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AN ELEMENTARY PROOF THAT
ANALYTIC FUNCTIONS ARE OPEN

MAPPINGS

Abstract

We give an elementary real analysis proof that an analytic function
on an open region, not constant on any non-void open subset, is an open
mapping.

One of the standard theorems of complex analysis is that the range of
a nowhere constant analytic function on an open region, is an open set. It
follows that such a function is an open mapping, i.e., maps open sets to open
sets. The usual proofs come from other complex analysis theorems that in turn
depend on such matters as contour integrals, for example (see [2], and [3]).
We will give a relatively short and elementary proof using real analysis. No
inverse functions, derivatives or integrals of any kind are involved, and little
calculation is required. In [1] Serge Lang gave a real analysis proof. However,
it involved several issues and calculations that will not enter our argument.

The result should be evident from the following Lemma we hope is of some
independent interest.

Lemma 1. Let f be analytic on a neighborhood of the closed disc

D =
{
z : |z| ≤ r

}
,

and let f be constant on no non-void open set. Let

f(h) = f(0) + cjh
j +

∞∑
k=j+1

ckhk for |h| ≤ r,
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and let
∞∑

k=j+1

|ck|rk−j < |cj |. (∗)

Let d denote the distance from the point f(0) and the set f(B), where

B =
{
z : |z| = r

}
.

Then d > 0 and
{

w :
∣∣w − f(0)

∣∣ < d
2

}
⊂ f(D).

Proof. From (∗) we get
∣∣∣∑∞k=j+1 ckhk

∣∣∣ < ∣∣cjh
j
∣∣ for |h| = r, and f(0) does

not lie in the set f(B). But f(B) is compact because B is compact and f is
continuous. So d > 0. Let T be a number with

∣∣T − f(0)
∣∣ < d/2. It suffices to

prove that T ∈ f(D). We proceed by contradiction. Assume that T /∈ f(D).
Now f(D) is also compact, so we can (and do) select v ∈ D such that∣∣T − f(v)

∣∣ = inf
{∣∣T − f(z)

∣∣ : z ∈ D
}

.

Note that T is closer to f(0) than to any point in f(B). It follows that
f(v) /∈ f(B), v ∈ D \B and |v| < r. Let

f(v + h) = f(v) + bsh
s +

∞∑
k=s+1

bkhk (bs 6= 0)

for h in some neighborhood of 0. Choose a real number p such that

0 < p < r − |v|, (1)

∞∑
k=s+1

|bk|pk−s < |bs|, (2)

|bs|ps <
∣∣T − f(v)

∣∣. (3)

Let a1 and a2 be the angles such that bs = |bs|
(
cos a1 + i sin a1

)
, and

T − f(v) =
∣∣T − f(v)

∣∣(cos a2 + i sin a2

)
,

and let the angle a3 satisfy

sa3 + a1 = a2. (4)
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Put H = p
(
cos a3 + i sin a2

)
. It follows from (4) that the complex numbers

bsH
s and T − f(v) have the same angle (are in the same direction), and by

(3),
∣∣bsH

s
∣∣ < ∣∣T − f(v)

∣∣. It follows that∣∣T − f(v)
∣∣− ∣∣bsH

s
∣∣ =

∣∣T − f(v)− bsH
s
∣∣. (5)

From (2) we obtain ∣∣∣ ∞∑
k=s+1

bkHk
∣∣∣ < ∣∣bsH

s
∣∣. (6)

From (5) and (6) we obtain

∣∣T − f(v + H)
∣∣ =

∣∣∣T − f(v)− bsH
s −

∞∑
k=s+1

bkHk
∣∣∣

≤
∣∣T − f(v)− bsH

s
∣∣+
∣∣∣ ∞∑
k=s+1

bkHk
∣∣∣

=
∣∣T − f(v)

∣∣− ∣∣bsH
s
∣∣+
∣∣∣ ∞∑
k=s+1

bkHk
∣∣∣

<
∣∣T − f(v)

∣∣.
Finally, |v + H| ≤ |v|+ |H| = |v|+ p ≤ r by (1), so v + H ∈ D. This conflicts
with the choice of v.

Now let f be analytic and nowhere constant on an open region U . We
prove that for z ∈ U , f(z) is interior to f(U). To this end, translate so that
z = 0, take the series expansion at 0, and make r small enough that (∗) holds
as in Lemma 1. We leave the rest.

Remark. We can use this approach to prove the Fundamental Theorem of
Algebra. Let f be a non-constant polynomial. Let

{
z : |z| ≤ M

}
= A be a

closed disc such that
∣∣f(z)

∣∣ > ∣∣f(0)
∣∣ if z /∈ A. Let

∣∣f(v)
∣∣ be minimal for |f | on

A. Then
∣∣f(v)

∣∣ is minimal for |f | (v complex). If
∣∣f(v)

∣∣ > 0, use the technique
in the proof of Lemma 1 to find v + H with f(v + H) closer to 0 than f(v) is.
Likewise we can give an elementary real analysis proof of the theorem:

Let f be a complex function on C that is analytic at every point
where f does not have a pole. Let f have a pole at infinity. Then
f(C) = C.
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