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TANGENCY COUNTEREXAMPLES IN l2

Abstract

In [6], an infinite dimensional curve is constructed which is fairly
smooth near an accumulation point of its graph, but has a null tangent
set near the accumulation point. We construct extremely smooth curves
which still yield such an anomalous tangency behavior.

Let X be a Hilbert space, let f : (r,+∞)→ X be a function, and assume
there exists an x ∈ X such that lim inft↓r ‖f(t) − x‖ = 0. Then (r, x) ∈
graph(f) and so (0, 0) ∈ Kgraph(f)(r, x). Here the overbar ( ) denotes the
closure operator whereas K denotes a tangency concept of Bouligand and
Severi.

The K-roots can be tracked down in the 1931 issue of Annales de la Société
Polonaise de Mathématique, namely in the papers by Bouligand [2, p. 32]
and Severi [5, p. 99]. At the beginning, the K-items were sets of half-lines.
Later the K-items became sets of points. Rigorous translations of the half-line
definitions of Bouligand and Severi into point definitions are made in [3, p.
240]. There it is also proved that the translated definitions are equivalent in
normed spaces. Their equivalence in linear topological spaces follows from [7,
pp. 567,8]. For further details on the history of the subject we refer to [4, p.
133] and [8, p. 342].

Currently, if T is a linear topological space, S ⊆ T , and p ∈ T then KS(p)
denotes the set of all points q ∈ T such that

(0, q) ∈ {(ρ, τ) ∈ R× T ; ρ > 0, p+ ρ τ ∈ S}.

If T is a sequential space, i.e. there exists a sequence of points τn ∈ S
converging to p whenever S ⊆ T and p ∈ S (see [1, p. 101, Definition 3.1]),
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then R× T is also a sequential space (see again [1, p. 102, Proposition 3.2]).
Therefore q ∈ KS(p) if and only if there exist a sequence of real numbers
ρn > 0 converging to 0 and a sequence of points τn ∈ T converging to q such
that p+ ρn τn ∈ S.

If T is not a sequential space then the characterization above may fail since
there exist S ⊆ T and p ∈ S such that no sequence τn ∈ S converges to p.
Then 0 ∈ KS(p) but there exists no sequence ρn > 0 converging to 0 ∈ R and
no sequence τn ∈ T converging to 0 ∈ T such that p+ ρn τn ∈ P .

Now assume there exists ρ ≥ 0 such that lim inft↓r
∣∣‖f(t)−x‖

t−r − ρ
∣∣ = 0. If

ρ = 0 then (1, 0) ∈ Kgraph(r, x). Hence

{(0, 0)} ⊂ Kgraph(f)(r, x). (1)

If ρ > 0 and the linear space X is finite dimensional then there exists ξ ∈ X
such that ‖ξ‖ = ρ and (1, ξ) ∈ Kgraph(f)(r, x). Hence the strict inclusion (1)
still holds. If ρ > 0 but the linear space X is infinite dimensional then the
strict inclusion (1) may fail, which means

{(0, 0)} = Kgraph(f)(r, x). (2)

In this regard a counterexample is given in [6, p. 273-4]. Turowska constructed
a continuous function f : (0,+∞)→ l2 which satisfies the equality {(0, 0)} =
Kgraph(f)(0, 0) but yields limt↓0 ‖f(t)‖ = 0 and lim inft↓0

∣∣‖f(t)‖
t − ρ

∣∣ = 0 for
all ρ ∈ [ 1√

2
, 1]. That function is also fairly smooth in that it is piecewise affine

and ‖ḟ(t)‖ =
√

5 for almost all t > 0.
The question arises whether a counterexample could be still given in the

case of an extremely smooth function. The answer is affirmative. In the
following an infinitely differentiable function f : (0,+∞) → l2 is constructed
which satisfies the equality {(0, 0)} = Kgraph(f)(0, 0) but ‖f(t)‖

t = 1 and 1 ≤
‖ḟ(t)‖ ≤

√
5 for all t > 0. In fact we show that for every L > 1 there

exists an infinitely differentiable function f : (r,+∞) → l2 (in short, f ∈
C∞((r,+∞); l2)) which satisfies the equality (2) but has

‖f(t)− x‖
t− r

= 1 (3)

and 1 ≤ ‖ḟ(t)‖ ≤ L (4)

for all t > r (see Theorem 1 below).
The condition L > 1 cannot be replaced with the condition L = 1. In

fact if the function f : (r,+∞)→ l2 is locally absolutely continuous (in short,
f ∈ ACloc((r,+∞); l2)), if

‖ḟ(t)‖ ≤ 1 (5)
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for almost all t > r, if x = limt↓r f(t), and if the equality (3) holds for all t > r
then f satisfies the strict inclusion (1) (see the first remark following Theorem
2 below).

Theorem 1. For every L > 1 there exists f ∈ C∞((r,+∞); l2) which satisfies
(2) but yields (3) and (4) for all t > r.

Proof. We can suppose, replacing the function f with the function t ∈
(0,+∞)→ f(r + t)− x ∈ l2 if necessary, that (r, x) = (0, 0).

The proof of the theorem relies on an auxiliary result which concerns several
items: a Hilbert space X; two points x′ ∈ X and x ∈ X such that ‖x′‖ = 1,
‖x‖ = 1, and 〈x′, x〉 = 0; two real numbers α′ ∈ R and α ∈ R such that
0 < α′ < α; a real number β ∈ (0, (α− α′)/2); and a real number L > 0 such
that 1 + π2

4

[
ln
(
α−β
α′+β

)]−2
< L2. The auxiliary result states that there exists

a function f ∈ C∞(R;X) which satisfies the equality (3), the inequalities (4)
on R, the affine equality f(t) = tx′ on (−∞, α′ + β], and the affine equality
f(t) = tx on [α− β,+∞).

To prove the auxiliary result, choose γ ∈ (β, (α − α′)/2) such that 1 +
π2

4

[(
α−γ
α′+γ

)]−2
< L2 and consider a function h ∈ C∞(R; R) with h(R) = [0, 1],

such that h(t) = 0 on both (−∞, α′ + β] and [α − β,+∞), and such that
h(t) = 1 on [α′ + γ, α − γ]. Furthermore define g ∈ C∞(R; R) through
g(t) =

[ ∫ t
α′

h(s)
s ds

][ ∫ α
α′

h(s)
s ds

]−1 and note that g(t) = 0 on (−∞, α′ + β]
whereas g(t) = 1 on [α − β,+∞). Moreover tġ(t) ≤

[ ∫ α
α′

h(s)
s ds

]−1 ≤[ ∫ α−γ
α′+γ

h(s)
s ds

]−1 =
[

ln
(
α−γ
α′+γ

)]−1. Hence 1 + π2

4 [tġ(t)]2 < L2. Now define
f ∈ C∞(R;X) through f(t) = t cos

[
g(t)π2

]
x′ + t sin

[
g(t)π2

]
x and note that f

satisfies (3) as well as both of the required affine equalities. Additionally ḟ(t) =[
cos
(
g(t)π2

)
−π2 tġ(t) sin

(
g(t)π2

)]
x′+

[
sin
(
g(t)π2

)
+π

2 tġ(t) cos
(
g(t)π2

)]
x. Hence

‖ḟ(t)‖2 = 1 + π2

4 [tġ(t)]2, f satisfies (4), and the proof of the auxiliary result
is accomplished.

We proceed now with the proof of the theorem. Let L > 1, choose ν > 1
such that 1 + π2

4 [ln(ν)]−2 < L2, define the real sequence αn through α1 = 1
and α(n+1) = αn

ν , and observe (0,+∞) = ∪n∈N[α(n+1), αn) ∪ [1,+∞). Next
we construct a function f : (0,+∞) → l2 by using the above partition of the
interval (0,+∞) and the standard orthonormal system {en} in l2.

On the interval [1,+∞), we define f through f(t) = te1. Let n ∈ N. In
order to define f on the interval [α(n+1), αn], observe αn

α(n+1)
= ν and choose

βn ∈ (0, αn−α(n+1)

2 ) sufficiently small so that

1 +
π2

4

[
ln
( αn − βn
α(n+1) + βn

)]−2

< L2.
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According to the auxiliary result above there exists fn ∈ C∞(R; l2) which
satisfies the equality ‖fn(t)‖ = t on R, the inequality 1 ≤ ‖ḟn(t)‖ < L on R,
the affine equality f(n+1)(t) = te(n+1) on (−∞, α(n+1) + βn], and the affine
equality fn(t) = ten on [αn − βn,+∞). On the interval [α(n+1), αn] we define
f through f(t) = fn(t). Due to the affine equalities satisfied by each fn we
get f ∈ C∞((0,+∞); l2).

Finally, let (ρ, ξ) ∈ Kgraph(f)(0, 0). We have to show that (ρ, ξ) = (0, 0).
Consider a sequence σi > 0 converging to 0, a sequence ρi ∈ R converging to
ρ, and a sequence ξi converging to ξ such that (0, 0) + σi(ρi, ξi) ∈ graph(f),
which means σiρi > 0 and f(σiρi) = σiξi. In view of (3) σiρi = σi‖ξi‖ and so
ρ = ‖ξ‖. Furthermore there exist a sequence ni such that σiρi ∈ [α(ni+1), αni).
Hence σiξi = fni(σiξi). Since the sequence σiρi converges to 0, we can suppose,
taking a subsequence of (σi, ρi, ξi) if necessary, that the intervals [α(ni+1), αni

]
are mutually disjoint and so the sets {e(ni+1), eni

} are also mutually disjoint.
Therefore 〈fni

(σiρi), fnj
(σjρj)〉 = 0 whenever i 6= j. Finally 〈ξi, ξj〉 = 0

whenever i 6= j and so ‖ξ‖ = 0, (ρ, ξ) = (0, 0) and the proof of the theorem is
accomplished.

Theorem 2. Let f ∈ ACloc((r,+∞); l2) satisfy the inequality (5) for almost
all t > r, let x = limt↓r f(t), and let f and x satisfy the equality (3) for all
t > r. Then there exists ξ ∈ l2 such that ‖ξ‖ = 1 and f(t) = x + (t − r)ξ for
all t > r.

Proof. Let g(t) = f(t)−x
t−r so that g(t)+(t−r)ġ(t) = ḟ(t) and note ‖g(t)‖ = 1

as well as ‖g(t) + (t − r)ġ(t)‖ ≤ 1 for almost all t > r. Then 〈g(t), ġ(t)〉 = 0
and so ‖ġ(t)‖ = 0 for almost all t > r. Finally there exists ξ ∈ l2 such that
‖ξ‖ = 1 and g(t) = ξ for all t > r and the conclusion follows.

In the setting of Theorem 2, since (1, ξ) ∈ Kgraph(f)(r, x), the function f
satisfies the strict inclusion (1). Theorem 2 remains valid if the particular
(infinite dimensional) space l2 is replaced with a general (finite or infinite
dimensional) Hilbert space X, but it may fail if l2 is replaced with a normed
space X. For example, let X denote the vector space R2 endowed with the
l1-norm, namely ‖x‖ = |x1| + |x2|, and let f : (0,+∞) → X be given by
f1(t) = arctan t and f2(t) = t − arctan t. Then f is not a linear function
although ‖f(t)‖ = t and ‖ḟ(t)‖ = 1.
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