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SYMMETRICALLY CONTINUOUS
FUNCTIONS ON VARIOUS SUBSETS OF

THE REAL LINE

Abstract

We define symmetric continuity for functions defined on arbitrary
subsets of R. The main result is that when a symmetrically continuous
function is defined on a measurable set (a set with the Baire property),
then it is continuous almost everywhere (on a residual set, respectively).
This generalizes the known result for functions defined on the whole real
line.

1 Introduction

The study of symmetric functions and symmetrically continuous functions
stems from the theory of trigonometric series. In theory of trigonometric
series, we study functions defined on various subsets of R, while symmetrically
continuous functions have been studied so far only on the whole real line or on
intervals. We examine basic properties of symmetrically continuous functions
defined on arbitrary subsets of R.

We say that a function f : R → R is symmetrically continuous at a point
x ∈ R if

∀ε > 0 ∃δ > 0 ∀|h| < δ |f(x+ h)− f(x− h)| < ε

or, equivalently
lim
h→0

f(x+ h)− f(x− h) = 0.

We define symmetrical continuity for a function defined on any subset of
reals in the following way.
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Definition 1. Let A ⊂ R. A function f : A → R is said to be symmetrically
continuous at a point x if

∀ε > 0 ∃δ > 0 ∀|h| < δ x± h ∈ A⇒ |f(x+ h)− f(x− h)| < ε.

If f is symmetrically continuous at every point of A, then we we say that
f is symmetrically continuous on A or simply symmetrically continuous.

Because of the implication above, it is possible (and in fact we will often
consider such a situation) that f is symmetrically continuous at x only because
for every x+h ∈ A the number x−h is not in A. If this happens, then we say
that f is vacuously symmetrically continuous at this point. In Section 5 we
address the issue when the domain A is symmetric; that is, x + h ∈ A if and
only if x − h ∈ A. Requiring additionally in Definition 1 that the function is
defined on a symmetric domain would narrow our considerations and would
not improve our results (at least when the domain is measurable or has the
Baire property).

Note that we do not need a function f to be defined at a point x to talk
about symmetric continuity at x. However we will concentrate only on the
points from the domain (except in Theorem 2).

Obviously ordinary continuity implies symmetric continuity, but not con-
versely. Let us give some simple examples. The discontinuous function f(x) =
0 for x 6= 0 and f(0) = 1 is symmetrically continuous everywhere. The func-
tion cos

(
1
x

)
is symmetrically continuous everywhere (including 0) but sin

(
1
x

)
is not symmetrically continuous at 0.

Example 1. Let G ⊂ R be an additive group and f = χG : R→ {0, 1} be the
characteristic function of G. Then f is symmetrically continuous on G.

Indeed if a ∈ G, then for any point s = a+h its symmetric reflection about
a is a− h = 2a− s and it belongs to G if and only if s does. Outside G, f is
symmetrically continuous only at points x for which 2x ∈ G. In particular if
G is divisible by 2, then f is symmetrically discontinuous everywhere outside
G.

Example 2. Let G1 and G2 be the additive subgroups in R with G1∩G2 = {0}
and let f : G1 ∪ G2 → {0, 1} = χG1 . Then f is symmetrically continuous on
its domain.

Just as above, for any a ∈ Gi, i = 1, 2, and s ∈ R, we have s ∈ Gi if and
only if 2a− s ∈ Gi. So f is symmetrically continuous at a.

Using functions defined on domains smaller than R we may address an
old problem of Marcus to characterize the set of points at which a function
f : R → R may be symmetrically continuous. Without solving this problem
we state the following theorem.
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Theorem 2. For any set A ⊂ R there is a set X ⊂ R and a function f : X →
{0, 1} that is symmetrically continuous (vacuously) at x ∈ R (not necessarily
in X) if and only if x ∈ A.

This theorem follows immediately from [Sz, lemma 4].

In Section 2 we state the main results about continuity of symmetrically
continuous functions. Section 3 consists only of the proofs of theorems from
Section 2. In Section 4 we investigate the extension properties of symmetrically
continuous functions to bigger domains and the last section is devoted to
functions on symmetric domains.

Our notation is standard and follows [Ci] and [Th]. By an interval we
always mean a nontrivial interval (i.e., containing more than one point). For
different a, b ∈ R we write [a, b] for the interval [min(a, b),max(a, b)].

We summarize the properties of symmetrically continuous functions de-
fined on subsets of R in the chart below. We assume here that the function
f : A → R is symmetrically continuous. The property “f is extendable”
means that f has a symmetrically continuous extension, and “f is almost ex-
tendable” means that there is a symmetrically continuous function F defined
on a set containing A such that {x ∈ A : f(x) 6= F (x)} has measure zero. The
property “f can be extended” indicates that there is an extension of f which
is symmetrically continuous in every point of A.

The symbol “+” means that the function f has the property in the left
column; “-” means that it does not. Directly before the table we include some
short explanations. We also included the appropriate examples and theorems
for fast reference.

(i) A function f from A ⊂ R to R is measurable (or has the Baire property)
if f is the restriction of some measurable F : R → R (having the Baire
property) to the set A. This is the same as saying that the preimages
under f of open sets are intersections of measurable sets (sets with the
Baire property) with A. If f is as in Example 2 and G1 and G2 are of
the full outer measure (nowhere meager), then f is nonmeasurable (does
not have the Baire property).

(ii) The function χ(0,∞) on R \ {0} is an example here.

(iii) Take f is as in Example 2 with G1 and G2 nowhere meager and of the
full outer measure.

(iv) Extend f putting 0 on R \A.
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Domain A is : → R any set measurable or symmetric
with the Baire

property
↓ f is : ↓

measurable or has Thm. 4 (i) Cor. 10 & 11 (i) Ex.5
the Baire property + – + –
continuous almost Cor. 8 Ex. 3 Cor. 10 & 11 Ex. 5
everywhere on A + – + –

(ii) (ii) Ex. 5
extendable to R N/A – – –
extendable to a Ex. 3 Ex. 5

measurable set or
a set with the
Baire property N/A – N/A –

almost extendable (ii) (ii) Ex. 5
to R N/A – – –

almost extendable (iii) Cor. 10 & 11 Ex. 5
to a residual set N/A – + –
extensions preserving only original points of symmetric continuity

can be extended Thm. 20 Ex. 2 (iv)
to R N/A – – +

can be extended Thm. 20 Ex. 2 (iv)
to a residual set N/A – – +
can be almost Fact 19 (iv)
extended to R N/A ? + +

2 Continuity of Symmetrically Continuous Functions

It is always a fundamental question how some other type of continuity is
related to the ordinary continuity. Although symmetric continuity is weaker
than continuity, symmetrically continuous functions on “nice” domains must
be continuous at many points. In this section we are going to investigate the
set of points of continuity of symmetrically continuous functions defined on
arbitrary subsets of R. Our main results here are Theorem 9 and Corollaries
10 and 11, which are strengthenings of earlier known theorems, quoted below,
for functions from R to R. The proofs have been shifted to the next section
as they are long and technical.

The first result that we state was published by Stein and Zygmund in 1960.

Theorem 3. (Stein, Zygmund [SZ]) If f : R→ R is symmetrically continuous
and measurable, then it is continuous everywhere except on a set of measure
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zero and first category.

Later on Pesin and Preiss showed that the measurability assumption may
be dropped.

Theorem 4. (Pesin [Pe], Preiss [Pr]) If f : R→ R is symmetrically continu-
ous, then f is measurable.

So the obvious corollary says that symmetric continuity implies continuity
almost everywhere (in the sense of measure and category).

The category version of that corollary is an old theorem of Fried from 1937
(which uses the method of Charzyński).

Theorem 5. (Fried [Fr]) Let f : R → R be symmetrically continuous on a
residual set. Then f is continuous at every point except on a set of the first
category.

Stein and Zygmund had also a stronger result saying that measurability
and symmetric continuity only on a measurable set also implies continuity
almost everywhere on that set.

Theorem 6. (Stein, Zygmund [SZ]) If f : R→ R is measurable and symmet-
rically continuous on a measurable set E ⊂ R, then f is continuous almost
everywhere (in the sense of measure) on E.

One may suspect that here, as before, the measurability assumption is not
necessary. Indeed this is the case. It follows from the following theorem of
Belna from 1983.

Theorem 7. (Belna [Be]) Let f : R → R be an arbitrary function. Then
the set of points at which f is symmetrically continuous but not continuous
has inner measure zero and contains no second category set having the Baire
property.

Since for every function from R → R the set of points of continuity is a
Gδ set, which is both measurable and has the Baire property, we have the
following corollary.

Corollary 8. (Belna [Be]) Let f : R → R be symmetrically continuous on a
set E which is measurable (has the Baire property). Then f is continuous at
almost every point of E (on a residual subset of E).

In the corollary above the function f may of course fail to be even mea-
surable on the set R \ E. This raises a question whether we need at all the
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assumption that the function is defined on the set R\E. The answer is not ob-
vious since the proofs of all the theorems mentioned above use heavily the fact
that the function is defined everywhere on R. However, it is indeed enough
that the function f is defined only on the set E. It follows from the next
theorem, which can be regarded as a strengthening of the Belna’s result.

Theorem 9. Let f : A → R, where A is an arbitrary subset of R. Then the
set of points at which f is symmetrically continuous but not continuous has
the inner measure zero and contains no second category set having the Baire
property.

Two corollaries below are strengthings of Corollary 8.

Corollary 10. Let E ⊂ R be measurable and f : E → R be symmetrically
continuous. Then f is continuous almost everywhere on E.

Corollary 11. Let E ⊂ R have the Baire property and f : E → R be sym-
metrically continuous. Then f is continuous at every point of E except on a
meager set.

In these corollaries the assumption that E is measurable (has the Baire
property) cannot be dropped, as the following example shows.

Example 3. Let G1 be a group of full outer measure and let G2 = Q. Then
f : G1 ∪ G2 → {0, 1} defined like in Example 2 is symmetrically continuous
(on its domain) but discontinuous everywhere on G1 ∪ G2. The same is true
if G1 is a group of second category.

Indeed, since both G1 and Q are dense in R, then f must be discontinuous
everywhere.

3 Proof of the Main Result

We give the proof of Theorem 9. Theorems 16 and 17 are technical and lengthy,
but then the proof of Theorem 9 is short and easy.

We introduce two useful (though technical) definitions.

Definition 12. A symmetric covering relation on a set E ⊂ R is a family V
of closed intervals [a, b] such that a+b

2 ∈ E.

Definition 13. If V is a symmetric cover relation on E ⊂ R, then V 5 is
a family of closed intervals [a, b] such that there is a sequence of points a =
x0, x1, . . . , x5 = b such that [xi, xi+1] belong to V for i = 0, 1, 2, 3, 4. We call
the points x1, . . . , x4 the intermediate endpoints.
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Uher [Uh] proved the following theorems (which have been reformulated
by Thomson, and we give here Thomson’s versions).

Theorem 14. (Uher [Th, thm. 3.25]) Let E ⊂ R have the Baire property
and suppose V is a symmetric cover relation on E having the property that for
every x ∈ E there is a positive number δ(x) so that for every t ∈ R

0 < t < δ(x)⇒ [x− t, x+ t] ∈ V.

Then there is an open set G such that E \G is of the first category and every
interval [x− t, x+ t] contained in G belongs to V 5.

Theorem 15. (Uher [Th, thm. 3.26]) Let E ⊂ R be measurable and suppose
V is a symmetric cover relation on E having the property that for every x ∈ E
there is a positive number δ(x) so that for every t ∈ R

0 < t < δ(x)⇒ [x− t, x+ t] ∈ V.

Then, for almost all points x ∈ E (in the sense of measure), there is a neigh-
borhood Ux of x such that for each x+ t ∈ Ux the interval [x, x+ t] belongs to
V 5.

We will prove two theorems that are strengthened versions of Uher theo-
rems.

Theorem 16. Let E ⊂ R have the Baire property and suppose V is a sym-
metric cover relation on E having the property that for every x ∈ E there is a
positive number δ(x) so that for every t ∈ R

0 < t < δ(x)⇒ [x− t, x+ t] ∈ V.

Then there is an open set G such that E \G is of the first category and every
interval [x − t, x + t] contained in G is in V 5. Moreover, the intermediate
endpoints may be chosen from the set E.

Theorem 17. Let E ⊂ R be measurable and suppose V is a symmetric cover
relation on E having the property that for every x ∈ E there is a positive
number δ(x) so that for every t ∈ R

0 < t < δ(x)⇒ [x− t, x+ t] ∈ V.

Then, for almost all points x ∈ E (in the sense of measure), there is a neigh-
borhood Ux of x such that whenever x + t ∈ Ux, then the interval [x, x + t]
belongs to V 5. Moreover, the intermediate endpoints may be chosen from the
set E.
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As we see, only the last parts of Theorems 16 and 17 make them stronger
than their Uher/Thomson’s counterparts. The structure of our proof is essen-
tially identical to that presented in [Th] (attributed to Humke and Laczkovich).
However, our proof is considerably more complicated from technical point of
view.
Proof of Theorem 16. Let I denote the family of all open intervals I with
the property that for every x, y ∈ I there is a chain x = x0, x1, . . . , x5 = y
satisfying

[xi, xi+1] ∈ V for i = 0, 1, 2, 3, 4 and xi ∈ E for i = 1, 2, 3, 4. (∗)

We will show that

if E is residual in (a, b), then there is a subinterval of (a, b) belonging to I.
(1)

The statement of the theorem then follows by taking for the set G a union of
a maximal pairwise disjoint subfamily of I. Indeed any interval contained in
G is also contained in some interval from I so it satisfies the assertion of the
theorem. To see that E \G is first category note that the set E is residual in
some nonempty open set U for which E \ U is meager. But then U consists
of disjoint intervals (a, b) and E is residual in each of them. So G is dense in
U and, since it is open, it is residual in U . Thus E \G ⊂ (E \U) ∪ (U \G) is
meager as claimed.

To show (1) assume that E is residual in (a, b). For any positive n ∈ ω let

En =
{
x ∈ E : 0 < t <

1
n
⇒ [x− t, x+ t] ∈ V

}
.

Then E =
⋃∞
n=1En and there is a number n ∈ ω so that En is of second

category in (a, b). Thus there is an interval I ⊂ (a, b) such that En is of second
category in every subinterval of I. Assume additionally that the length |I| of
I is less than 1

n . Take the interval I ′ concentric with I and of the length 1
10 |I|.

This is this interval I ′ that, as we shall show, belongs to I.
Let x, y ∈ I ′, x < y. For the sake of simplicity assume that x = 0. For

x 6= 0 we repeat the construction below with the set E replaced by E − x.
Note that for any numbers t with |t| < 3

2 |I
′| = 3

20 |I| and r with 1
2 ≤ |r| ≤ 2,

the set
rEn + t is second category in every subinterval of I ′. (2)

To see this note that since 0 ∈ I ′, [−0.9|I|, 0.9|I|] ⊂ I. Since |r| ≥ 1
2 we have

[−0.45|I|, 0.45|I|] ⊂ rI and since |t| ≤ 3
2 |I
′| = 0.15|I|, [−0.3|I|, 0.3|I|] ⊂ rI+t.

We see that the interval I ′ is contained in every interval rI + t. Since En is of
second category in every subinterval of I, so is rEn + t in rI + t.
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Similarly, the sets

±1
2
E + t are residual in I ′ for |t| < 3

2 |I
′|. (3)

We want to find a 5-element chain 0 = x0, x1, . . . , x5 = y satisfying (∗). To do
this we will find an interval J ⊂

(
9
10y, y

)
such that for every z ∈ J there is a

four element chain 0 = x0, x1, . . . , x4 = z satisfying

[xi, xi+1] ∈ V for i = 0, 1, 2, 3 and xi ∈ E for i = 1, 2, 3. (∗∗)

This will finish the proof since then we select z ∈ J such that z is also in the
set Z =

{
z ∈

(
9
10y, y

)
: z ∈ E and [z, y] ∈ V

}
. The intersection of J and Z is

nonempty since (2En−y)∩E∩
(

9
10y, y

)
⊂ Z (as z ∈ 2En−y implies z+y

2 ∈ En
so [z, y] ∈ V ) and, by (2), 2En − y is second category in every subinterval of
I ′.

In the interval
(

9
10y, y

)
the set E is residual and, by (2), En+ 3

4y is second
category since 3

4y <
3
2 |I
′|. Hence E ∩

(
En + 3

4y
)

is also second category in(
9
10y, y

)
. It follows, from the fact that E =

⋃∞
n=1En, that there is an integer

m and an open interval J ⊂
(

9
10y, y

)
so that the set every subinterval of J .

We may assume that |J | < 1
m .

To show that J satisfies (∗∗) pick z ∈ J . By (3) the set 1
2E + 3

4y is
residual in J and, by (2), the set 1

2En + 1
4z+ 3

8y is second category in J since
3
4y,

1
4z + 3

8y < y < |I ′|. Therefore we may choose a point

t ∈
(

1
2
E +

3
4
y

)
∩
(

1
2
En +

1
4
z +

3
8
y

)
∩ J.

Since t ∈ 1
2E + 3

4y, we have

q = 2t− 3
2
y ∈ E. (4)

Now we choose a point s satisfying

s ∈
(

1
2
E +

3
4
y

)
∩
(
−1

2
E + 2t− 3

4
y

)
∩
(

1
2
E +

1
2
z

)
∩
[
Em ∩

(
En +

3
4
y

)]
∩J

and |s− t| < 1
2δ(q).

Such a point may be found since, by (3), the first three sets are residual in
J , and the fourth one is of second category in every subinterval of J so their
intersection is dense in J . Denote by p the point p = s− 3

4y and note that

|q − 2p| = 2|s− t| < δ(q) and p ∈ En. (5)
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Now define our points xi:

x0 = 0 = x,

x1 = 2p = 2s− 3
2
y ∈ E since 2

(
1
2
E +

3
4
y

)
− 3

2
y = E,

x2 = 2q − 2p = 4t− 3
2
y − 2s ∈ E since 4t− 3

2
y − 2

(
−1

2
E + 2t− 3

4
y

)
= E,

x3 = 2s− z ∈ E since 2
(

1
2
E +

1
2
z

)
− z = E,

x4 = z.

So the second part of (∗∗) is satisfied.
The centers of [xi, xi+1] are:

x0 + x1

2
= p ∈ En by (5),

x1 + x2

2
= q ∈ E by (4),

x2 + x3

2
= 2t− 3

4
y − 1

2
z ∈ En since t ∈ 1

2
En +

1
4
z +

3
8
y,

x3 + x4

2
= s ∈ Em.

To finish the proof we only need to verify that each [xi, xi+1] is in V . But
this can be seen as follows. Intervals [x0, x1] and [x2, x3] are in V since their
centers are in En and each xi is in the interval I which has the length < 1

n .
The interval [x1, x2] ∈ V since, by (5), |x1 − x1+x2

2 | = |2p − q| < δ(q). And
finally [x3, x4] belongs to V because |x4 − s| = |z − s| < 1

m as both s, z ∈ J
which has length less than 1

m .

In the proof of the next theorem we use the following notions and facts. By
|A| we denote the outer (Lebesgue) measure of the set A, d(A) denotes the set
of points of (outer) density ofA, i.e., the set

{
x ∈ R : limh→0+

|A∩[x−h,x+h]|
2h = 1

}
.

The well known theorem of Lebesgue (see e.g. [Th, thm. A.11]) says that for
any set A almost all points of A are its points of density. d(A) is always a
measurable set (even for nonmeasurable A) and d(d(A)) = d(A). If x ∈ d(A),
then ax + b ∈ d(aA + b) for a, b ∈ R, a 6= 0. In particular if A consists only
of its density points, then so does aA+ b for a, b ∈ R, a 6= 0. We also use the
following lemma.
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Lemma 18. [Th, thm. A.11] If sets An ⊂ R, where n ∈ {1, 2, . . . , k}, are all
measurable except at most one of them and z is a point of density of each of
them, then z is also a point of density of their intersection. In particular in
every neighborhood of z there is a point of

⋂k
n=1An.

Proof of Theorem 17. The proof follows the pattern of the proof of
Thm. 16; we will refer to the conditions (∗) and (∗∗) from that proof.

We assume throughout the proof that every measurable set consists only
of its density points. Let

En = {x ∈ E : 0 < t <
1
n
⇒ [x− t, x+ t] ∈ V }.

We show that every point that belongs to the set
⋃∞
n=1 d(En) has a neigh-

borhood satisfying the assertion of the theorem. Thus almost every point of
E satisfies it since E \

⋃∞
n=1 d(En) is of measure 0.

Let x be a point of density of En. Assume for notational convenience that
x = 0 (for if x 6= 0, then replace the set E by E − x). There is a number
η, 0 < η < 1

n , such that for every y with |y| < η and every t with |t| < 2|y|
each of the sets

2En + t, ± 1
2
En + t,

3
2
En + t, and E ∩ (En + t) (6)

intersects the interval ( 9
10y, y) in a set of outer measure greater than 9

100 |y|.
We may take η = 1

6δ, where δ is such that for every 0 < h < δ we have
|En∩[−h,h]|

2h ≥ 999
1000 . To see that this η works take for example the set 1

2En + t
and note that

(
1
2En + t

)
∩(0.9y, y) = 1

2 [En ∩ (1.8y − 2t, 2y − 2t)]+t. Numbers
|1.8y − 2t| and |2y − 2t| are less than 6|y| < δ, so

|En ∩ (1.8y − 2t, 2y − 2t)| =|En ∩ (−6y, 6y)
\ [En ∩ [(−6y, 6y) \ (1.8y − 2t, 2y − 2t)]] |

≥ 999
1000

12|y| − (12|y| − 0.2|y|)

=
188
1000

|y| > 2
9

100
|y|.

The calculations for other sets in (6) are similar.
Fix any y ∈ (0, η). We prove that there is a chain 0 = x0, x1, . . . , x5 = y

satisfying (∗). A similar argument would work for y < 0.
Let Z =

{
z ∈

(
9
10y, y

)
: [z, y] ∈ V

}
. Note that (2En − y) ∩ ( 9

10y, y) ⊂ Z
and so, by (6), |Z| ≥ 9

100y. To prove the theorem it is enough to show that
there is a measurable set F ⊂

(
9
10y, y

)
∩ E such that |F | > 1

100y and that
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for every z ∈ F there is a four element chain 0 = x0, . . . , x4 = z satisfying
(∗∗). Indeed if this were true, then F ∩Z 6= ∅ and choosing any z ∈ F ∩Z we
would obtain a four element chain which expanded by x5 = y would give us
our desired chain.

Recall that, by (6), |E ∩
(
En + 3

4y)
)
∩
(

9
10y, y

)
| > 9

100y, so from the fact
that E is an increasing sum of Em’s, there is an integer m so that∣∣∣∣Em ∩ (En +

3
4
y

)
∩
(

9
10
y, y

)∣∣∣∣ > 8
100

y. (7)

Denote Am = Em ∩
(
En + 3

4y
)
∩
(

9
10y, y

)
and write

F =
(

1
2
E +

3
4
y

)
∩ d
(

2
3
En +

1
2
y

)
∩ d(Am) ∩ E.

We show that all points of F have the property claimed for it.
First note that, by (6) and (7),

|F | > 1
10
y − 1

100
y − 1

100
y − 2

100
y − 1

100
y >

5
100

y.

Let z ∈ F . So z is a density point of F . Since z ∈ d
(

2
3En + 1

2y
)

it follows that
z belongs to d

(
1
2En + 1

4z + 3
8y
)

(indeed 3
4z ∈ d

(
3
4

(
2
3En + 1

2y
))

so 1
4z + 3

4z ∈
d
(

3
4

(
2
3En + 1

2y
)

+ 1
4z
)
), and since z ∈ E, z ∈ 1

2E + 1
2z.

We may pick a point t so that

t ∈
(

1
2
En +

1
4
z +

3
8
y

)
∩
(

1
2
E +

1
2
z

)
∩
(

1
2
E +

3
4
y

)
∩ d(Am)

and |z − t| < 1
m .

This is possible since by Lemma 18 since all sets above, except possibly the
first one, are measurable and the point z is a density point of each of them.

We define q = 2t − 3
2y and note that q ∈ E since 2

(
1
2E + 3

4y
)
− 3

2y = E.
Note also that t is a density point of the set − 1

2E + 2t− 3
4y as t ∈ 1

2E + 3
2y.

We now pick a point s. We want s to satisfy:

s ∈
(

1
2
E +

1
2
z

)
∩
(

1
2
E +

3
4
y

)
∩
(
−1

2
E + 2t− 3

4
y

)
∩Am,

|s− t| < 1
2
δ(q) and |s− z| < 1

m
.

Once again by Lemma 18 there exists a point s being in all four sets and
arbitrary close to t (t is a density point of each of the above set). Taking s
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close enough to t we guarantee the last condition since |s− z| < |z− t|+ |t− s|
and |z − t| < 1

m .
Define the point p = s− 3

4y and note that |q − 2p| = 2|s− t| < δ(q). The
points x0, x1, . . . , x4 satisfying (∗∗) are defined as follows:

x0 = x = 0,

x1 = 2p = 2s− 3
2
y ∈ E since 2

(
1
2
E +

3
4
y

)
− 3

2
y = E,

x2 = 2q − 2p = 4t− 2s− 3
2
y ∈ E since 4t− 3

2
y − 2

(
−1

2
E + 2t− 3

4
y

)
= E,

x3 = 2s− z ∈ E since 2
(

1
2
E +

1
2
z

)
− z = E,

x4 = z.

The centers of the intervals [xi, xi+1] are:

x0 + x1

2
= p = s− 3

4
y ∈ En since s ∈ Am ⊂ En +

3
4
y.

x1 + x2

2
= q = 2t− 3

2
y ∈ E since t ∈ 1

2
E +

3
4
y.

x2 + x3

2
= 2t− 3

4
y − 1

2
z ∈ En since t ∈ 1

2
En +

1
4
z +

3
8
y.

x3 + x4

2
= s ∈ Em since s ∈ Am ⊂ Em.

Intervals [x0, x1] and [x2, x3] are in V since their centers are in En and each xi
is in the interval I which has the length < 1

n . The interval [x1, x2] ∈ V since
|x1 − x1+x2

2 | = |x1 − q| = 2|s − t| < δ(q). And finally [x3, x4] belongs to V
because |x4 − s| = |z − s| < 1

m . This way we see that each interval [xi, xi+1]
belongs to V and the proof is finished.

Proof of Theorem 9. Let us denote by SCf the set of points where f is
symmetrically continuous and by Cf the set of continuity points. We prove
only that SCf \Cf contains no measurable set of positive measure. The proof
that SCf \ Cf contains no second category set having the Baire property is
essentially the same.

Assume that E ⊂ SCf is measurable. We will show that almost all points
in E are also in Cf . This shows that the only measurable subsets of SCf \Cf
are of measure zero so SCf \ Cf has inner measure zero.

Fix an ε > 0 and define a symmetric covering relation on E:

V = {[x− t, x+ t] : x± t ∈ E ⇒ |f(x− t)− f(x+ t)| < ε}.
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This relation satisfies assumption of Theorem 17. So for almost every x ∈ E
there is a neighborhood Ux so that x+t ∈ Ux ⇒ [x, x+t] ∈ V 5 and intermediate
endpoints are in E, that is there are points x0 = x, x1, . . . , x5 = x + t such
that xi ∈ E for i = 1, 2, 3, 4 and [xi, xi+1] ∈ V for i = 0, . . . , 4. Therefore
|f(x)− f(x+ t)| < 5ε. Since ε has been chosen arbitrarily, f is continuous in
almost all points of E.

4 Extensions of Continuous and Symmetrically Contin-
uous Functions

In this section we look at the extension properties of symmetrically continuous
functions and compare them with these properties for continuous functions.

We know that every continuous function f : A→ R defined on a subset of
R can be extended to a continuous function defined on a dense Gδ set. This set
can be of course residual. Note that continuity distinguishes between measure
and category as it is possible to find function that can be only extended to a
measure zero Gδ set. We will see in Theorem 20 that some symmetrically con-
tinuous functions cannot be extended beyond measure zero and first category
domain.

If we look at Example 3 we see that symmetrically continuous functions
defined there is discontinuous on its domain so on a full outer measure or
second category set. Thus, by Corollaries 10 and 11, f cannot be extended to
a symmetrically continuous function defined on a measurable set or on a set
having the Baire property.

For an example of a similar function f defined on a symmetric domain see
Section 5. In Theorem 20 we give much stronger example in which domain
may be chosen to be of measure zero and first category.

A different question is whether having a function f : A → R that is con-
tinuous (or symmetrically continuous) we may extend it to the whole real
line leaving it continuous (or symmetrically continuous) on the set A. For
continuous functions as the next theorem shows this is true.

Fact 19. If f : A→ R is continuous, then there is an extension f̂ of f defined
on the whole R with A ⊂ Cf̂ , where Cf̂ is the set of points of continuity of f̂ .

Proof. If A is not dense in R, then R \ cl(A) consists of disjoint intervals
(a, b) and we extend our function by defining f on each of them as a continuous
function joining supx→a,x∈A f(x) with supx→b,x∈A f(x) (even if one of them
or both are infinity). So we may assume that A is dense in R.

Assume first that f is bounded. In this case we may assume that f : A→
[0, 1]. Take a closure cl(f) of the function f in R2 (f is a set of pairs and thus
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a subset of R2). Since A is dense, the projection π(cl(f)) of cl(f) onto the first
coordinate is the whole real line. This is so, as for every finite interval [a, b],
the set cl(f |[a,b]) is compact and its projection is also compact, thus contains
A ∩ [a, b] — a dense set in [a, b].

Let Ix = {y : 〈x, y〉 ∈ cl(f)}. Then every Ix is nonempty. Also, for every
x ∈ A the set Ix is the one element set {f(x)}. Indeed, for every {〈xn, f(xn)〉}
in f with {xn} converging to x, we have lim f(xn) = f(x) by the continuity
of f . Take an indexed selector S of the family {Ix : x ∈ R} (i.e., S is a set of
pairs 〈x, y〉, where y ∈ Ix). Then S is a function from R to [0, 1] and S agrees
with f on every x ∈ A. It is easy to check that S is continuous in every point
of A.

If f is unbounded, then take the function g = arctan ◦f , which is bounded.
By the continuity of arctan we have that g is continuous in every point where
f is continuous.

Having an extension ĝ of g, we come back to f taking f̂ = tan ◦ĝ, where
we define f̂(±π2 ) = 0. Once again by the continuity of the function tan we
preserve points of continuity of ĝ.

Once again the translation of the above theorem into symmetrical language
fails to hold.

Theorem 20. There is a function f : A → {0, 1} that is symmetrically con-
tinuous everywhere on A with the following property: if F is an extension of
f to a domain D such that D has positive measure or D is of second category
with the Baire property, then F is not symmetrically continuous at some point
on A.

Proof. We will construct inductively (using transfinite induction) a set A
and will define function f on A. Function f will have two properties: for every
perfect set P , there is a point x ∈ P such that there is a pair of sequences {yn}
and {zn} in A converging to x and symmetric about x, (i.e. yn+zn

2 = x for all
n); f will have value 1 for all y′ns and value 0 for all z′ns. Then, of course, x
cannot belong to the domain of any symmetrically continuous extension of f
and, since any measurable set of positive measure or Baire measurable set of
second category contains a perfect set, f cannot be extended to any of these
sets.

Let {Pα : α < c} be a list of all perfect subsets of R. Take any point x0 ∈ P0

and define y0
n = x0− 1

n and z0
n = x0+ 1

n . Put also f0 : {y0
n, z

0
n : n ∈ ω} → {0, 1},

f0(y0
n) = 1, f0(z0

n) = 0. (We do not define f0(x0).)
Since x0 is the only accumulation point of the set {y0

n, z
0
n : n ∈ ω}, the

function f0 is symmetrically continuous (vacuously) on its domain. Denote by
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T0 the linear space over Q spanned by the set {y0
n, z

0
n : n ∈ ω} and note that

x0 ∈ T0.
Assume that for β < α we have defined points xβ ∈ Pβ and sequences {yβn}

and {zβn} converging to xβ and yβn+zβn
2 = xβ . Assume also that xβ , yβn, z

β
n 6∈ Tβ

where Tβ =linear space over Q spanned by the set {xγ , yγn, zγn : n ∈ ω, γ < β}
(i.e. the points xβ , yβn, z

β
n are independent of the previous ones).

Functions fβ : {yβn, zβn : n ∈ ω} → {0, 1} are defined like f0; that is, fβ(yβn) =
1 and fβ(zβn) = 0. (We leave fβ(xβ) not defined.)

Let Tα be the linear space over Q spanned by the set {xβ , yβn, zβn : n ∈
ω, β < α}. The space Tα has cardinality |α| × ω < c and we may find a point
xα ∈ Pα \ Tα and sequences {yαn}, {zαn} disjoint with Tα, converging to xα,
and with xαn+zαn

2 = xα for all n ∈ ω. As before we define fα(yαn) = 0 and
fα(zαn ) = 1. Again fα is (vacuously) symmetrically continuous on its domain.

Having our construction done for all α < c we define f =
⋃
α<c fα. Since

points yαn and zαn are linearly independent of the points yβn and zβn for α 6= β,
the function f is vacuously symmetrically continuous. Putting A = dom(f) =
{yαn , zαn ;n ∈ ω, α < c} we have constructed the desired set and the function
defined on it.

It is worth to mention that we may strengthen the theorem above by adding
that A may be of measure zero and first category. (We may select points yαn
and zαn from the set C constructed in [Sz, Col.10].)

5 Functions on Symmetric Domains

Definition 1 may seem a bit strange since we do not require both of the points
x+ h and x− h to be in the domain. Most of our counterexamples have non-
symmetric domain and the functions are vacuously symmetrically continuous.
Here we try to justify our definition by showing that adding symmetry to the
domain does not give us any stronger properties that functions on nonsym-
metric domains do not possess.

We say that a set A ⊂ R is symmetric if

∀x∈A∀h x+ h ∈ A ⇐⇒ x− h ∈ A.

For example every additive group in R is symmetric.

Example 4. L

et A =
{
k
3n : k ∈ Z, n ∈ ω

}
and f : A→ {0, 1} be defined by

f

(
k

3n

)
=

{
0 when k is even
1 when k is odd.
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Then f is symmetrically continuous and A is symmetric yet f is discontinuous
everywhere on its domain.
Proof. A is a group so is obviously symmetric. It is immediate that the

symmetric reflection of any point
k

3n
about a point

l

3m
preserves the parity

of the numerator
(

2
l

3m
− k

3n
=

2l3n − k3m

3m+n

)
. Since both f−1(0) and f−1(1)

are dense, f is discontinuous everywhere.

Example 5. Let H be a Hamel base containing 1 and let S be linear space over
Q spanned by H \ {1}. Define A = {x+ k : x ∈ S, k ∈ Z} and f : A→ {0, 1}
by

f(x+ k) =

{
0 when k is even
1 when k is odd.

Then f is symmetrically continuous on A, A is symmetric, and yet f is discon-
tinuous everywhere on A. Moreover f cannot be extended to a symmetrically
continuous function defined on any measurable set or a set with the Baire
property.

Proof. Just as in the previous example, A is a group, thus symmetric, and
f is symmetrically continuous. (We preserve the parity of k in reflections.)
Both f−1(1) and f−1(0) are dense in R so f is discontinuous. Moreover f
cannot be extended to any measurable (or having the Baire property) domain
being symmetrically continuous on the greater domain as that would imply
continuity almost everywhere (on a residual set) on its domain (Corollaries 10
and 11).

The function f above cannot be even “almost extended” (in a sense that
the extension differs from f only on a set of measure 0) to a symmetrically
continuous function. This follows from the fact that the sets f−1(1) and f−1(0)
are nonmeasurable. Note that all rational translations of f−1(1) and f−1(0)
cover R so these sets have positive outer measure. So even upon removing sets
of measure zero from them they remain dense in R.

As we see, symmetric domains when nonmeasurable do not improve regu-
larity of symmetrically continuous functions defined on them. This is a strong
argument in favor of our definition (Definition 1) since we do not need to dis-
tinguish between symmetric and nonsymmetric domains and we are still able
to get positive results (e.g. Corollaries 10 and 11).
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