
Real Analysis Exchange
Vol. (), , pp. 513–520

Ivan Ginchev, Technical University of Varna, Department of Mathematics,
9010 Varna, Bulgaria. e-mail: ginchev@ms3.tu-varna.acad.bg

Angelo Guerraggio,“Bocconi” University of Milan, Via Sarfatti 25, 20100
Milan, Italy. e-mail: angelo.guerraggio@uni-bocconi.it
Matteo Rocca, “Bocconi” University of Milan, Via Sarfatti 25, 20100 Milan,
Italy. e-mail: matteo.rocca@uni-bocconi.it

EQUIVALENCE OF (n + 1)-th ORDER
PEANO AND USUAL DERIVATIVES FOR

n-CONVEX FUNCTIONS

Abstract

A real-valued function f defined on an interval of R is said to be
n-convex if all its n-th order divided differences are not negative. Let
f be such a function defined in a right neighborhood of t0 ∈ R whose
usual right derivatives, f

(r)
+ , 1 ≤ r ≤ n, exist in that neighborhood and

whose (n + 1)-th order Peano derivative, fn+1(t0), exists at t0. Under
these assumptions we prove that f also possesses (n + 1)-th order usual

right derivative f
(n+1)
+ (t0) at t0. This result generalizes the known case

for convex (that is 1-convex) functions. The latter appears in works of
B. Jessen studying the curvature of convex curves and of J. M. Borwein,
M. Fabian, D. Noll studying the second order differentiability of convex
functions on abstract spaces.

1 Introduction

Let f be a real function defined in a neighborhood of a point t0 ∈ R. In 1891
the Italian mathematician Giuseppe Peano [11] introduced a more general def-
inition of higher order derivatives of f at t0, while he was studying the Taylor
expansion formula for real functions. Peano’s paper has to be included in his
research giving rigorous foundations to analysis at the end of the 19-th century.
Peano never returned to study the contents of his 1891 article. However in this
century his idea was pursued in several papers, but not always quoted by the
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name of Peano. The definition of higher order derivative (n ≥ 2) is more gen-
eral than the usual one, since it does not require the existence of lower order
derivatives in a neighborhood of the point t0. It is immediate to verify that if
the n-th order derivative of f at t0 exists, also the n-th order Peano derivative
exists and they coincide. However the converse does not hold. Many sufficient
conditions were established to prove the equivalence between Peano and usual
derivative definitions. In particular we recall the sufficient condition proved in
[10] that requires the n-th Peano derivative to be bounded (above or below)
on an interval. We observe that most of these results require the existence of
the n-th Peano derivative on an interval. For a survey on Peano derivatives
we refer to [6]. Particularly a classical result due to B. Jessen [9] (for the proof
see also [5]) states the equivalence for second Peano and usual derivatives for
convex functions. Jessen’s proof was a long geometrical one. More recently,
without any reference to Jessen’s work, a new proof (also with the extension
to the setting of abstract spaces) was given by J. M. Borwein and M. Fabian
[2] (see also [3]).
In this paper we deal with functions defined on the real line, but there is no
difficulty in extending the treatment to abstract spaces. Our aim is to extend
the Jessen-Borwein-Fabian equivalence result in two directions, by taking into
consideration the (n + 1)-th order derivatives for n-convex functions. In the
case n = 1 our result gives a new proof of the Jessen-Borwein-Fabian equiva-
lence result.
Furthermore in section 2 we will prove a result that states equivalence between
second Peano and usual derivatives under a Lipschitz-type assumption on the
residual in Taylor’s formula.

2 Preliminary Concepts

Definition 2.1. Let f be a function defined in a neighborhood of the point
t0 ∈ R. We say that f has an n-th order right Peano derivative at t0 when
there exist numbers f1(t0), f2(t0), . . . , fn(t0), such that

f(t) = f(t0)+f1(t0)(t−t0)+
f2(t0)

2
(t−t0)2+· · ·+ fn(t0)

n!
(t−t0)n+o((t−t0)n),

as t→ t0
+. The number fn(t0) is said the n-th order Peano derivative of f at

the point t0.

Obviously the existence of the n-th order Peano derivative fn(t0) implies
the existence of the lower order Peano derivatives fn−1(t0), . . . , f1(t0). We
denote by f (n)(t0) the usual n-th order derivative of f at t0 and by f

(n)
+ (t0)
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the usual n-th order right derivative. If f
(n)
+ (t0) exists, then obviously fn(t0)

also exists and fn(t0) = f
(n)
+ (t0). The converse holds for n = 1 but not

necessarily for n ≥ 2, as is shown by the following function.

Example 2.1. For the function

f(t) =

{
0 if t ∈ Q
tn+1 if t ∈ R\Q, n ≥ 2

one has fk(0) = 0, k = 1, . . . , n, while f (k)(0), k = 2, . . . , n do not exist.

Theorem 2.1. [9] Let f be a convex function defined in a neighborhood of
t0 ∈ R and assume that f ′ exists in a right neighborhood of t0 and also that
f2(t0) exists. Then f ′′+(t0) exists and f2(t0) = f ′′+(t0).

In recent years the previous theorem has been extended to abstract spaces
by J. M. Borwein, M. Fabian and D. Noll in two papers devoted to the second
order differentiability of convex functions on Banach spaces [2] [3].

The previous theorem requires the existence of f ′ in a right neighborhood
of t0. Generally this existence is not a consequence of the convexity of the
function f . Indeed let us consider the family of functions {fn(t)} = { t4

n }, for
instance for t ≥ 0. We will define the function f in the following way. Let
f(t) = t4 for t ≥ 1 = t1; graph f(t) = graph r1 in [t2, t1], where r1 is the
line joining the point a1 = (t1, 1) to the point a2, and a2 = (t2, 1

2 t42) is the
point where the tangent line to y = t4 at a1 meets y = 1

2 t4; and so on. It is
easy to verify that f is a convex function and that it satisfies definition 2.1 for
t0 = 0, n = 2, f1(0) = f2(0) = 0. Nevertheless f is not differentiable at {tn}
and tn = o(1).

In the following section we will extend the previous result to the case of
the (n + 1)-th order derivative of a n-convex function.
Let f be a function defined on the interval (a, b) and let t0, t1, . . . , tn be distinct
points of (a, b). We recall that the n-th divided difference of f at these n + 1
points is given by

Vn(f, tk) =
n∑

j=0

f(tj)∏n
k=0,k 6=j(tj − tk)

.

The following theorems recall some basic properties of divided differences.

Theorem 2.2. [8] If p(t) is a polynomial of degree n, then for every choice
of the points tk, 0 ≤ k ≤ n + 1, one has Vn+1(p, tk) = 0.
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Theorem 2.3. [8] Let f(t) have a continuous n-th derivative in the interval
min(z0, z1, . . . , zn) ≤ t ≤ max(z0, z1, . . . , zn). Then, if the points z0, z1, . . . , zn

are distinct,
Vn(f, zk) =

=
∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

f (n) (tn(zn − zn−1) + · · ·+ t1(z1 − z0) + z0)) dtn.

Definition 2.2. A function f : (a, b) → R is said to be n-convex when
Vn+1(f, tk) ≥ 0, for all choices of n+2 distinct points t0, . . . , tn+1 in (a, b).

If n = 1, from definition 2.2 we obtain the class of convex functions.
If in particular the points t0, t1, . . . , tn are of the form ti = t0 + ih, (i =
0, 1, . . . , n; h > 0), we have

Vn(f, tk) =
1

n! hn

n∑
i=0

(−1)n−i

(
n

i

)
f(t0 + ih).

We will set

∆nf(t0, h) =
1
hn

n∑
i=0

(−1)n−i

(
n

i

)
f(t0 + ih).

The following results summarize some fundamental properties of n-convex
functions.

Theorem 2.4. [1] [4] If f : (a, b) → R is continuous, then f is n-convex if
and only if ∆n+1f(t, h) ≥ 0, for every t ∈ (a, b) and for every h such that
t + (n + 1)h ∈ (a, b).

Theorem 2.5. [4] Let f : (a, b)→ R be a n-convex function.

(i) If a ≤ t0 < · · · < tn ≤ b, a ≤ z0 < · · · zn ≤ b, zk ≤ tk, 0 ≤ k ≤ n, then
Vn(f, zk) ≤ Vn(f, tk).

(ii) For 1 ≤ r ≤ n− 1 the derivative f (r) exists and is continuous in (a, b).

(iii) f
(n)
+ exists in (a, b) and is monotonic increasing.

(iv) If a ≤ t0 < · · · < tn ≤ t ≤ y0 < · · · < yn ≤ b, then

n! Vn(f, tk) ≤ f
(n)
+ (t) ≤ n! Vn(f, yk).

(v) The function ∆nf(t, h) is increasing in h.
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(vi) If f admits an (n + 1)-th order right Peano derivative fn+1(t) in (a, b),
then fn+1(t) ≥ 0.

We end this section with the equivalence result we mentioned in the intro-
duction.

Theorem 2.6. Let f be a function defined in a right neighborhood of the point
t0 ∈ R and assume

(i) f ′ exists in a neighborhood of t0;

(ii) f admits second right Peano derivative at t0, f2(t0); that is,

f(t0 + h) = f(t0) + f ′(t0)h +
1
2
f2(t0)h2 + g(h)h2,

where g(h)→ 0, as h→ 0+;

(iii) for every s, h “sufficiently small” |g(h + s) − g(h)| ≤ |s|k(h), for some
nonnegative function k such that k(h)h→ 0+, for h→ 0+.

Then f ′′+(t0) exists and coincides with f2(t0).

Proof. Without loss of generality we can assume f ′(t0) = 0. We have

f ′(t0 + h)− f ′(t0)
h

= lim
s→0+

f(t0 + h + s)− f(t0 + h)
hs

.

Since f2(t0) exists, we obtain

lim
s→0+

1
2f2(t0)(h + s)2 + g(h + s)(h + s)2 − 1

2f2(t0)h2 − g(h)h2

hs

= lim
s→0+

(
f2(t0)

( s

2h
+ 1
)

+ g(h + s)
h

s
− g(h)

h

s
+ g(h + s)

s

h
+ 2g(h + s)

)
.

Now, from hypothesis iii) we can easily see that the limit of the last quantity
exists as h→ 0+ and that this last limit equals f2(t0).

3 The Main Result

Theorem 3.1. Let f be a n-convex function defined in a right neighborhood
of the point t0 ∈ R and assume that in this neighborhood f admits the usual
right derivatives f

(r)
+ , 1 ≤ r ≤ n. If the (n+1)-th order right Peano derivative

of f at t0, fn+1(t0) exists, also f
(n+1)
+ (t0) exists and f

(n+1)
+ (t0) = fn+1(t0).
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Proof. Without loss of generality we suppose that the function f is defined
on [0, 1) and that in this right neighborhood of t0 = 0 there exist derivatives up
to order n. Furthermore we observe that Theorem 2.2 ensures that the function
f is n-convex if and only if this property is satisfied by the function F (t) =

f(t) − f(0) −
∑n

k=1

tk

k!
f

(k)
+ (0). Hence we may suppose that f(0) = f ′+(0) =

· · · = f
(n)
+ (0) = 0. Then we get f(t) = 1

(n+1)!fn+1(0) tn+1 + g(t), where
g(t) = o(tn+1), t→ 0+. Now let t ∈ (0, 1) and consider a real number m ≥ 1.
Obviously t1+1/m < t < t1−1/m ≤ 1. Theorem 2.5 gives the inequalities

∆nf

(
t1+1/m,

t− t1+1/m

n

)
≤ f

(n)
+ (t) ≤ ∆nf

(
t,

t1−1/m − t

n

)
.

Let p(t) = 1
(n+1)! t

n+1. We will show that ∆np(t, h) = t+ n
2 h. Indeed, by using

the integral representation of the n-th divided difference (Theorem 2.3)

∆np(t, h) = n!
∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

p(n)(
n∑

k=1

tkh + t) dtn

= n!
∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

( n∑
k=1

tkh + t
)

dtn

= n!

(
h

(n + 1)!
+

n−1∑
k=1

h∏n+1
i=2,i6=k+1 i

+
1
n!

t

)

= t + n!
∑n

k=1 k

(n + 1)!
h = t +

n

2
h.

Hence

∆nf

(
t1+1/m,

t− t1+1/m

n

)
=

1
2

fn+1(0) t(1 + t1/m) + ∆ng

(
t1+1/m,

t− t1+1/m

n

)
≤ f

(n)
+ (t) ≤ ∆nf

(
t,

t1−1/m − t

n

)
=

1
2
fn+1(0) t(t−1/m + 1) + ∆ng

(
t,

t1−1/m − t

n

)
.

Since f
(n)
+ (0) = 0, we have

− 1
2

fn+1(0) (1− t1/m)
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+ t−1

(
t− t1+1/m

n

)−n n∑
i=0

(−1)n−i

(
n

i

)
g

(
t1+1/m +

i

n
(t− t1+1/m)

)

≤
f

(n)
+ (t)− f

(n)
+ (0)

t
− fn+1(0)

≤1
2

fn+1(0) (t−1/m − 1)

+ t−1

(
t1−1/m − t

n

)−n n∑
i=0

(−1)n−i

(
n

i

)
g

(
t +

i

n
(t1−1/m − t)

)
.

Now fix 0 < ε < 1 and choose m = m(t) such that 1 − t1/m = ε; that is,
m = ln t

ln(1−ε) . We get

− 1
2
fn+1(0)ε + t−n−1

( ε

n

)−n n∑
i=0

(−1)n−i

(
n

i

)
g

(
t(1− ε) +

i

n
tε

)

≤
f

(n)
+ (t)− f

(n)
+ (0)

t
− fn+1(0)

≤1
2
fn+1(0)

ε

(1− ε)
+ t−n−1

(
ε

n(1− ε)

)−n n∑
i=0

(−1)n−i

(
n

i

)
g

(
t +

i

n
t

ε

1− ε

)
.

From the hypotheses we obtain that the left member in these inequalities
converges to − 1

2fn+1(0)ε as t → 0+, while the right member converges to
1
2fn+1(0) ε

1−ε as t→ 0+. So we have

−1
2
fn+1(0)ε ≤ lim inf

t→0+

f
(n)
+ (t)− f

(n)
+ (0)

t
− fn+1(0)

≤ lim sup
t→0+

f
(n)
+ (t)− f

(n)
+ (0)

t
− fn+1(0) ≤ 1

2
fn+1(0)

ε

1− ε
.

Since ε is arbitrary we get the assertion.
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