ON INFINITE UNILATERAL DERIVATIVES

Abstract

We prove that for any continuous real valued function f on $[a, b]$ there exists a continuous function K such that $K-f$ has bounded variation and $(K-f)^{\prime}=0$ almost everywhere on $[a, b]$ and such that in any subinterval of $[a, b], K$ has right derivative ∞ at continuum many points, K has left derivative ∞ at continuum many points, K has right derivative $-\infty$ at continuum many points, and K has left derivative $-\infty$ at continuum many points. Furthermore, functions K with these properties are dense in $C[a, b]$. We can assume the infinite derivatives of K are bilateral if f is of bounded variation on $[a, b]$ or if f satisfies Lusin's condition (N).

Let $[a, b]$ be a compact interval and let $C[a, b]$ denote the family of continuous real valued functions on $[a, b]$ endowed with the uniform metric. Here we say that a function is an s-function if in every subinterval of $[a, b]$ it has right derivative ∞ at continuum many points, left derivative ∞ at continuum many points, right derivative $-\infty$ at continuum many points, and left derivative $-\infty$ at continuum many points.

From the classical work of Stanislaw Saks [1] we infer that the s-functions form a residual subset of the complete metric space $C[a, b]$. Here we give a local companion to this global result as follows. For any f in $C[a, b]$ there is an s-function K such that $K-f$ is a singular function of bounded variation, that is $(K-f)^{\prime}=0$ almost everywhere on $[a, b]$. The idea is that K and f have the same Dini derivates at almost every point in $[a, b]$. Furthermore, the s-functions K with this property are dense in $C[a, b]$.

We say that a function in $C[a, b]$ is an s_{0}-function if in every subinterval of $[a, b]$ it has (bilateral) derivative ∞ at continuum many points and derivative $-\infty$ at continuum many points. We will prove that K (in the preceding paragraph) can be an s_{0}-function for certain kinds of functions f. This works

[^0]when f is of bounded variation on $[a, b]$ or when f satisfies Lusin's condition (N), that is f maps sets of measure zero to sets of measure zero.

We begin with some needed lemmas. The first concerns the Dini derivates of f.

Lemma 1. Let f be a continuous function on $[a, b]$. Then there are an uncountable compact subset S of $[a, b]$ and a countable set T such that $D_{+} f(x)>$ $-\infty$ for any $x \in S \backslash T$.

Proof. We immediately dismiss the case in which f is nonincreasing on (a, b), for if it were then f would be differentiable on a set of positive measure and on a compact subset S of positive measure. Then T could be void.

We assume then that there exist a_{0} and b_{0} in (a, b) such that $a_{0}<b_{0}$ and $f\left(a_{0}\right)<f\left(b_{0}\right)$. For each y satisfying $f\left(a_{0}\right)<y<f\left(b_{0}\right)$, let $k(y)$ be the greatest point in the compact set $\left\{t \in\left(a_{0}, b_{0}\right): f(t)=y\right\}$. Necessarily $D_{+} f(k(y)) \geq 0$. Let S_{0} denote the set $\left\{k(y): f\left(a_{0}\right)<y<f\left(b_{0}\right)\right\}$ and let S denote the closure of S_{0}. We deduce that k is a strictly increasing function from the interval $\left(f\left(a_{0}\right), f\left(b_{0}\right)\right)$ into the interval $\left(a_{0}, b_{0}\right)$ and hence S_{0} is an uncountable set. It suffices to prove that $S \backslash S_{0}$ is a countable set.

Let $w \in S \backslash S_{0}$ where $w \neq a_{0}, w \neq b_{0}$, and w is an accumulation point of S_{0} from the left. There is an increasing sequence of points $\left(y_{n}\right)$ in $\left(f\left(a_{0}\right), f\left(b_{0}\right)\right)$ such that $k\left(y_{n}\right)$ converges to w. Suppose $\left(y_{n}\right)$ converges to y^{*}. Now $k\left(y^{*}\right) \neq w$, so k has a discontinuity at y^{*}. In this way every such point in $S \backslash S_{0}$ defines a point of discontinuity of k. Moreover no two w_{1} and w_{2} can define the same point of discontinuity of k because k is strictly increasing. The monotone function k has only countably many points of discontinuity, so there are at most countably many points in $S \backslash S_{0}$ that are accumulation points of S_{0} from the left. The argument for accumulation points from the right is analogous.

In the next lemma we construct a nondecreasing singular function enjoying certain desired properties.

Lemma 2. Let S be an uncountable compact set. Then there is a continuous nondecreasing singular function g on $[a, b]$ with total variation 2 such that for any continuous function h with total variation less than 1 , the set $\{x \in S$: $\left.(g+h)^{\prime}(x)=\infty\right\}$ has the power of the continuum.

Proof. Any closed subset of the real line is the union of a countable set with a closed set all of whose points are condensation points of itself. Without loss of generality we assume that every point of S is a condensation point of S. Let $S_{1}=\{x \in S: x$ is both a left and a right accumulation point of $S\}$. Routine
arguments show that $S \backslash S_{1}$ is a countable set. Thus every point of S_{1} is a condensation point of S_{1} and a left and right accumulation point of S_{1}.

Choose points A and B in S_{1} with $A<B$. We construct by induction a sequence of mutually disjoint compact subintervals of (A, B) with endpoints in S_{1} as follows.

Select a_{1} and b_{1} in $S_{1} \cap(A, B)$ such that $b_{1}-a_{1}>\frac{B-A}{2}$. Suppose that the intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{n}, b_{n}\right]$ have been selected. Let I_{n} be a component of $(A, B) \backslash\left(\cup_{j=1}^{n}\left[a_{j}, b_{j}\right]\right)$ of maximal length. Select a_{n+1} and b_{n+1} in $S_{1} \cap I_{n}$ such that $b_{n+1}-a_{n+1}>\frac{m\left(I_{n}\right)}{2}$.

Denote $X_{0}=(A, B) \backslash\left(\cup_{j}\left[a_{j}, b_{j}\right]\right)$. It follows from the construction that X_{0} has measure zero. Observe that any point in X_{0} is an accumulation point of the countable set $\left\{a_{j}\right\}_{j} \cup\left\{b_{j}\right\}_{j}$ and hence lies in S. Therefore $X_{0} \subset S$.

Between any two intervals in the sequence there lie other members of the sequence. Thus we can assign a rational number r_{n} to each interval $\left[a_{n}, b_{n}\right]$ such that the sequence $\left(r_{n}\right)$ is dense in $(0,2), \inf \left(r_{n}\right)=0, \sup \left(r_{n}\right)=2$, and such that $r_{j}<r_{n}$ if and only if $b_{j}<a_{n}$. Let g be the real valued function on $\cup_{j}\left[a_{j}, b_{j}\right]$ such that $g=r_{n}$ on $\left[a_{n}, b_{n}\right]$. Make $g=0$ on $(-\infty, A)$ and $g=2$ on (B, ∞). We extend g to a continuous nondecreasing function on the real line in the natural way with $\inf g=0$ and $\sup g=2$. Set $X=\left\{x \in X_{0}: g^{\prime}(x)=\infty\right\}$. Then $m(X)=m\left(X_{0}\right)=0$. From the work of de la Vallée Poussin (consult for example [2, Theorem (9.1), Chapter IV]) it follows that the set $g\{x: g$ has a finite or infinite derivative at $x\}$ has measure 2. But the set $\left\{x: g^{\prime}(x)>0\right\}$ has measure zero and we deduce from [2, Theorem (4.5), Chapter IX] that the set $g\{x: g$ has a finite derivative at $x\}$ has measure zero. Thus it follows that

$$
\begin{equation*}
m(g(X))=2 . \tag{1}
\end{equation*}
$$

Now let h be a continuous function on $[a, b]$ with total variation less than 1. It suffices to prove that $(g+h)^{\prime}(x)=\infty$ at continuum many $x \in S$.

Let $Y=\left\{y \in X: \min \left(D_{+}(g+h)(y), D_{-}(g+h)(y)\right)<\infty\right\}$. Intervals of the form $[g(c), g(c+t)]$ with $t>0$ and satisfying

$$
g(c+t)-g(c)>3((g+h)(c+t)-(g+h)(c))
$$

form a Vitali covering on the y-axis of the set $g(Y)$. Observe that here

$$
\begin{equation*}
-\frac{g(c+t)-g(c)}{3}<-((g+h)(c+t)-(g+h)(c)) . \tag{2}
\end{equation*}
$$

Then from (2) we obtain

$$
\begin{aligned}
-(h(c+t)-h(c)) & =(g(c+t)-g(c))-((g+h)(c+t)-(g+h)(c)) \\
& >(g(c+t)-g(c))-\frac{g(c+t)-g(c)}{3} \\
& =2 \cdot \frac{g(c+t)-g(c)}{3}
\end{aligned}
$$

and because t and $g(c+t)-g(c)$ are positive it follows that

$$
\begin{equation*}
|h(c+t)-h(c)| \geq 2 \cdot \frac{g(c+t)-g(c)}{3} \tag{3}
\end{equation*}
$$

By the Vitali Covering Theorem there are countably many mutually disjoint such intervals $\left[g\left(c_{j}\right), g\left(c_{j}+t_{j}\right)\right]$ covering almost every point in $g(Y)$. Furthermore the intervals $\left[c_{j}, c_{j}+t_{j}\right]$ are mutually disjoint. From (3) and the total variation of h we infer that

$$
1 \geq \sum_{j}\left|h\left(c_{j}+t_{j}\right)-h\left(c_{j}\right)\right| \geq 2 \cdot \sum_{j} \frac{g\left(c_{j}+t_{j}\right)-g\left(c_{j}\right)}{3} \geq 2 \cdot \frac{m(g(Y)}{3}
$$

and

$$
\begin{equation*}
m(g(Y)) \leq \frac{3}{2} \tag{4}
\end{equation*}
$$

From (1) and (4) we obtain

$$
\begin{equation*}
m(g(X \backslash Y)) \geq \frac{1}{2} \tag{5}
\end{equation*}
$$

It follows from (5) that the sets $g(X \backslash Y)$ and $X \backslash Y$ have the power of the continuum and because $X \subset X_{0} \subset S,\left\{x \in S:(g+h)^{\prime}(x)=\infty\right\}$ has the power of the continuum.

In the next lemma we introduce a space $(B V)$ that has a different metric than the uniform metric.

Lemma 3. Let S be an uncountable compact set. Let (BV) denote the family of singular functions of bounded variation on $[a, b]$ under the metric

$$
d(f, g)=|f(0)-g(0)|+V(f-g)
$$

where V denotes the total variation on $[a, b]$. Let

$$
W=\left\{f \in(B V): f^{\prime}(x)=\infty \text { at continuum many points } x \text { in } S\right\} .
$$

Then $(B V)$ is a complete metric space and the function 0 is in the closure of the interior of W.

Proof. Let $\left(B V_{1}\right)$ denote the family of all functions of bounded variation on $[a, b]$ under the same metric that $(B V)$ has. Then $(B V) \subset\left(B V_{1}\right)$. Routine arguments show that $\left(B V_{1}\right)$ is a complete metric space.

Let $f_{1} \in\left(B V_{1}\right) \backslash(B V)$ and $f_{2} \in(B V)$. Set $\epsilon>0$ such that the set

$$
\left\{x \in[a, b]: \max \left(\left|D^{+} f_{1}(x)\right|,\left|D_{+} f_{1}(x)\right|,\left|D^{-} f_{1}(x)\right|,\left|D_{-} f_{1}(x)\right|\right)>\epsilon\right\}
$$

has measure greater than ϵ. By a straight-forward application of the Vitali Covering Theorem, there exist mutually disjoint intervals $\left[x_{1}, x_{1}+t_{1}\right],\left[x_{2}, x_{2}+\right.$ $\left.t_{2}\right], \ldots,\left[x_{n}, x_{n}+t_{n}\right]$ such that

$$
\sum_{i=1}^{n}\left|f_{1}\left(x_{i}+t_{i}\right)-f_{1}\left(x_{i}\right)\right|>\epsilon \cdot \sum_{i=1}^{n} t_{i}>\epsilon^{2}
$$

It follows that $d\left(f_{1}, 0\right)>\epsilon^{2}$. By the same argument $d\left(f_{1}, f_{2}\right)=d\left(f_{1}-f_{2}, 0\right)>$ ϵ^{2} and we deduce that $(B V)$ is a closed subset of $\left(B V_{1}\right)$. But $\left(B V_{1}\right)$ is a complete metric space, so $(B V)$ is likewise a complete metric space.

We deduce that the function g in Lemma 2 lies in the interior of W, so the distance in $(B V)$ from the 0 function to (interior W) is at most 2. For any $r>0, r($ interior $W) \subset$ interior W. It follows that the distance from the 0 function to (interior W) is zero.

We are now ready for our main results.
Theorem 1. Let f be a continuous function on $[a, b]$. Then there is an s function K such that $K-f$ is of bounded variation and $(K-f)^{\prime}=0$ almost everywhere. Furthermore, the family of all functions K satisfying this property is dense in $C[a, b]$ under the topology of uniform convergence.

Proof. Let I be a subinterval of $[a, b]$. For $g \in C[a, b]$ let

$$
A(g)=\left\{G \in(B V):(G+g)_{+}^{\prime}(x)=\infty \text { at continuum many } x \in I\right\}
$$

By Lemma 1 there is an uncountable compact set $S \subset I$ such that $D_{+} g(x)>$ $-\infty$ on a cocountable subset of S. We deduce from Lemma 3 that the 0 function is in the closure of the interior of the set $A(g)$.

Let h be any function in $(B V)$ and let $g_{0}=g+h$. Let $G_{0} \in A\left(g_{0}\right)$. Then $\left(G_{0}+g_{0}\right)_{+}^{\prime}(x)=\infty$ and likewise $\left(\left(G_{0}+h\right)+\left(g_{0}-h\right)\right)_{+}^{\prime}(x)=\infty$ at continuum many points x in I. It follows that $G_{0}+h \in A\left(g_{0}-h\right)=A(g)$ and furthermore $A\left(g_{0}\right)+h \subset A(g)$. By Lemma 3 again the 0 function is in the closure of the interior of $A\left(g_{0}\right)$ and h is in the closure of the interior of $A\left(g_{0}\right)+h$. Thus h is
in the closure of the interior of $A(g)$. The choice of h is independent of g, so the interior of $A(g)$ is dense in $(B V)$ for any $g \in C[a, b]$.

For any subinterval I of $[a, b]$, let $P(I)$ be the family $A(f)$ as described. Then $\cap_{I} P(I)$, where I runs over all the subintervals of $[a, b]$ with rational endpoints, is a residual subset of the complete metric space $(B V)$.

It follows that the family P_{1} of functions F in $(B V)$ for which $(F+f)_{r}^{\prime}(x)=$ ∞ at continuum many points x in each subinterval of $[a, b]$ is a residual subset of the complete metric space $(B V)$. Let P_{2} denote the corresponding family in which we replace ∞ with $-\infty$. It follows similarly that F_{2} is a residual subset of $(B V)$. Let P_{3} and P_{4} be the corresponding families where left derivatives (instead of right derivatives) are employed. Then P_{3} and P_{4} are likewise residual subsets of $(B V)$. Set $P=P_{1} \cap P_{2} \cap P_{3} \cap P_{4}$. Then P is a residual subset of $(B V)$. But any function in $P+f$ is an s-function and hence any function in $P+f$ suffices for K in the conclusion of Theorem 1.

Finally $(B V)+f$ is evidently dense in the space $C[a, b]$ under the topology of uniform convergence, so $P+f$ is also dense in $C[a, b]$.

For certain kinds of functions $f \in C[a, b], s$-functions in Theorem 1 can be replaced by s_{0}-functions, as we now see.

Theorem 2. Let $f \in C[a, b]$ such that either
(i) f is differentiable on a set of positive measure in every subinterval of $[a, b]$ or
(ii) f is differentiable at each point of a residual subset of $[a, b]$.

Then there is an s_{0}-function K on $[a, b]$ such that $(K-f)^{\prime}=0$ almost everywhere on $[a, b]$. Furthermore the family of all s_{0}-functions satisfying this property is dense in $C[a, b]$ under the topology of uniform convergence.

Proof. (i) In any subinterval I of $[a, b] f$ is differentiable on a set of positive measure that must contain an uncountable compact set. Then Lemma 1 applies to f and we continue as in the proof of Theorem 1. Observe that all the derivatives are bilateral here.
(ii) A residual subset of $[a, b]$ must contain a dense G_{δ}-subset of every subinterval of $[a, b]$, which in turn must contain a perfect set. Hence f is differentiable on an uncountable compact set in every subinterval of $[a, b]$. We proceed as in part (i).

Some corollaries are immediate.
Corollary 1. The family of all s_{0}-functions in $(B V)$ is a residual subset of (BV).

Proof. Apply the proof of Theorem 1 to any constant function f.
Corollary 2. For any measurable function h on $[a, b]$, there is a continuous s_{0}-function F, depending on h, such that $F^{\prime}=h$ almost everywhere on $[a, b]$.

Proof. By [2, Theorem (2.3), Chapter VII, p. 217] there is a function $F_{1} \in$ $C[a, b]$ such that $F_{1}^{\prime}=h$ almost everywhere on $[a, b]$. Apply Theorem 2 to F_{1}.

Observe that any function of bounded variation in $C[a, b]$ satisfies the hypothesis of Theorem 2. Likewise any $f \in C[a, b]$ that maps sets of measure zero to sets of measure zero (Lusin's condition (N)) must be differentiable on a set of positive measure in each subinterval of $[a, b]$ (consult [2, Chapter IX, Theorem (7.9), p.286] and so satisfies the hypothesis of Theorem 2.

Corollary 3. There is an s-function $F \in C[a, b]$ such that for any measurable function k on $[a, b]$ there is a sequence of positive numbers $\left(t_{n}\right)$ converging to 0 , and depending on k, such that

$$
\lim _{n \rightarrow \infty} \frac{F\left(x+t_{n}\right)-F(x)}{t_{n}}=k(x)
$$

for almost every x in $[a, b]$.

Proof. By [2, p. 118] there exists a function F_{0} in $C[a, b]$ satisfying this property. Apply Theorem 1 to F_{0}.

Corollary 4. Let f be a positive function in $C[a, b]$. Then there exist functions F, F_{1}, F_{2} in $(B V)$ such that
(i) $F+(\log f)$ is an s-function,
(ii) $F_{1} f$ is an s-function, and
(iii) $f^{F_{2}}$ is an s-function, provided $f>1$ on $[a, b]$.

Proof. (i) The proof of (i) is in the proof of Theorem 1.
(ii) Let $p \in C[a, b]$ and $x \in(a, b)$. By the Mean Value Theorem we see that

$$
\frac{\exp (p(x+t))-\exp (p(x))}{t}=\frac{e^{u}(p(x+t)-p(x))}{t}
$$

for some number u between $p(x+t)$ and $p(x)$. From this we deduce that p is an s-function if and only if $\exp (p)$ is an s-function.
Let G be a function in $(B V)$ such that $G+\log f$ is an s-function. Then $\exp (G+\log f)=f(\exp G)$ is an s-function and $\exp G$ is in $(B V)$.
(iii) Let G be a function in $(B V)$ such that $G(\log f)$ is an s-function. Then $\exp (G \log f)=f^{G}$ is an s-function and G is in $(B V)$.

We close with the comment that if $f_{1}, f_{2}, f_{3}, \ldots, f_{n}, \ldots$ is a sequence of functions in $C[a, b]$ then there is a function F in $(B V)$ such that $F+f_{j}$ is an s-function for each index j. We leave the proof.

References

[1] S. Saks, On the Functions of Besicovich in the Space of Continuous Functions, Fund. Math., 19 (1932), 211-219.
[2] S. Saks, Theory of the Integral, 2nd. Rev. Ed., Dover, New York, 1964.
[3] F. S. Cater, An Elementary Proof of a Theorem on Unilateral Derivatives, Canad. Math. Bull., 29(3) (1986), 341-343.

[^0]: Key Words: unilateral derivative, bilateral derivative, metric space
 Mathematical Reviews subject classification: 26A24, 26A45
 Received by the editors January 6, 2007
 Communicated by: Bernd Kirchheim

