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TANGENCY COUNTEREXAMPLES IN /2

Abstract

In [6], an infinite dimensional curve is constructed which is fairly
smooth near an accumulation point of its graph, but has a null tangent
set near the accumulation point. We construct extremely smooth curves
which still yield such an anomalous tangency behavior.

Let X be a Hilbert space, let f : (r,+00) — X be a function, and assume
there exists an z € X such that liminf,|, || f(¢) — 2| = 0. Then (r,z) €
graph(f) and so (0,0) € Kgrapn(s)(r;2). Here the overbar (") denotes the
closure operator whereas K denotes a tangency concept of Bouligand and
Severi.

The K-roots can be tracked down in the 1931 issue of Annales de la Société
Polonaise de Mathématique, namely in the papers by Bouligand [2, p. 32]
and Severi [5, p. 99]. At the beginning, the K-items were sets of half-lines.
Later the K-items became sets of points. Rigorous translations of the half-line
definitions of Bouligand and Severi into point definitions are made in [3, p.
240]. There it is also proved that the translated definitions are equivalent in
normed spaces. Their equivalence in linear topological spaces follows from [7,
pp. 567,8]. For further details on the history of the subject we refer to [4, p.
133] and [8, p. 342].

Currently, if T is a linear topological space, S C T, and p € T then Kg(p)
denotes the set of all points ¢ € T such that

0,9) € {(p,7) ERXT;p>0,p+pT €S}

If T is a sequential space, i.e. there exists a sequence of points 7, € S

converging to p whenever S C T and p € S (see [1, p. 101, Definition 3.1}),
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then R x T is also a sequential space (see again [1, p. 102, Proposition 3.2]).
Therefore ¢ € Kg(p) if and only if there exist a sequence of real numbers
pn > 0 converging to 0 and a sequence of points 7,, € T converging to ¢ such
that p+ p, 7, € S.

If T is not a sequential space then the characterization above may fail since
there exist S C T and p € S such that no sequence 7,, € S converges to p.
Then 0 € Kg(p) but there exists no sequence p,, > 0 converging to 0 € R and
no sequence 7, € T converging to 0 € T such that p + p, 7, € P.

Now assume there exists p > 0 such that liminf,|, Hf(t) x” p’ =0. If
p =0 then (1,0) € Kgpapn(r,z). Hence

{(070)} C Kgraph(f)(rr 1’) (1)
If p > 0 and the linear space X is finite dimensional then there exists £ € X
such that [|{]| = p and (1,&) € Kgrapn(s)(r, ). Hence the strict inclusion (1)
still holds. If p > 0 but the linear space X is infinite dimensional then the
strict inclusion (1) may fail, which means

{(O O)} - graph(f)( ) (2)
In this regard a counterexample is given in [6, p. 273-4]. Turowska constructed
a continuous function f : (0,+00) — [? which satisfies the equality {(0,0)} =
Kgraph(f)(O 0) but yields limy o || f(¢)|| = 0 and liminf,|o ’”f(t)” p| = 0 for
all p € [+ 73 ,1]. That function is also fairly smooth in that it is piecewise affine

and || f(t)|| = v/5 for almost all t > 0.

The question arises whether a counterexample could be still given in the
case of an extremely smooth function. The answer is affirmative. In the
following an infinitely differentiable function f : (0, +o0c0) — I? is constructed
which satisfies the equality {(0,0)} = Kgrapn(s)(0,0) but M =land 1<
/(1) < /5 for all t > 0. In fact we show that for every L > 1 there
exists an infinitely differentiable function f : (r,+o00) — (2 (in short, f €
C>((r,+00);1%)) which satisfies the equality (2) but has

and 1 < [|f(#)]| < L (4)

for all ¢ > r (see Theorem 1 below).
The condition L > 1 cannot be replaced with the condition L = 1. In
fact if the function f : (r, +00) — [? is locally absolutely continuous (in short,

f € ACloc((T7 +OO), lz)), if
i<t )



TANGENCY COUNTEREXAMPLES IN [2 445

for almost all ¢ > r, if x = lim |, f(¢), and if the equality (3) holds for all ¢ > r
then f satisfies the strict inclusion (1) (see the first remark following Theorem
2 below).

Theorem 1. For every L > 1 there exists f € C*°((r,+00);1?) which satisfies
(2) but yields (8) and (4) for all t > r.

PROOF. We can suppose, replacing the function f with the function t €
(0,4+00) — f(r +t) — x € 2 if necessary, that (r,z) = (0,0).

The proof of the theorem relies on an auxiliary result which concerns several
items: a Hilbert space X; two points 2’ € X and z € X such that ||2/|] = 1,
lz]] = 1, and (z/,2) = 0; two real numbers ¢’ € R and a € R such that
0 < o' < o a real number g € (0, (o — ’)/2); and a real number L > 0 such

that 14 % [ln (;",—;%)} ~? < I2. The auxiliary result states that there exists
a function f € C*°(R; X) which satisfies the equality (3), the inequalities (4)
on R, the affine equality f(t) = t2’ on (—o0,a’ + §], and the affine equality
f(t) =tx on [a — 3, +0).

To prove the auxiliary result, choose v € (8, (o — «’)/2) such that 1 +

7'72 [(2‘,?;)] ~? < L and consider a function h € C>*(R;R) with hA(R) = [0, 1],
such that h(f) = 0 on both (—oo,a’ + 8] and [@ — 3,+00), and such that
h(t) = 1 on [¢ + v,a — 7]. Furthermore define g € C*°(R;R) through
gty = [ [ (s) ds][ [%, @als]f1 and note that g(t) = 0 on (—o0,a’ + f]

whereas g(t) = 1 on o — 3,+00). Moreover tj(t) < [ [, @ds]_l <
[0 Mehds] ™" = [In(252)) " Hence 1+ I [tg(t)> < L?. Now define

f € C°°(R; X) through f(t) = tcos [g(t)%]a’ + tsin [g(t) %]z and note that f

( )
satisfies (3) as well as both of the required affine equalities. Additionally f(t) =
[cos (g(t)F)—Ftg(t)sin (9(t)F)] 2"+ sin (9(t) 5 )+5tg(t) cos (g(t)F)]x. Hence
/()2 =1+ 7r;[tg(t)]{ f satisfies (4), and the proof of the auxiliary result
is accomplished.

We proceed now with the proof of the theorem. Let L > 1, choose v > 1
such that 1 + 7T{[ln(y)]_Q < L?, define the real sequence «;, through a; = 1
and a(,41) = %=, and observe (0, +00) = Unen[(n41), ) U [1,+00). Next
we construct a function f : (0, +00) — I2 by using the above partition of the
interval (0, 4+o0) and the standard orthonormal system {e,,} in [%.

On the interval [1,400), we define f through f(¢) = te;. Let n € N. In
order to define f on the interval [ov(,11), @n], observe —*2— = v and choose

A(nt1)
Bn, € (0, =50 sufficiently small so that

7T2 an_ﬁn —2 2
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According to the auxiliary result above there exists f, € C*(R;I?) which
satisfies the equality || f,(t)|| = ¢t on R, the inequality 1 < ||fn(t)|| < L on R,
the affine equality f(,41)(t) = temy1) on (=00, a(y41) + Bn], and the affine
equality f,(t) = te, on [ay, — (B, +00). On the interval [a(,41), a,] We define
f through f(t) = fn.(t). Due to the affine equalities satisfied by each f, we
get f € C((0,+00);1?).

Finally, let (p,&) € Kgraph(s)(0,0). We have to show that (p,£) = (0,0).
Consider a sequence o; > 0 converging to 0, a sequence p; € R converging to
p, and a sequence §; converging to & such that (0,0) + o;(ps, &) € graph(f),
which means o;p; > 0 and f(0;p;) = 0:&. In view of (3) o;p; = 0;]|&;]| and so
p = ||¢]|. Furthermore there exist a sequence n; such that o;p; € [, 11), an,)-
Hence 0;&; = fn,(0:&;). Since the sequence o, p; converges to 0, we can suppose,
taking a subsequence of (0;, p;, &) if necessary, that the intervals [a(,,,41), an, ]
are mutually disjoint and so the sets {e(,,+1), €n, } are also mutually disjoint.
Therefore (fy,(0ipi), fn;(0jp;)) = 0 whenever i # j. Finally (£;,§;) = 0
whenever ¢ # j and so ||£|| =0, (p,&) = (0,0) and the proof of the theorem is
accomplished. O

Theorem 2. Let f € ACoc((r,+00);1?) satisfy the inequality (5) for almost
all t > r, let © = limy), f(t), and let f and x satisfy the equality (3) for all
t > r. Then there exists £ € 1> such that ||£]| =1 and f(t) =z + (t — )€ for
allt > r.

PROOF. Let g(t) = so that g(t)+ (t—7)g(t) = f(t) and note ||g(t)]
as well as ||g(¢) + ( ) (t)|] <1 for almost all ¢ > r. Then (g(t), g(t)) =
and so [|g(t)|| = 0 for almost all ¢ > r. Finally there exists ¢ € [ such that
I€]l =1 and g(¢ ) 5 for all ¢ > r and the conclusion follows. O

In the setting of Theorem 2, since (1,£) € Kgrapn(s)(r, ), the function f
satisfies the strict inclusion (1). Theorem 2 remains valid if the particular
(infinite dimensional) space [2 is replaced with a general (finite or infinite
dimensional) Hilbert space X, but it may fail if /2 is replaced with a normed
space X. For example, let X denote the vector space R? endowed with the
I*-norm, namely ||z|| = |z1] + |z2|, and let f : (0,4+00) — X be given by
f1(t) = arctant and f(t) = t — arctant. Then f is not a linear function
although || f ()| =t and | f()[| = 1.
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