C(X,X) are sufficiently
close, then their nth iterates remain close.

Lemma 8. Let f and g be elements of C(X,X). Then for any positive integer
n, and for any ε > 0, there exists δ > 0 such that if D(f, g) < δ, then
D(fn, gn) < ε.

Proof. First we show that the lemma is true for k = 1. That is, for any ε > 0,
there exists δ > 0 such that if D(f1, g1) = D(f, g) < δ, then D(f2, g2) < ε. Let
ε > 0 be given. Since f(X) and g(X) are compact, by the uniform continuity
of f , choose δ > 0 such that if d(f(x), g(x)) < δ, then

d
(
f(f(x)), f(g(x))

)
<
ε

2
for all x ∈ X .

Let D(f, g) < min{δ, ε/2}. Then for all x ∈ X,

d
(
f2(x), g2(x)

)
= d

(
f(f(x)), g(g(x))

)
≤ d

(
f(f(x)), f(g(x))

)
+ d

(
f(g(x)), g(g(x))

)
<
ε

2
+
ε

2
= ε .
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It follows that D(f2, g2) < ε. Hence, the lemma is true for k = 1. Since fk

and gk are continuous for any nonnegative integer k, the argument is the same
for any positive integer k > 1. This proves the second part of the induction
argument.

Remark 9. Although Lemma 8 is exactly the result we need to prove
Theorem 10 below, the result in Lemma 8 can be strengthened as follows:

Let f and g be elements of C(X,X). Then for any positive integer
n, and for any ε > 0, there exists δ > 0 such that if D(f, g) < δ,
then D(fk, gk) < ε for k = 1, 2, . . . , n.

For the proof, since Lemma 8 provides a δk > 0 such that D(f, g) < δk implies
that D(fk, gk) < ε, choose δ = min{δk : k = 1, 2, . . . , n}.

For the result in Theorem 10, we let f : Y → Y be a continuous func-
tion on a compact metric space Y , where Y is locally connected and con-
nected, and where Y has the fixed-point property and the absolute retract
property. By Theorem C of [4], the chain recurrent set is not the whole space
Y (i.e., CR(f) 6= Y ) iff there exists a connected open set U with U 6= Y and
fn(Cl(U)) ⊂ U for some positive integer n. We denote by C(Y, Y ) the set of
all continuous functions of the form f : Y → Y .

Theorem 10. Let C(Y, Y ) be the set of continuous functions of the form
f : Y → Y , where Y is a compact metric space which is locally connected
and connected. Suppose further that Y also has the fixed-point property and
the absolute retract property. Then the set of functions in C(Y, Y ) which have
every point chain recurrent, is nowhere dense in C(Y, Y ).

Proof. By Corollary 7, there is a residual subset D of C(Y, Y ) such that for
each function g in D, CR(g) 6= Y . For any such g in C(Y, Y ), by the result in
[4], there is a connected open set U with U 6= Y and gn(Cl(U)) ⊂ U for some
positive integer n. Since gn(Cl(U)) is compact, there is a positive distance
δ > 0 between gn(Cl(U)) and the boundary of U . By Lemma 8, we can find
ε > 0 such that for any function h such that D(g, h) < ε then D(gn, hn) < δ/2,
and hn(Cl(U)) ⊂ U . Then, again by the result in [4], CR(h) 6= Y . Since any
function h, sufficiently close to g, has the property that CR(h) 6= Y , we
conclude that the set of functions in C(Y, Y ) with every point chain recurrent,
is nowhere dense in C(Y, Y ).
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