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Abstract

We shall develop the properties of an integral for Banach-valued
functions. The formalism is the generalized Riemann integral introduced
by Kurzweil [5] and Henstock [4]. More precisely, the presentation is
close to the McShane approach [6]. Besides its simplicity of presentation,
four advantages characterize this theory:

(i) the definition can be used for real-valued functions, and can be
generalized without modification to general real and complex Banach
spaces;

(ii) when a function is integrable its norm is also integrable, and the
proof is straightforward from the definition;

(iii) for finite dimension spaces the theory is equivalent to the Mc-
Shane’s theory, which is itself equivalent to the Lebesgue’s theory;

(iv) and lastly, for general Banach space, we can prove the equiva-
lence to the Bochner’s theory.

1 Gauges, Tagged Partitions of [a, b] and Conventions

In the following, (X, ‖ ‖) will denote a Banach space.
Let [a, b] be a real interval, (a < b). By definition, a gauge on [a, b] is a

function δ from [a, b] to R∗+.
Following the McShane definition [6], a tagged partition (([xi−1, xi])1≤i≤n,

(ci)1≤i≤n), is a couple of finite sequences where the closed intervals
([xi−1, xi])1≤i≤n form a partition of [a, b] and the numbers (ci)1≤i≤n are called
the corresponding tags.

A tagged partition (([xi−1, xi])1≤i≤n, (ci)1≤i≤n) is subordinate to a gauge
δ if

∀i ∈ {1, . . . , n}, ci − δ(ci) ≤ xi−1 < xi ≤ ci + δ(ci).
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In order to simplify we write (x, c), where x = ([xi−1, xi])1≤i≤n and c =
(ci)1≤i≤n.

And lastly, for a tagged partition (x, c) of [a, b], the Riemann sum of f :
[a, b]→ X for this partition is

Sf (x, c) =
∑
i

(xi − xi−1)f(ci).

2 Definitions and Characterization

Throughout the paper, a function f : [a, b]→ E is called integrable if, for each
ε > 0, we can find a gauge δε such that∑

i

‖(xi − xi−1)(f(ci)− f(c′i))‖ ≤ ε

whenever (x, c) and (x, c′) are tagged partitions of [a, b] subordinate to δε.
For an integrable function f , a gauge satisfying this property for ε is said

to be ε-adapted (to f).

Theorem 2.1. Let f : [a, b] → X be an integrable function, and for every
ε > 0, a gauge δε ε-adapted.

For every family of tagged partitions ((xε, cε))ε>0 respectively subordinate
to (δε)ε>0, the function ε→ Sf (xε, cε) has a limit when ε goes to 0. This limit
does not depend on the sequence chosen. By definition, it is the integral of f

on [a, b] and it is denoted by
∫ b

a

f .

Proof. We first prove the theorem for increasing families of gauges.
Let (δε)ε>0 be a family of ε-adapted gauges such that δα ≤ δβ for 0 <

α ≤ β, and let ((xε, cε))ε>0 be a family of tagged partitions respectively
subordinate to (δε)ε>0.

For 0 < α ≤ β, we can merge the partitions xα and xβ into a finer one
xα,β . Then, we build (xα,β , cα,β) from (xα, cα) by repeating tags as soon as
necessary. The same work can be done from (xβ , cβ) to get (xα,β , cβ,α).

Thus, (xα,β , cα,β) and (xα,β , cβ,α) are subordinate to δβ , and

‖Sf (xα, cα)− Sf (xβ , cβ)‖ = ‖Sf (xα,β , cα,β)− Sf (xα,β , cβ,α)‖ ≤ β.

The family (Sf (xε, cε))ε>0 satisfies the Cauchy property, and it converges.
Now, let (δε)ε>0 be a general family of gauges adapted to f and ((xε, cε))ε>0

a family of subordinate tagged partitions. We have to show the convergence of



A Riemann Integral for Banach-Valued Functions 921

(Sf (xεn , cεn))n∈N for every decreasing sequence (εn)n∈N with null limit. Let
(εn)n∈N be such sequence.

We define another family of gauges (δ̃ε)ε>0 as follows : we set δ̃ε = δε0
for every ε ≥ ε0, and δ̃ε = min(δε0 , . . . , δεn

), whenever ε ∈ [εn, εn−1[, n ∈ N∗.
This family is increasing and obviously adapted to f . From the previous result,
we conclude that (Sf (xεn , cεn))n∈N converges. Accordingly, ε 7→ Sf (xε, cε)
has a limit when ε goes to 0. Finally, let (δε)ε>0 and (δ′ε)ε>0 two families of
gauges adapted to f with respective families of subordinate tagged partitions
((xε, cε))ε>0 and ((x′ε, c

′
ε))ε>0. For ε > 0, we can build δ′′ε and (x′′ε , c

′′
ε ) as

follows : δ′′ε = δε and (x′′ε , c
′′
ε ) = (xε, cε) whenever ε ∈ Q∗+, δ′′ε = δ′ε and

(x′′ε , c
′′
ε ) = (x′ε, c

′
ε) when ε ∈ R∗+ \Q.

From above, the functions ε 7→ Sf (xε, cε), ε 7→ Sf (x′ε, c
′
ε) and ε 7→ Sf (x′′ε , c

′′
ε )

have limits which must be the same and the theorem is proved.

3 Properties of the Integral

Let f and g be integrable functions on [a, b]. The proofs of the following results
are identical to the proofs for real-valued functions (see [2] for instance).

Theorem 3.1.

(i) The functions f + g and λf are integrable for all scalars λ. Thus, the
set of integrable functions has a vector space structure.

(ii) The application f 7→
∫ b

a

f is a linear form.

(iii) If f : [a, b]→ X is integrable, the restriction of f to [r, s] ⊂ [a, b] is
integrable (on [r, s]). This result allows us to define on [a, b] a function

by F : t→
∫ t

a

f .

(iv) Chasles’ Relation. Let a < r < b and f : [a, b] → X be a function
such that restrictions of f to [a, r] and [r, b] are integrable. Then f is
integrable on [a, b] and∫ b

a

f =
∫ r

a

f +
∫ b

r

f.

The following theorem is the main tool to establish more advanced results.

Theorem 3.2. Let f : [a, b] → X be an integrable function and ε > 0. For
every gauge δ ε-adapted we have∑

i

∥∥∥(xi − xi−1)f(ci)−
∫ xi

xi−1

f
∥∥∥ ≤ ε
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whenever (x, c) is a tagged partition subordinate to δ.

Proof. The proof follows the ideas of the usual Henstock-Saks Lemma.
Let us fix a tagged partition (x, c) = (([xi−1, xi])1≤i≤p, (ci)1≤i≤p) subordi-

nate to δ.
Let (δε)ε>0 be a family of gauges adapted to f . We can assume that δε ≤ δ

for every ε > 0 (otherwise, we use δ′ε = min(δ, δε)).
For every integer i ∈ {1, . . . , p} and ε > 0, let (xε,i, cε,i) be a tagged parti-

tion of [xi−1, xi] subordinate to the restriction of δε at this interval. Obviously,
we can merge those p tagged partitions to provide a tagged partition (xε, cε)
of [a, b] subordinate to δε.

From Theorem 2.1, lim
ε→0

Sf (xε,i, cε,i) =
∫ xi

xi−1

f .

We can also build a tagged partition (xε, dε) by merging the tagged par-
titions (xε,i, dε,i), 1 ≤ i ≤ p, where for every i the sequence of tags dε,i is a
repetition of the point ci. Obviously, (xε, dε) is subordinate to δ.

Now, for every ε, the tagged partitions (xε, cε) and (xε, dε) are subordinate
to δ. Collecting packets, we find

p∑
i=1

∑
j

‖(xε,ij − x
ε,i
j−1)(f(ci)− f(cε,ij ))‖ ≤ ε,

and
p∑
i=1

∥∥∥(xi − xi−1)f(ci)−
∑
j

(xε,ij − x
ε,i
j−1)f(cε,ij )

∥∥∥
=

p∑
i=1

∥∥∥∑
j

(xε,ij − x
ε,i
j−1)(f(ci)− f(cε,ij ))

∥∥∥ ≤ ε.
We get the result when ε goes to 0.

We can prove the continuity of F : t 7→
∫ t

a

f on [a, b] from Theorem 3.2. In

fact, we have a classical stronger result from the generalized Riemann theories.

Theorem 3.3. Let f : [a, b]→ X be integrable, then the function F : t 7→
∫ t

a

f

is absolutely continuous.

Proof. Let ε > 0, δ a gauge
ε

2
-adapted to f and (([xi−1, xi])1≤i≤p, (ci)1≤i≤p)

a tagged partition subordinate to δ. We set M = 1 + max
1≤i≤p

(‖f(ci)‖) and

η =
ε

2M
.
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Let ([rk, sk])0≤k≤q be a collection of disjoint intervals included into [a, b]

such that
q∑

k=0

(sk − rk) ≤ η.

Repeating tags ci when necessary, we can include the points rk and sk into
the partition. We get a new tagged partition subordinate to δ. From Theorem
3.2 and the triangle inequality, we find

q∑
k=0

∥∥F (sk)− F (rk)
∥∥ =

q∑
k=0

∥∥∫ sk

rk

f
∥∥ ≤ ε

2
+

q∑
k=0

∥∥(sk − rk)f(ck)
∥∥ ≤ ε,

which is exactly the absolute continuity of F .

Theorem 3.4. The Fundamental Theorem of Calculus Let f : [a, b]→
X be continuous on [a, b]. If f is differentiable on [a, b] with f ′ integrable on
[a, b], then ∫ b

a

f ′ = f(b)− f(a).

Let us notice that we can find differentiable functions f such that ||f ′|| is
not integrable. We will see that such functions f ′ cannot be integrable. So,
the hypothesis of integrability is necessary and is the weakest one.
Proof. The proof follows the original Henstock’s proof [4] with an extra
argument.

Let ε > 0 and δ′ be a gauge ε-adapted to f ′.
For every t ∈ [a, b], we can find δ′′(t) > 0 such that

∀u ∈ [a, b] ∩ [t− δ′′(t), t+ δ′′(t)], ||f(u)− f(t)− (u− t)f ′(t)|| ≤ ε|u− t|.

We define δ = min(δ′, δ′′). From Borel-Lebesgue Theorem, we can find a
subdivision (x, c) subordinate to δ such that xi−1 ≤ ci ≤ xi for every index
[4].

In one hand, from Theorem 3.2 we have
∥∥Sf ′(x, c)− ∫ b

a

f ′
∥∥ ≤ ε, on the

other hand,

∥∥Sf ′(x, c)− (f(b)− f(a))
∥∥ ≤∑∥∥(xi − xi−1)f ′(ci)− (f(xi)− f(xi−1)

∥∥
≤
∑∥∥(xi − ci)f ′(ci)− (f(xi)− f(ci))

∥∥
+
∑∥∥(ci − xi−1)f ′(ci)− (f(ci)− f(xi−1))

∥∥
≤ ε
∑
|xi − ci|+ |ci − xi−1| = ε

∑
(xi − xi−1) =

= ε(b− a).
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So, we have
∥∥∫ b

a

f ′ − (f(b)− f(a))
∥∥ ≤ (1 + b− a)ε for every ε > 0.

The following result studies the reverse problem and will be useful to es-
tablish the measurability of integrable functions.

Theorem 3.5. Let f : [a, b] → X be an integrable function and, for all t ∈

[a, b], let F (t) =
∫ t

a

f . Then the function F is differentiable almost everywhere

on [a, b] and F ′(t) = f(t) almost everywhere on [a, b].

Proof. The proof of this result is virtually identical to the proof for real-
valued functions and the reader is referred to [2] p. 145 for the detail (using left
and right derivatives instead of upper and lower left and right derivatives).

4 When X is a Finite Dimensional Space

In this section only, the dimension of X is finite.
We want to show that the definitions 1 and 2 provide the McShane theory,

itself equivalent to the Lebesgue theory (one more time, we refer to [2] for this
result).

Let us recall the McShane integrability definition.
A function f : [a, b] → X is McShane-integrable on [a, b] if there exists a

vector λ with the following properties : for each ε > 0 there exists a gauge δ
on [a, b] such that ‖Sf (x, c) − λ‖ ≤ ε whenever (x, c) is a tagged partition of
[a, b] subordinate to δ. By definition, λ is the McShane integral of f on [a, b].

The following Cauchy criteria is easy to prove.

Theorem 4.1. A function f : [a, b] → R is McShane-integrable on [a, b] if
and only if for each ε > 0 there exists a gauge δε such that∥∥Sf (x, c)− Sf (x′, c′)

∥∥ ≤ ε.
whenever (x, c) and (x′, c′) are tagged partitions of [a, b] subordinate to δ.

Theorem 4.2. For a finite dimension space X, a function f : [a, b] → X is
integrable if and only if it is McShane-integrable. In this case, integrals on
[a, b] are the same.

Proof. Let f be an integrable function. For ε > 0, let δε be a gauge
on [a, b] ε-adapted (for the definition 1) and (x, c) and (x′, c′) two tagged
partitions subordinate to δε. Proceeding as in the the proof of Theorem 2.1
(merging of x and x′ followed by a repetition of tags when needed), we find
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that ‖Sf (x, c)− Sf (x′, c′)‖ ≤ ε from the triangle inequality. So, the function
f is McShane-integrable.

Conversely, let f be a McShane-integrable function. For ε > 0 we can find
a gauge δ satisfying ∑

i

∥∥(xi − xi−1)f(ci)−
∫ xi

xi−1

f
∥∥ ≤ ε

whenever (x, c) is a tagged partition subordinate to δ (see [2] for this result).
We have to recall that this inequality is only true for X = R and finite dimen-
sion spaces in a wider sense.

Accordingly, for two tagged partitions (x, c) and (x, c′) subordinate to δ,
we have ∑

i

∥∥(xi − xi−1)(f(ci)− f(c′i)
∥∥ ≤ 2ε,

and f is integrable. The integrals are the same from Theorem 2.1.

Let us notice that the above definition can be extended to a general Banach
space. Unfortunately, this leads to a theory with non-absolutely integrable
functions [3].

5 Integrability of the Norm

Once again, X is a general Banach space.
From Theorem 4.2 when X = R, we get the following result.

Theorem 5.1. Let f : [a, b] → X be an integrable function. Then, the func-
tion ||f || : [a, b] → R is integrable (i.e. is McShane or Lebesgue integrable)
and ∥∥∥∫ b

a

f
∥∥∥ ≤ ∫ b

a

‖f‖.

Proof. The triangle inequality applied to the definition 1 for f provides a
straightforward proof of the integrability for ‖f‖.

Moreover, every gauge ε-adapted to f is also ε-adapted to ||f ||. Using
Theorem 2.1, the final inequality is a simple consequence of ‖Sf (x, c)‖ ≤
S‖f‖(x, c) available for every tagged partition of [a, b].

6 Measurability of Integrable Functions

A function f : [a, b] → X is called simple if there exists z1, z2, . . . , zn ∈ X

and E1, E2, . . . , Ep measurable subsets of [a, b] such that f =
p∑
i=1

ziχEi
, where
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χEi(t) = 1 if t ∈ Ei and χEi(t) = 0 if t /∈ Ei.
A function f : [a, b]→ X is measurable if it is a pointwise limit of a simple

functions sequence.
The usual facts about the stability of measurable functions under sums,

scalar multiples and pointwise limits holds.

Lemma 6.1. Let f : [a, b]→ X be an almost everywhere null function. Then
f is integrable with null integral.

Proof. From the hypotheses, ‖f‖ is null almost everywhere. It is Lebesgue-
integrable, and accordingly integrable.

From Theorem 3.2, for each ε > 0 there exists a gauge δε such that∑
i

∣∣∣(xi − xi−1)‖f(ci)‖ −
∫ xi

xi−1

‖f‖
∣∣∣ =

∑
i

(xi − xi−1)‖f(ci)‖ ≤ ε

whenever (x, c) is a tagged partition subordinate to δε.
Thus, if (x, c) and (x, c′) are subordinate to δε, we have∑

i

‖(xi − xi−1)(f(ci)− f(c′i))‖ ≤ 2ε,

which proves the integrability for f . From Theorem 5.1, we have
∫ b

a

f = 0.

Corollary 6.1. Let f : [a, b] → X be integrable on [a, b]. If f = g almost

everywhere on [a, b], then g is integrable on [a, b] and
∫ b

a

f =
∫ b

a

g.

Now, we can prove the main result of this section : the measurability of
the integrable functions.

Theorem 6.1. If f : [a, b]→ X is integrable, then f is also measurable.

Proof. We set F (t) =
∫ t

a

f for t ∈ [a, b]. From Theorem 3.5, f is the

derivative almost everywhere of F . So f is an almost everywhere limit of a
sequence of measurable functions and we conclude.

7 Convergence Theorems

Let (fn) be a sequence of integrable functions defined on [a, b] and X valued.
The sequence (fn) is equi-integrable on [a, b] if for each ε > 0 there exist a
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gauge δε on [a, b] such that∑
i

∥∥(xi − xi−1)(fn(ci)− fn(c′i))
∥∥ ≤ ε

whenever (x, c) and (x, c′) are tagged subdivisions of [a, b] subordinate to δε.
Just a word about terminology. This notion, well known for generalized

Riemann theories, is usually referred as to the uniform integrability. According
to it’s use for continuous functions, the term “equi-integrability” seems to be
better. Just as with uniform continuity, the term “uniform integrability” refers
to the integrable function admitting a constant gauge δε for every ε > 0. In
consequence, the uniform integrability of a function should be nothing other
than its Riemann integrability.

The following theorem is easy to prove and includes the Dominated Con-
vergence Theorem.

Theorem 7.1. Let (fn) be a sequence of equi-integrable functions on [a, b]
and X valued. If (fn) converges pointwise to f on [a, b] then f is integrable
and

lim
n→+∞

∫ b

a

‖fn − f‖ = 0 and lim
n→+∞

∫ b

a

fn =
∫ b

a

f.

Proof. For ε > 0, let δε be a gauge ε-adapted to every functions fn. So we
have

∀n ∈ N,
∑
i

∥∥(xi − xi−1)(fn(ci)− fn(c′i))
∥∥ ≤ ε

whenever (x, c) and (x, c′) are tagged partitions subordinate to δ.
The integrability of f is a consequence of a simple limit, moreover δ is also

ε-adapted to f .
Let (x, c) be a tagged partition subordinate to δ. We know that the se-

quence (Sfn(x, c))n∈N converges toward Sf (x, c), and we deduce from Theorem
3.2

∀n ∈ N,
∥∥Sfn

(x, c)−
∫ b

a

fn
∥∥ ≤ ε, and

∥∥Sf (x, c)−
∫ b

a

f
∥∥ ≤ ε.

Then
∥∥∫ b

a

fn −
∫ b

a

f
∥∥ ≤ 3ε for large n.

The last inequality lim
n→+∞

∫ b

a

‖fn − f‖ = 0 is obtained by applying the

above result to the equi-integrable sequence (‖fn − f‖).
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Corollary 7.1. Dominated Convergence Theorem Let (fn)n∈N be a se-
quence of integrable functions from [a, b] to X and such that (fn) converge
pointwise almost everywhere to f on [a, b]. Suppose there exists an integrable
function g : [a, b] → R+ such that ‖fn‖ ≤ g almost everywhere and for every
integer n. Then f is integrable,

lim
n→+∞

∫ b

a

‖fp − f‖ = 0, and lim
n→+∞

∫ b

a

fn =
∫ b

a

f.

Proof. The proof is very close to the proof for real valued functions (using
Theorem 3.2 and norms instead of absolute values). We first show that it is
enough to prove the result with an everywhere pointwise convergence, then we
prove that such a sequence is also equi-integrable. This point is technical and
can be obtained from Egorov’s Theorem. We refer to [2] for details.

To conclude this section let us establish two properties for the primitives
of an equi-integrable sequence.

Theorem 7.2. Let (fn) be a sequence of equi-integrable functions and suppose

(fn) converges pointwise to f on [a, b]. For every n, we set Fn(t) =
∫ t

a

fn and

F (t) =
∫ t

a

f .

(i) The sequence (Fn) converges uniformly to F .

(ii) The sequence (Fn) is uniformly absolutely continuous on [a, b].

Proof. Let ε > 0 and let δ be a gauge ε-adapted to the sequence (fn). We
take a tagged partition (x, c) = (([xi−1, xi])1≤i≤q, (ci)1≤i≤q) subordinate to δ
and n0 such that

∀n ≥ n0, ∀i ∈ {1, . . . , q}, ‖fn(ci)− f(ci)‖ ≤
ε

b− a
.

Let M = 1 + max{||fn(ci)||, n ≥ n0 and 1 ≤ i ≤ q}.
For the point (i). Let t ∈ [a, b], and 0 ≤ p < q such that xp ≤ t < xp+1.

From Theorem 3.2 and the triangle inequality we get

∀n ∈ N,
∥∥ p∑
i=1

(xi − xi−1)fn(ci) + (t− xp)fn(cp)− Fn(t)
∥∥ ≤ ε.

The gauge δ is also ε-adapted to f , so

∥∥ p∑
i=1

(xi − xi−1)f(ci) + (t− xp)f(cp)− F (t)
∥∥ ≤ ε.
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We conclude to ‖Fn(t)− F (t)‖ ≤ 2ε+
ε

(b− a)
(b− a) = 3ε as soon as n ≥ n0.

For (ii), let ([ri, si])0≤i≤p be a finite collection of disjoint intervals of [a, b].
Adding the points (ri) and (si) to x and repeating tags when necessary, we
build a new tagged partition (x′, c′) subordinate to δ. From Theorem 3.2 we
have

∀n ∈ N,
p∑
k=0

∥∥ ∑
iwith rk<xi≤sk

(x′i − x′i−1)fn(c′i)−
∫ sk

rk

fn
∥∥ ≤ ε.

Then, for n ≥ n0 we get
p∑
k=0

‖Fn(sk)− Fn(rk)‖ ≤ 2ε whenever
p∑
k=0

(sk − rk) ≤

ε

M
.

Now, from the absolute continuity of F0, . . . , Fn0−1 and the above inequal-

ity, we can find η > 0 such that if
p∑
k=0

(sk − rk) ≤ η, then
p∑
k=0

∥∥Fn(sk) −

Fn(rk)
∥∥ ≤ ε for every integer n.

8 Equivalence with the Bochner Theory

In the following, µ is the Lebesgue measure on [a, b].
A measurable function f : [a, b] → X is called Bochner-integrable if there

exists a sequence of simple functions (fn) such that

lim
n→+∞

∫ b

a

‖fn − f‖dµ = 0.

Then, the integral of f on [a, b] is defined by
∫ b

a

f = lim
n→+∞

∫ b

a

fn (which is

independent of the defining sequence (fn)).

Theorem 8.1. A function f : [a, b] → X is integrable if and only if it is
Bochner-integrable. In this case, integrals are the same.

Proof. We first show that every Bochner integrable function is integrable.
Let us recall an important result for integration of Banach-valued functions

([1], corollary 3 p. 42) :
A function f : [a, b]→ X is measurable if and only if it is the almost every-

where uniform limit of a sequence of countably valued measurable functions.
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From this result, we build a sequence (gn) of simple functions such that∫ b

a

‖f − gn‖ ≤ 1/n and ‖gn‖ ≤ ‖f‖+ 1/n for every n ≥ 1 (see [1] p. 45).

Moreover, lim
n→+∞

∫ b

a

‖f − gn‖ = 0 implies that we can extract a sub-

sequence (gϕ(n)) which converges almost everywhere to f .
Now, the functions gϕ(n) are integrable and dominated by ‖f‖ + 1. From

the Dominated Convergence Theorem, f is integrable.
The converse implication is a consequence of the following Bochner’s Char-

acterization Theorem (see [1]).

Theorem 8.2. A measurable function f : [a, b]→ X is Bochner-integrable if
and only if ‖f‖ is Lebesgue integrable.

Proof. Let f be an integrable function, from Theorem 6.1 f is measurable
and ‖f‖ is Lebesgue-integrable. So, f is Bochner-integrable.

Finally, integrable functions for both theories are pointwise limit of dom-
inated sequences of simple functions and integrals on [a, b] are identical for
simple functions. Simple functions are Bochner-integrable and also integrable
(because Bochner-integrable !). Using Dominated Convergence Theorems in
both theories, we conclude to the equality of the integrals.
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