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A NEW ELEMENTARY PROOF OF A
THEOREM OF DE LA VALLÉE POUSSIN

Abstract

We give a new elementary proof of the Classical Theorem: Let f be
of bounded variation on [a, b] and let V be its total variation function.
Then there is a set N such that m

`
V (N)

´
= m

`
f(N)

´
= m(N) = 0,

and for each x not in N , f and V have derivatives, finite or infinite, and
V ′(x) = |f ′(x)|.

Let f be a real valued function of bounded variation on [a, b], and for
x ∈ [a, b], let V (x) denote the total variation of f on the interval [a, x]. In this
note we give a new elementary proof of a classical result of de la Valée Poussin
(see [3, Theorem 9.6 (ii), chapter IV]).

Classical Theorem. There exists a set N ⊂ [a, b] such that

m
(
V (N)

)
= m

(
f(N)

)
= m(N) = 0

(where m denotes Lebesgue outer measure) and such that for x ∈ [a, b] \ N ,
V ′(x) and f ′(x) exist (finite or infinite) and |f ′(x)| = V (x).

Recently Vasile Ene in [1] revived interest in the Theorem by giving ana-
logues for it and other work involving functions of generalized bounded varia-
tion. Thus he found new proofs of the Classical Theorem by these sophisticated
means. We will not require integrals nor arc length. We use derived numbers
[2, p. 207] and the Vitali Covering Theorem [2, p. 81] and little else. The
proof is almost immediate from our Lemma 1.

Lemma 1. Let h and k be positive numbers with h < k and let E ⊂ [a, b] be
a set such that at each x ∈ E, V has a derived number greater than k and f
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has a derived number whose absolute value is less than h. Let S ⊂ [a, b] be a
set such that at each x ∈ S, f has a positive and a negative derived number.
Then

m
(
V (E ∪ S)

)
= m

(
f(E ∪ S)

)
= m(E ∪ S) = 0 .

Proof. Take any ε > 0. Let a = uo < u1 < · · · < un = b be a partition of
[a, b] such that for any partition a = zo < z1 < · · · < zt = b that contains all
the ui we have

V (b)− V (a) <
t∑

i=1

∣∣f(zi)− f(zi−1)
∣∣+ ε ,

and hence

V (b)− V (a) =
t∑

i=1

(
V (zi)− V (zi−1)

)
<

t∑
i=1

∣∣f(zi)− f(zi−1)
∣∣+ ε . (1)

Let P denote the finite set {u0, u1, . . . , un}.
Without loss of generality we assume that V and f are continuous at each

point of E∪S. Let U be an open set with V (E) ⊂ U and m(U) < m
(
V (E)

)
+ε.

We use the Vitali Covering Theorem (on the y-axis) to cover V (E) almost
everywhere with mutually disjoint intervals

[
V (ai), V (bi)

]
where

[V (ai), V (bi)
]
⊂ U and V (bi)− V (ai) > k(bi − ai) for each i.

Then the intervals [ai, bi] are also mutually disjoint, and

m
(
V (E)

)
+ ε > m(U) ≥

∑
i

(
V (bi)− V (ai)

)
> k

∑
i

(bi − ai) ,

so ∑
i

(bi − ai) <
(
m
(
(V (E)

)
+ ε
)
k−1 . (2)

Again we use the Vitali Covering Theorem (on the y-axis) to cover V (E) al-
most everywhere with mutually disjoint intervals

[
V (cj), V (dj)

]
where [cj , dj ]

⊂ ∪i[ai, bi], P ∩ [cj , dj ] is void, and∣∣f(dj)− f(cj)
∣∣ < h(dj − cj) for each j .

Then
m
(
V (E)

)
≤
∑

j

(
V (dj)− V (cj)

)
. (3)
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But we deduce from (1) that∑
j

(
V (dj)− V (cj)

)
<
∑

j

∣∣f(dj)− f(cj)
∣∣+ ε (4)

and from ∪j [cj , dj ] ⊂ ∪i[ai, bi] we deduce that∑
j

(dj − cj) ≤
∑

i

(bi − ai) . (5)

We combine (3), (4) and (5) to obtain

m
(
V (E)

)
≤
∑

j

(
V (dj)− V (cj)

)
≤
∑

j

∣∣f(dj)− f(cj)
∣∣+ ε

≤h
∑

j

(dj − cj) + ε ≤ h
∑

i

(bi − ai) + ε

and (
m
(
V (E)

)
− ε
)
h−1 ≤

∑
i

(bi − ai) . (6)

We combine (2) and (6) to obtain
(
m
(
V (E)

)
+ ε
)
k−1 ≥

(
m
(
V (E)

)
− ε
)
h−1.

But ε was arbitrary, so m
(
V (E)

)
k−1 ≥

(
m
(
V (E)

))
h−1. Now 0 < h < k, and

it follows that m
(
V (E)

)
= 0.

We use the definition of S and the Covering Theorem again to cover V (S)
almost everywhere with mutually disjoint intervals

[
V (ri), V (si)

]
so that for

each i, f(si) > f(ri), P ∩ [ri, si] is void and

m
(
V (S)

)
≤
∑

i

(
V (si)− V (ri)

)
≤
∑

i

(
f(si)− f(ri)

)
+ ε . (7)

Again cover the set V (S) almost everywhere with mutually disjoint intervals[
V (pj), V (qj)

]
with [pj , qj ] ⊂ ∪i[ri, si], P ∩ [pj , qj ] is void and f(qj) < f(pj)

for each j, so that

m
(
V (S)

)
≤
∑

j

(
V (qj)− V (pj)

)
≤
∑

j

(
f(pj)− f(qj)

)
+ ε. (8)

We compare upper and lower variations of f and deduce that∑
j

(
f(pj)− f(qj)

)
+
∑

i

(
f(si)− f(ri)

)
≤
∑

i

(
V (si)− V (ri)

)
.
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By (7) and (8) we have∑
j

(
V (qj)− V (pj)

)
− ε+

∑
i

(
V (si)− V (ri)

)
− ε ≤

∑
i

(
V (si)− V (ri)

)
and

∑
j

(
V (qj)− V (pj)

)
≤ 2ε . We invoke (8) and obtain m

(
V (S)

)
≤ 2ε. But

ε was arbitrary, so m
(
V (S)

)
= 0. It follows that m

(
V (E ∪ S)

)
= 0. Cover

V (E ∪S) with intervals Ij such that
∑

j m(Ij) < ε. Now each set f
(
V −1(Ij)

)
is contained in an interval whose length does not exceed that of Ij . It follows
that m

(
f(E ∪ S)

)
< ε. Hence m

(
f(E ∪ S)

)
= 0.

Finally at each point of E ∪ S, V has a positive derived number. That
m(E ∪ S) = 0 can be proved by a standard Vitali covering argument, this
time on the x-axis. The argument can be found, for example, in [2, pp. 210,
211], so we leave it.

Proof of Theorem. We let h and k run through all the positive rational
numbers (h < k) and deduce from Lemma 1 that there is a set N ⊂ [a, b] such
that

m
(
V (N)

)
= m

(
f(N)

)
= m(N) = 0

and for any x ∈ [a, b] \ N , for any derived number DV (x) of V at x and for
any derived number Df(x) of f at x, we have DV (x) ≤

∣∣Df(x)
∣∣; moreover f

does not have two derived numbers of opposite sign at x.
Let Df(x) be a derived number of f at x. Then there cannot be a derived

number D1f(x) such that
∣∣Df(x)

∣∣ > ∣∣D1f(x)
∣∣; otherwise V would have a

derived number as large as
∣∣Df(x)

∣∣ and larger than
∣∣D1f(x)

∣∣, contrary to the
choice of x. Thus

∣∣Df(x)
∣∣ and −

∣∣Df(x)
∣∣ are the only possible derived numbers

of f at x, so there can be only one. It follows that f has a derivative at x,
finite or infinite. If DV (x) is a derived number of V at x, then necessarily
DV (x) ≥

∣∣f ′(x)
∣∣. We deduce from the choice of x that DV (x) =

∣∣f ′(x)
∣∣,

V has only one derived number at x, V has a derivative at x, and moreover
V ′(x) =

∣∣f ′(x)
∣∣.
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