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ON THE MEASURABILITY OF
FUNCTIONS f : R2 → R HAVING PAWLAK’S

PROPERTY IN ONE VARIABLE

Abstract

In this article we present a condition on the sections fy of a function
f : R2 → R having Lebesgue measurable sections fx and quasicontinuous
sections fy which implies the measurability of f . This condition is
more general than the Baire∗∗1 property introduced by R. Pawlak in [7].
Some examples of quasicontinuous functions satisfying this condition
and discontinuous on the sets of positive measure are given.

Let R be the set of all reals. In the lecture [7] R. J. Pawlak introduced the
following definition:.

Denoting by D(g) the set of all discontinuities of a function g : R → R
we say that g has the property B∗∗1 if the restricted function g � D(g) is
continuous.

The family B∗∗1 is a very interesting subclass of the class B1 of all functions
of Baire class one. It contains also some functions g for which D(g) is of
positive (Lebesgue) measure, for example the characteristic functions of closed
nowhere dense sets of positive measure.

Let A ⊂ R2 be a Sierpiński nonmeasurable set such that for every straight
line l ⊂ R2, card(l∩A) ≤ 2 ([9]). Then the characteristic function f of the set
A is nonmeasurable (in the sense of Lebesgue) and all sections fx(t) = f(x, t)
and fy(u) = f(u, y), t, u, x, y ∈ R, have Pawlak’s property B∗∗1 and are
continuous almost everywhere.

Let D ⊂ R be a nonempty set. Recall that a function h : D → R is
quasicontinuous ([5, 6]) at a point x ∈ D if for every positive real η and for
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every open interval I containing x there is an open interval J ⊂ I such that
J ∩D 6= ∅ and f(J ∩D) ⊂ (f(x)− η, f(x) + η).

Denote by A the family of all functions g : R → R for which D(g) are
nowhere dense and for each nonempty set E ⊂ D(g) belonging to the density
topology ([1, 10]) the restricted function g � E is quasicontinuous.

Evidently, B∗∗1 ⊂ A and B∗∗1 6= A, since all almost everywhere continu-
ous functions g having nowhere dense sets D(g) and such that g � D(g) are
discontinuous belong to A \ B∗∗1 .

There are also non Borel functions belonging to A. For example, for every
non Borel set B containing in the Cantor ternary set the characteristic function
of the set B belongs to A and is not Borel.

Theorem 1. Let f : R2 → R be a function such that all sections fx, x ∈ R,
are measurable. If all sections fy, y ∈ R, are quasicontinuous and belong to
the family A, then f is measurable as the function of two variables.

In the proof of this theorem we apply the following Lemma which is a
particular case of Davies Lemma from [2].

Lemma 1. Let f : R2 → R be a function. If for every positive real η and
for each measurable set A ⊂ R2 of positive measure there is a measurable
set B ⊂ A of positive measure such that oscB f ≤ η, then the function f is
measurable.

Proof of Theorem 1. We will show that the function f satisfies the as-
sumptions of the above Lemma. Let A ⊂ R2 be a set of positive measure
and let η be a positive real. For x, y ∈ R let Ax = {u ∈ R; (x, u) ∈ A}
be the vertical section of the set A corresponding to x and respectively let
Ay = {t ∈ R; (t, y) ∈ A} be the horizontal section of the set A corresponding
to y. Moreover let

K = {(x, y) ∈ A;x is a density point of Ay},
E = {(x, y) ∈ K;x ∈ D(fy)}

and let H = K \ E. Denote by µ (µ2) Lebesgue measure in R (R2) and
observe that by a well known theorem from Saks’ monograph ([8], pp. 130–
131) µ2(A \K) = 0.

Now we will consider two cases.
Case I. The set H is not of measure 0.

Then for every point (x, y) ∈ H there are open intervals I(x, y) and J(x, y)
with rational endpoints such that µ(I(x, y) ∩ Ay) > 0 and d(J(x, y)) < η

4
(d(J(x, y)) denotes the length of the interval J(x, y)) and fy(I(x, y)) ⊂ J(x, y).
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Let I1, I2, . . . , In, . . . be a sequence of all open intervals with rational endpoints,
let J1, . . . , Jn, . . . be an enumeration of all open intervals with d(Jn) < η

4 and
for n,m = 1, 2, . . . let

An,m = {(x, y) ∈ H; I(x, y) = In and J(x, y) = Jm}.

Then H =
⋃∞
n,m=1An,m, and consequently there is a pair of positive integers

j, k for which the set Aj,k is not of measure zero. Let

V ={y;∃x(x, y) ∈ Aj,k},
U ={y; y is an outer density point of the set V }

and X = K ∩ (Ij × U). The set X is measurable and by Fubini’s Theorem
it is of positive measure. Find a point w ∈ Ij such that the section Xw is
measurable and the linear Lebesgue measure µ(Xw) is positive. Since the
section fw is measurable and consequently almost everywhere approximately
continuous, there is a nonempty measurable set G ⊂ Xw of finite measure
belonging to the density topology ([1]) such that f(w, u) ∈ Jk for u ∈ G.
Put F = K ∩ (Ij × G) and M = (K ∩ (Ij × G)) ∩ f−1(Lk), where Lk is the
closed interval having the same center as Jk and length equal η. By Fubini’s
Theorem the set F is measurable and of positive measure. We will prove that
the set F \M is of measure zero.

In reality, if the set F \M is not of measure zero, then by the quasicontinuity
of the sections fy for each point (x, y) ∈ F \ M there is an open interval
K(x, y) ⊂ Ij with rational endpoints such that f(t, y) ∈ R\Jk for t ∈ K(x, y).
So there is an open interval I ⊂ Ij such that the set

Z = {(x, y) ∈ F \M ;K(x, y) = I}

is not of measure zero. Let W = {y ∈ R;∃x(x, y) ∈ Z} and let v ∈ I be
a point. Then for y ∈ W we have f(v, y) ∈ R \ Lk and for y ∈ G ∩ V the
relation f(v, y) ∈ Jk ⊂ Lk holds. Since the section fv is measurable, we obtain
a contradiction.

Let B = F \ M. Then the set B ⊂ A is measurable, µ2(B) > 0 and
oscB f ≤ η.
Case II. The set H is of measure 0.

In this case we put

K1 = {(x, y) ∈ E;x is a density point of Ey}.

Since all sections fy ∈ A, y ∈ R, as in Case I, we find open intervals I, J and
a set P ⊂ R such that d(J) < η

4 , P is not of measure zero, I ∩ (K1)y 6= ∅ for
y ∈ P and f(x, y) ∈ J for (x, y) ∈ K1 ∩ (I × P ). Let

Z = {y; the outer density of the section Px at y is 1}
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and S = K1∩(I×Z). Then S is measurable and by Fubini’s Theorem µ2(S) >
0. Put

U = {(x, y) ∈ S; f(x, y) ∈ R \ L},

where L is the open interval of length η having the same center as J . We will
prove that µ2(U) = 0. If not, then there are an open interval I1 ⊂ I and a
set B1 ⊂ Z which is not of measure zero such that µ(I ∩ Sx) > 0 for y ∈ B1,
and f(x, y) ∈ R \ J for (x, y) ∈ S ∩ (I1 × B1). If x ∈ I1 is a point such that
µ(Sx) > 0, then we obtain a contradiction to the measurability of the section
fx. So, µ2(U) = 0, the set B = S \ U ⊂ K ⊂ A is measurable, µ2(B) > 0 and
oscB f ≤ η.

Corollary 1. If all sections fx, x ∈ R, of a function f : R2 → R are measur-
able and all sections fy, y ∈ R, are quasicontinuous and almost everywhere
continuous, then f is measurable.

Remark 1. It is obvious to observe that if a function g : R → R has the
Darboux property and belongs to the family B∗∗1 , then g ∈ A and g is quasi-
continuous. So, if all sections fy of a function f : R2 → R have the Darboux
property and belong to B∗∗1 and if all sections fx are measurable, then f is
measurable.

In articles [3, 4] some other conditions are given implying the measurability
of the function f : R2 → R having the measurable sections fx. One is called
strong approximate quasicontinuity ([3]) and the second is denoted by (H)
([4]). However, each of these conditions implies the continuity at almost all
points. The next example shows that there are Darboux functions g with D(g)
of positive measure in the class B∗∗1 .

Example 1. Let C ⊂ [0, 1] be a Cantor set of positive measure. In every
component (a, b) of the open set (0, 1) \ C we find a closed interval I(a, b) =
[c(a, b), d(a, b)] ⊂ (a, b) and a continuous function f(a,b) : (a, b) → (0, 1) such
that

f(a,b)(I(a, b)) = [0, 1] and f(a,b)((a, b) \ I(a, b)) = {0}.

Putting

g(x) =

{
f(a,b)(x) for x ∈ (a, b), where (a, b) is a component of (0, 1) \ C
0 otherwise

we obtain a function satisfying all required properties.
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