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ORTHOGONAL CONTINUOUS
FUNCTIONS

Abstract

We consider the question of whether there is an orthonormal basis
for L2 consisting of continuous functions.

1 Introduction

In elementary analysis, the typical orthonormal bases for L2[0, 1] (trig func-
tions, orthogonal polynomials, etc.) frequently consist of continuous func-
tions. It is natural to ask whether such orthonormal bases must exist if [0, 1]
is replaced by a more general space and measure. One commonly studied
generalization of [0, 1] is:

Definition 1.1. (X, ν) is a nice measure space iff X is a compact Hausdorff
space and ν is a regular Borel probability measure on X which is strictly
positive (i.e., all non-empty open sets have positive measure).

The assumption that ν is strictly positive is mainly for notational conve-
nience. In general, one can simply delete the union of all open null sets to
obtain a strictly positive measure.

Since ν is strictly positive, distinct elements of C(X) do not become equiv-
alent in L2, so we may regard C(X) as contained in L2(X, ν). There are then
two well-known situations where there is an F ⊆ C(X) which forms an or-
thonormal basis for L2(X, ν). The first is whenever L2(X, ν) is separable (by
Gram-Schmidt). The second is when X is a compact group and ν is Haar
measure (by the Peter-Weil Theorem; see, e.g., Folland [1]). However, there
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need not be such an F in general, since Theorem 3.6 yields an example where
L2(X, ν) is not separable but every orthogonal family from C(X) is countable.

In the example of Theorem 3.6, X is actually a topological group, since it
is a product of two-element spaces, and ν looks a bit like the product measure,
which in this case would be Haar measure. Nevertheless, by Theorem 2.5, no
such ν can be absolutely continuous with respect to Haar measure.

The proof for the specific example of Theorem 3.6 works equally well
whether one considers the scalar field to be R or C. However, if one starts
with an arbitrary nice (X, ν), it is reasonable to ask whether the properties
discussed here can depend on the scalar field. They do not, as we show in
Corollary 2.2. Of course, any orthogonal family of real-valued functions re-
mains orthogonal when viewed as a subfamily of L2(X, ν,C), but Corollary
2.2 explains how to replace orthogonal complex-valued functions by real-valued
ones. The familiar method from Fourier series replaces ϕ and ϕ by (ϕ+ϕ)/

√
2

and (ϕ− ϕ)/(i
√

2), but this requires assuming that ϕ ∈ F ⇐⇒ ϕ ∈ F .
One might study the following property of X: For every finite regular Borel

measure ν on X, there is an F ⊆ C(X) which forms an orthonormal basis for
L2(X, ν). We do not know whether this is equivalent to some interesting topo-
logical property of X. Note that every compact F-space and every compact
metric space has this property.

2 Basics

Throughout, when discussing C(X) and L2(X, ν) and general Hilbert spaces,
we always presume that the scalar field is the complex numbers. We shall show
that we can convert a family of orthogonal continuous functions to a family of
real-valued orthogonal continuous functions with the same span. To do this,
we use the following lemma about Hilbert spaces, which gives us a uniform
way to transform an “almost orthogonal” family to an orthogonal one:

Lemma 2.1. Suppose that H is a Hilbert space and E ⊆ H is such that the
closed linear span of E is H and {g ∈ E : (g, f) 6= 0} is countable for all f ∈ E.
Then there is an orthonormal basis F for H such that each element of F is
a finite linear combination of elements of E. Furthermore, if for all g, f ∈ E
(g, f) is real, then the coefficients in these linear combinations are real.

Proof. On E , let ∼ be the smallest equivalence relation such that g ∼ f
whenever (g, f) 6= 0. Let Ej , for j ∈ J , list all the ∼ equivalence classes.
Then the Ej are all countable, and are pairwise orthogonal. For each j, apply
Gram-Schmidt to obtain an orthonormal family Fj with the same linear span,
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such that the elements of Fj are linear combinations of elements of Ej . Then,
let F =

⋃
j Ej .

Corollary 2.2. Suppose that (X, ν) is a nice measure space and G ⊆ C(X) is
an orthonormal family. Then there is an orthonormal family F ⊆ C(X), con-
sisting of real-valued functions, such that the closed linear span of F contains
the closed linear span of G.

Proof. As usual, write each G ∈ G as G = <(G) + i=(G), where <(G) and
=(G) are real-valued functions. Let E = {<(G) : G ∈ G} ∪ {=(G) : G ∈ G}.
Then the closed linear span H of E contains G, so Lemma 2.1 will apply if
we can verify that {g ∈ E : (g, f) 6= 0}, for any f ∈ E , is countable. To see
this, apply Bessel’s inequality:

∑
G∈G |(G, f)|2 ≤ ‖f‖2. Since f is real-valued,

|(G, f)|2 = (<(G), f)2 + (=(G), f)2, so that (<(G), f) = (=(G), f) = 0 for all
but countably many G ∈ G.

In particular, if G is an orthonormal basis, we may replace G by a real-
valued orthonormal basis F . Or, if G is an uncountable orthonormal family,
then F will be a real-valued uncountable orthonormal family. So, the proper-
ties of (X, ν) considered in this paper do not depend on the scalar field.

The next definition and lemma give us a way of ensuring that there are no
uncountable orthonormal families within C(X).

Definition 2.3. We say F ⊆ C(X) is maximal orthogonal iff F is orthogonal
in L2(X, ν) and there is no orthogonal G with F $ G ⊆ C(X).

Observe that even in L2([0, 1]), a maximal orthogonal F ⊆ C([0, 1]) need
not be an orthogonal basis for L2([0, 1]). For example, its closed linear span
may be the orthogonal complement of a step function (since the continuous
functions are dense in the orthogonal complement of any step function). Nev-
ertheless:

Lemma 2.4. Suppose (X, ν) is a nice measure space, and assume that there
is a maximal orthogonal F ⊆ C(X) which is countable. Then every orthogonal
G ⊆ C(X) is countable.

Proof. Let F and G be any two orthogonal families contained in C(X). For
each fixed f ∈ F , Bessel’s Inequality implies that g ⊥ f for all but countably
many g ∈ G. If F is maximal then each element of G fails to be orthogonal to
some f ∈ F ; i.e.,

G =
⋃
f∈F

{g ∈ G : (g, f) 6= 0}

Thus, if F is also countable, then so is G.
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Now, the existence of an uncountable orthogonal family contained in C(X)
depends on ν, not just X, as the example in Section 3 shows. Nevertheless:

Theorem 2.5. Suppose that (X, ν) and (X,µ) are nice measure spaces with
µ � ν. Suppose that G ⊆ C(X) is an orthonormal basis for L2(X, ν). Then
there is an F ⊆ C(X) which is an orthonormal basis for L2(X,µ).

Proof. Fix a Baire-measurable ϕ : X → [0,∞) such that for all Borel sets E,
we have µ(E) =

∫
E
ϕ(x) dν(x) (the Radon-Nikodym Theorem guarantees such

a ϕ exists). Then
∫
ϕdν = 1. If ϕ is bounded, then the closed linear span of

G in L2(X,µ) is all of L2(X,µ), and the result follows directly by Lemma 2.1.
When ϕ is not bounded, the result still follows by Lemma 2.1, but applied to
a different family E one obtains as follows.

Choose closed Gδ sets K0 ⊆ K1 ⊆ K2 ⊆ · · · such that ϕ(x) ≤ n for all
x ∈ Kn and ν(X \

⋃
nKn) = 0. For each n, choose ψn ∈ C(X, [0, 1]) such

that Kn = ψ−1
n {1}, and note that the sequence of functions (ψn)m converges

pointwise to χKn as m→∞.
Let E be the set of all functions of the form g · (ψn)m, where g ∈ G and

m,n ∈ N. Then E ⊆ C(X) ⊆ L2(X,µ). Let H be the closed linear span of E
in L2(X,µ). Then H = L2(X,µ): To see this, first note that g · χKn

∈ H for
g ∈ G. Then, if h ∈ C(X), each h · χKn ∈ H (since ϕ is bounded on Kn), but
this implies that h ∈ H. Now, use the fact that C(X) is dense in L2(X).

The result will now follow by Lemma 2.1 if we can verify, for each f ∈
G and each m,n, p, q ∈ N, {g ∈ G : (g(ψn)m, f(ψp)q)µ 6= 0} is countable.
Now for each r ∈ N, Bessel’s Inequality (applied in L2(X, ν)) implies that∫
g(ψn)mf(ψp)qχKr

ϕdν = 0 for all but countably many g ∈ G, since the
function (ψn)mf(ψp)qχKrϕ is in L2(X, ν). It follows that (g(ψn)m, f(ψp)q)µ =∫
g(ψn)mf(ψp)q ϕdν = 0 for all but countably many g ∈ G.

3 Small Orthogonal Families

We shall build a large nice (X, ν) in which every orthogonal family of contin-
uous functions is countable. In order to do this, we apply Lemma 2.4; it is
enough to obtain some countable maximal F ⊆ C(X). Again, we shall, for
definiteness, assume that the scalar field is C. F will be obtained by projecting
X onto a small space M , for which we use the following notation.

Definition 3.1. (X, ν,Γ,M) is a nice quadruple iff (X, ν) is a nice measure
space and Γ is a continuous map onto the compact Hausdorff space M . In
this case, let µ = νΓ−1 be the induced measure on M . We regard L2(M,µ)
as contained in L2(X, ν) via the inclusion Γ∗ (where Γ∗(g) = g ◦ Γ). Let ΠΓ
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be the orthogonal projection from L2(X, ν) onto L2(M,µ). If f ∈ L2(X, ν),
we say f ⊥ L2(M,µ) iff ΠΓ(f) = 0.

Lemma 3.2. In the notation of Definition 3.1, if f ∈ L2(X, ν) then the
following are equivalent:

1. f ⊥ L2(M,µ).
2.

∫
Γ−1K

f(x) dν(x) = 0 for all closed K ⊆M .

Definition 3.3. The nice quadruple (X, ν,Γ,M) is injective iff ΠΓ is 1-1 on
C(X).

Note that this is the same as saying that a nice quadruple is injective iff
for all f ∈ C(X), if f ⊥ L2(M,µ), then f ≡ 0.

Lemma 3.4. Let (X, ν) be a nice measure space. Then the following are
equivalent:

1. Every orthogonal subfamily of C(X) is countable.
2. There is a continuous map Γ onto a compact second countable space M

such that (X, ν,Γ,M) is injective.

Proof. (2)→ (1): Assuming (2), let F ⊆ C(M) be an orthonormal basis for
L2(M). Then Γ∗(F)∪{0} ⊆ C(X), and is maximal orthogonal, so (1) follows
by Lemma 2.4.

(1) → (2): Again by Lemma 2.4, let {fn : n ∈ N} ⊆ C(X) be maximal
orthogonal. Let Γ : X → CN be the product map: (Γ(x))n = fn(x). Let M
be the range of Γ. Observe that a non-zero g ∈ C(X) with ΠΓ(g) = 0 would
contradict maximality.

The next lemma explains how we obtain the situation of Lemma 3.4.2:

Lemma 3.5. Let (X, ν,Γ,M) be a nice quadruple. Assume, for some fixed
ε > 0, we have: Whenever W ⊆ X is open and non-empty, there is a closed
K ⊆ M such that µ(K) > 0 and ν(Γ−1(K) ∩ W ) ≥ ( 1

2 + ε)µ(K). Then
(X, ν,Γ,M) is injective.

Proof. Suppose f ∈ C(X) is non-zero and satisfies f ⊥ L2(M,µ). We may
assume that ‖f‖sup = 1, and that some f(x) = 1. For any δ > 0, we may
choose a non-empty open W ⊆ X such that |f(x)− 1| ≤ δ for all x ∈W , and
then choose K as above. Applying f ⊥ L2(M,µ) to the characteristic function
of K, we have

∫
Γ−1K

f(x) dν(x) = 0, so that |
∫

Γ−1K∩W f | = |
∫

Γ−1K\W f |.
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Note that µ(K) = ν(Γ−1K), so that ν(Γ−1K \W ) ≤ ( 1
2 − ε)µ(K). So, we

have:

|
∫

Γ−1K∩W
f | ≥ ν(Γ−1K ∩W )(1− δ) ≥ (

1
2

+ ε)µ(K)(1− δ)

|
∫

Γ−1K\W
f | ≤ ν(Γ−1K \W ) ≤ (

1
2
− ε)µ(K)

So, ( 1
2 + ε)(1− δ) ≤ ( 1

2 − ε). Letting δ ↘ 0, we have a contradiction.

Note that if ε = 0, the lemma could fail; consider X = M × 2, with the
product measure.

In general, the Maharam dimension of a measure ν is the cardinality of an
orthonormal basis for L2(ν); ν is called Maharam-homogeneous iff there is no
set K of positive measure such that the dimension of ν restricted to K is less
than the dimension of ν. As usual, c = 2ℵ0 .

Theorem 3.6. There is a strictly positive regular Borel probability measure ν
on 2c (i.e., {0, 1}c, with the usual product topology) such that

1. ν is Maharam-homogeneous of dimension c.
2. L2(2c, ν) contains no uncountable orthogonal family of continuous func-

tions.

Proof. Let M = 2N, with µ the usual product measure. Let X = M×2c, and
let Γ : X →M be projection. We shall build ν on X, which is homeomorphic
to 2c.

Let {dm : m ∈ N} be dense in (0, 1)c. For each m, let λm be the product
measure on 2c obtained by flipping unfair coins with bias dm. That is, let
d1
m(α) = dm(α) and d0

m(α) = 1− dm(α). If

B = {v ∈ 2c : v(α1) = `1& · · ·&v(αr) = `r} (1)

is a basic clopen set, then λm(B) =
∏r
j=1 d

`r
m(αj).

List all non-empty clopen subsets of M as {Un : n ∈ N}. Then, choose
closed nowhere dense Km,n ⊆ Un so that the Km,n for m,n ∈ N are all disjoint,
each µ(Km,n) > 0, and

∑
m,n µ(Km,n) = 1. ¿Finally, let ν on M × 2c be the

sum of the product measures (µ �Km,n)× λm, so that for Borel E ⊆M × 2c,

ν(E) =
∑
m,n

∫
Km,n

λm(Ex) dµ(x) .

We are now done if we can verify the hypotheses of Lemma 3.5 We actually
show that whenever W ⊆ X is open and non-empty and ε > 0, there is a closed
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K ⊆M such that µ(K) > 0 and ν(Γ−1(K)∩W ) ≥ (1−ε)µ(K). To do this, we
may assume that W = Un×B, where B is as in (1) above. K will be Km,n for
a suitable m. Then ν(Γ−1(K)∩W ) = ν(Km,n ×B) = µ(Km,n)

∏r
j=1 d

`r
m(αj).

We thus only need choose m so that
∏r
j=1 d

`r
m(αj) ≥ (1− ε), which is certainly

possible since {dm : m ∈ N} is dense in (0, 1)c.

Finally, we remark that this example is as large as possible, since whenever
|C(X)| > c, there is an uncountable orthogonal family, by Lemma 3.4. (Note
that if X is an infinite compact Hausdorff space, then |C(X)| = w(X)ℵ0 , where
w(X) is the weight of X (the least size of a base for the topology)). One can,
however, construct arbitrarily large examples with no continuous orthonormal
bases by applying:

Theorem 3.7. Suppose that (X, ν) and (Y, ρ) are both nice measure spaces,
and there is an orthonormal basis for L2(X × Y, ν × ρ) contained in C(X ×
Y ). Then there are orthonormal bases for L2(X, ν), L2(Y, ρ) contained in
C(X), C(Y ), respectively.

Proof. Let G ⊆ C(X × Y ) be an orthonormal basis for L2(X × Y, ν × ρ).
To produce a basis for L2(X, ν), let Γ : X × Y → X be projection, and apply
Lemma 2.1, with E = ΠΓ(G) ⊆ H = L2(X, ν) (regarding L2(X) as contained
in L2(X × Y ), as in Definition 3.1).

First, note that the closed linear span of E will be all of L2(X), because
the closed linear span of G is L2(X × Y ) and ΠΓ is orthogonal projection.

Next, observe that for each G ∈ G, ΠΓ(G) = g, where g(x) =
∫
G(x, y) dy.

To see this, note that since G is continuous, g ∈ C(X) ⊆ L2(X). Also, for
each f ∈ L2(X),

(g, f) =
∫
g(x)f(x) dx =

∫ ∫
G(x, y)f(x) dxdy = (G, f) .

So ΠΓ(G) = g follows from the uniqueness of orthogonal projections.
In particular, E ⊆ C(X), so that Lemma 2.1 will produce an orthonormal

base contained in C(X).
Finally, countability of Ef = {g ∈ E : (g, f) 6= 0}, for any f ∈ E , follows

from Bessel’s inequality: For each g = ΠΓ(G) ∈ E , since (g, f) = (G, f), we
have

∑
{|(G, f)|2 : G ∈ G} ≤ ‖f‖2.

For example, let κ be any infinite cardinal such that κℵ0 = κ. We may
then obtain a nice (Z, µ) such that |C(Z)| = κ and there is no orthonormal
basis for L2(Z, µ) contained in C(Z); we just start with an X as in Theorem
3.6, and then Z = X × Y for a suitable Y (applying Theorem 3.7). However,
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assuming also that 2λ < κ for all λ < κ (for example, κ could be iω1 , or κ
could be strongly inaccessible), every maximal orthogonal family F ⊆ C(Z)
must have size κ: If |F| = λ < κ, we could always find distinct g, h ∈ C(Z)
such that (g, f) = (h, f) for all f ∈ F (since there are only 2λ < κ = |C(Z)|
possibilities for 〈(g, f) : f ∈ F〉). Then (g−h) ⊥ F , so F cannot be maximal.
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