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ON INFINITE UNILATERAL DERIVATIVES

Abstract

We prove that for any continuous real valued function f on [a, b] there
exists a continuous function K such that K−f has bounded variation and
(K−f)′ = 0 almost everywhere on [a, b] and such that in any subinterval
of [a, b], K has right derivative∞ at continuum many points, K has left
derivative ∞ at continuum many points, K has right derivative −∞ at
continuum many points, and K has left derivative −∞ at continuum
many points. Furthermore, functions K with these properties are dense
in C[a, b]. We can assume the infinite derivatives of K are bilateral if f
is of bounded variation on [a, b] or if f satisfies Lusin’s condition (N).

Let [a, b] be a compact interval and let C[a, b] denote the family of con-
tinuous real valued functions on [a, b] endowed with the uniform metric. Here
we say that a function is an s-function if in every subinterval of [a, b] it has right
derivative∞ at continuum many points, left derivative∞ at continuum many
points, right derivative −∞ at continuum many points, and left derivative −∞
at continuum many points.

From the classical work of Stanislaw Saks [1] we infer that the s-functions
form a residual subset of the complete metric space C[a, b]. Here we give a
local companion to this global result as follows. For any f in C[a, b] there is
an s-function K such that K−f is a singular function of bounded variation,
that is (K−f)′ = 0 almost everywhere on [a, b]. The idea is that K and f
have the same Dini derivates at almost every point in [a, b]. Furthermore, the
s-functions K with this property are dense in C[a, b].

We say that a function in C[a, b] is an s0-function if in every subinterval of
[a, b] it has (bilateral) derivative ∞ at continuum many points and derivative
−∞ at continuum many points. We will prove that K (in the preceding
paragraph) can be an s0-function for certain kinds of functions f . This works
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when f is of bounded variation on [a, b] or when f satisfies Lusin’s condition
(N), that is f maps sets of measure zero to sets of measure zero.

We begin with some needed lemmas. The first concerns the Dini derivates
of f .

Lemma 1. Let f be a continuous function on [a, b]. Then there are an un-
countable compact subset S of [a, b] and a countable set T such that D+f(x) >
−∞ for any x ∈ S \ T .

Proof. We immediately dismiss the case in which f is nonincreasing on (a, b),
for if it were then f would be differentiable on a set of positive measure and
on a compact subset S of positive measure. Then T could be void.

We assume then that there exist a0 and b0 in (a, b) such that a0 < b0 and
f(a0) < f(b0). For each y satisfying f(a0) < y < f(b0), let k(y) be the greatest
point in the compact set {t ∈ (a0, b0) : f(t) = y}. Necessarily D+f(k(y)) ≥ 0.
Let S0 denote the set {k(y) : f(a0) < y < f(b0)} and let S denote the closure
of S0. We deduce that k is a strictly increasing function from the interval
(f(a0), f(b0)) into the interval (a0, b0) and hence S0 is an uncountable set. It
suffices to prove that S \ S0 is a countable set.

Let w ∈ S \S0 where w 6= a0, w 6= b0, and w is an accumulation point of S0

from the left. There is an increasing sequence of points (yn) in (f(a0), f(b0))
such that k(yn) converges to w. Suppose (yn) converges to y∗. Now k(y∗) 6= w,
so k has a discontinuity at y∗. In this way every such point in S \S0 defines a
point of discontinuity of k. Moreover no two w1 and w2 can define the same
point of discontinuity of k because k is strictly increasing. The monotone
function k has only countably many points of discontinuity, so there are at
most countably many points in S \S0 that are accumulation points of S0 from
the left. The argument for accumulation points from the right is analogous.

In the next lemma we construct a nondecreasing singular function enjoying
certain desired properties.

Lemma 2. Let S be an uncountable compact set. Then there is a continuous
nondecreasing singular function g on [a, b] with total variation 2 such that for
any continuous function h with total variation less than 1, the set {x ∈ S :
(g + h)′(x) =∞} has the power of the continuum.

Proof. Any closed subset of the real line is the union of a countable set with
a closed set all of whose points are condensation points of itself. Without loss
of generality we assume that every point of S is a condensation point of S. Let
S1 = {x ∈ S : x is both a left and a right accumulation point of S}. Routine
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arguments show that S \ S1 is a countable set. Thus every point of S1 is a
condensation point of S1 and a left and right accumulation point of S1.

Choose points A and B in S1 with A < B. We construct by induction a
sequence of mutually disjoint compact subintervals of (A,B) with endpoints
in S1 as follows.

Select a1 and b1 in S1 ∩ (A,B) such that b1 − a1 >
B−A

2 . Suppose that
the intervals [a1, b1], [a2, b2], . . . , [an, bn] have been selected. Let In be a
component of (A,B) \ (∪nj=1[aj , bj ]) of maximal length. Select an+1 and bn+1

in S1 ∩ In such that bn+1 − an+1 >
m(In)

2 .
Denote X0 = (A,B)\ (∪j [aj , bj ]). It follows from the construction that X0

has measure zero. Observe that any point in X0 is an accumulation point of
the countable set {aj}j ∪ {bj}j and hence lies in S. Therefore X0 ⊂ S.

Between any two intervals in the sequence there lie other members of the
sequence. Thus we can assign a rational number rn to each interval [an, bn]
such that the sequence (rn) is dense in (0, 2), inf(rn) = 0, sup(rn) = 2, and
such that rj < rn if and only if bj < an. Let g be the real valued function on
∪j [aj , bj ] such that g = rn on [an, bn]. Make g = 0 on (−∞, A) and g = 2 on
(B,∞). We extend g to a continuous nondecreasing function on the real line in
the natural way with inf g = 0 and sup g = 2. Set X = {x ∈ X0 : g′(x) =∞}.
Then m(X) = m(X0) = 0. From the work of de la Vallée Poussin (consult for
example [2, Theorem (9.1), Chapter IV]) it follows that the set g{x : g has a
finite or infinite derivative at x} has measure 2. But the set {x : g′(x) > 0}
has measure zero and we deduce from [2, Theorem (4.5), Chapter IX] that the
set g{x : g has a finite derivative at x} has measure zero. Thus it follows that

m(g(X)) = 2. (1)

Now let h be a continuous function on [a, b] with total variation less than
1. It suffices to prove that (g + h)′(x) =∞ at continuum many x ∈ S.

Let Y = {y ∈ X : min(D+(g + h)(y) , D−(g + h)(y)) < ∞}. Intervals of
the form [g(c), g(c+ t)] with t > 0 and satisfying

g(c+ t)− g(c) > 3((g + h)(c+ t)− (g + h)(c))

form a Vitali covering on the y-axis of the set g(Y ). Observe that here

−g(c+ t)− g(c)
3

< −((g + h)(c+ t)− (g + h)(c)). (2)
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Then from (2) we obtain

−(h(c+ t)− h(c)) = (g(c+ t)− g(c))− ((g + h)(c+ t)− (g + h)(c))

> (g(c+ t)− g(c))− g(c+ t)− g(c)
3

= 2 · g(c+ t)− g(c)
3

and because t and g(c+ t)− g(c) are positive it follows that

|h(c+ t)− h(c)| ≥ 2 · g(c+ t)− g(c)
3

. (3)

By the Vitali Covering Theorem there are countably many mutually disjoint
such intervals [g(cj) , g(cj + tj)] covering almost every point in g(Y ). Further-
more the intervals [cj , cj + tj ] are mutually disjoint. From (3) and the total
variation of h we infer that

1 ≥
∑
j

|h(cj + tj)− h(cj)| ≥ 2 ·
∑
j

g(cj + tj)− g(cj)
3

≥ 2 · m(g(Y )
3

and

m(g(Y )) ≤ 3
2
. (4)

From (1) and (4) we obtain

m(g(X \ Y )) ≥ 1
2
. (5)

It follows from (5) that the sets g(X \ Y ) and X \ Y have the power of the
continuum and because X ⊂ X0 ⊂ S, {x ∈ S : (g + h)′(x) = ∞} has the
power of the continuum.

In the next lemma we introduce a space (BV ) that has a different metric
than the uniform metric.

Lemma 3. Let S be an uncountable compact set. Let (BV ) denote the family
of singular functions of bounded variation on [a, b] under the metric

d(f, g) = |f(0)− g(0)|+ V (f − g),

where V denotes the total variation on [a, b]. Let

W = {f ∈ (BV ) : f ′(x) =∞ at continuum many points x in S}.

Then (BV ) is a complete metric space and the function 0 is in the closure of
the interior of W .
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Proof. Let (BV1) denote the family of all functions of bounded variation on
[a, b] under the same metric that (BV ) has. Then (BV ) ⊂ (BV1). Routine
arguments show that (BV1) is a complete metric space.

Let f1 ∈ (BV1) \ (BV ) and f2 ∈ (BV ). Set ε > 0 such that the set{
x ∈ [a, b] : max(|D+f1(x)|, |D+f1(x)|, |D−f1(x)|, |D−f1(x)|) > ε

}
has measure greater than ε. By a straight-forward application of the Vitali
Covering Theorem, there exist mutually disjoint intervals [x1, x1+t1], [x2, x2+
t2], . . . , [xn, xn + tn] such that

n∑
i=1

|f1(xi + ti)− f1(xi)| > ε ·
n∑
i=1

ti > ε2.

It follows that d(f1, 0) > ε2 . By the same argument d(f1, f2) = d(f1−f2, 0) >
ε2 and we deduce that (BV ) is a closed subset of (BV1). But (BV1) is a
complete metric space, so (BV ) is likewise a complete metric space.

We deduce that the function g in Lemma 2 lies in the interior of W , so the
distance in (BV ) from the 0 function to (interior W ) is at most 2. For any
r > 0, r(interior W ) ⊂ interior W . It follows that the distance from the 0
function to (interior W ) is zero.

We are now ready for our main results.

Theorem 1. Let f be a continuous function on [a, b]. Then there is an s-
function K such that K−f is of bounded variation and (K−f)′ = 0 almost
everywhere. Furthermore, the family of all functions K satisfying this property
is dense in C[a, b] under the topology of uniform convergence.

Proof. Let I be a subinterval of [a, b]. For g ∈ C[a, b] let

A(g) = {G ∈ (BV ) : (G+ g)′+(x) =∞ at continuum many x ∈ I}.

By Lemma 1 there is an uncountable compact set S ⊂ I such that D+g(x) >
−∞ on a cocountable subset of S. We deduce from Lemma 3 that the 0
function is in the closure of the interior of the set A(g).

Let h be any function in (BV ) and let g0 = g + h. Let G0 ∈ A(g0). Then
(G0 + g0)′+(x) =∞ and likewise ((G0 + h) + (g0− h))′+(x) =∞ at continuum
many points x in I. It follows that G0 +h ∈ A(g0−h) = A(g) and furthermore
A(g0) + h ⊂ A(g). By Lemma 3 again the 0 function is in the closure of the
interior of A(g0) and h is in the closure of the interior of A(g0) + h. Thus h is
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in the closure of the interior of A(g). The choice of h is independent of g, so
the interior of A(g) is dense in (BV ) for any g ∈ C[a, b].

For any subinterval I of [a, b], let P (I) be the family A(f) as described.
Then ∩IP (I), where I runs over all the subintervals of [a, b] with rational
endpoints, is a residual subset of the complete metric space (BV ).

It follows that the family P1 of functions F in (BV ) for which (F+f)′r(x) =
∞ at continuum many points x in each subinterval of [a, b] is a residual subset
of the complete metric space (BV ). Let P2 denote the corresponding family in
which we replace ∞ with −∞. It follows similarly that F2 is a residual subset
of (BV ). Let P3 and P4 be the corresponding families where left derivatives
(instead of right derivatives) are employed. Then P3 and P4 are likewise
residual subsets of (BV ). Set P = P1 ∩ P2 ∩ P3 ∩ P4. Then P is a residual
subset of (BV ). But any function in P + f is an s-function and hence any
function in P + f suffices for K in the conclusion of Theorem 1.

Finally (BV )+f is evidently dense in the space C[a, b] under the topology
of uniform convergence, so P + f is also dense in C[a, b].

For certain kinds of functions f ∈ C[a, b], s-functions in Theorem 1 can be
replaced by s0-functions, as we now see.

Theorem 2. Let f ∈ C[a, b] such that either
(i) f is differentiable on a set of positive measure in every subinterval of

[a, b] or
(ii) f is differentiable at each point of a residual subset of [a, b].

Then there is an s0-function K on [a, b] such that (K−f)′ = 0 almost ev-
erywhere on [a, b]. Furthermore the family of all s0-functions satisfying this
property is dense in C[a, b] under the topology of uniform convergence.

Proof. (i) In any subinterval I of [a, b] f is differentiable on a set of positive
measure that must contain an uncountable compact set. Then Lemma 1
applies to f and we continue as in the proof of Theorem 1. Observe that
all the derivatives are bilateral here.

(ii) A residual subset of [a, b] must contain a dense Gδ-subset of every subin-
terval of [a, b], which in turn must contain a perfect set. Hence f is dif-
ferentiable on an uncountable compact set in every subinterval of [a, b].
We proceed as in part (i).

Some corollaries are immediate.

Corollary 1. The family of all s0-functions in (BV ) is a residual subset of
(BV ).



On Infinite Unilateral Derivatives 315

Proof. Apply the proof of Theorem 1 to any constant function f .

Corollary 2. For any measurable function h on [a, b], there is a continuous
s0-function F , depending on h, such that F ′ = h almost everywhere on [a, b].

Proof. By [2, Theorem (2.3), Chapter VII, p. 217] there is a function F1 ∈
C[a, b] such that F ′1 = h almost everywhere on [a, b]. Apply Theorem 2 to
F1.

Observe that any function of bounded variation in C[a, b] satisfies the hy-
pothesis of Theorem 2. Likewise any f ∈ C[a, b] that maps sets of measure
zero to sets of measure zero (Lusin’s condition (N)) must be differentiable on
a set of positive measure in each subinterval of [a, b] (consult [2, Chapter IX,
Theorem (7.9), p.286] and so satisfies the hypothesis of Theorem 2.

Corollary 3. There is an s-function F ∈ C[a, b] such that for any measurable
function k on [a, b] there is a sequence of positive numbers (tn) converging to
0, and depending on k, such that

lim
n→∞

F (x+ tn)− F (x)
tn

= k(x)

for almost every x in [a, b].

Proof. By [2, p. 118] there exists a function F0 in C[a, b] satisfying this
property. Apply Theorem 1 to F0.

Corollary 4. Let f be a positive function in C[a, b]. Then there exist functions
F , F1, F2 in (BV ) such that

(i) F + (log f) is an s-function,
(ii) F1f is an s-function, and

(iii) fF2 is an s-function, provided f > 1 on [a, b].

Proof. (i) The proof of (i) is in the proof of Theorem 1.
(ii) Let p ∈ C[a, b] and x ∈ (a, b). By the Mean Value Theorem we see that

exp(p(x+ t))− exp(p(x))
t

=
eu(p(x+ t)− p(x))

t

for some number u between p(x+ t) and p(x). From this we deduce that
p is an s-function if and only if exp(p) is an s-function.
Let G be a function in (BV ) such that G+ log f is an s-function. Then
exp(G+ log f) = f(expG) is an s-function and expG is in (BV ).
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(iii) Let G be a function in (BV ) such that G(log f) is an s-function. Then
exp(G log f) = fG is an s-function and G is in (BV ).

We close with the comment that if f1, f2, f3, . . . , fn, . . . is a sequence of
functions in C[a, b] then there is a function F in (BV ) such that F + fj is an
s-function for each index j. We leave the proof.
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