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Abstract

In this paper we compare and contrast two indicators of size in the
real line: porosity (porosity index) and thickness. We use a relationship
between thickness and the porosities to find a condition on when the sum
of two Cantor sets is an interval. Finally, some questions are posed.

1 Introduction and Definitions

There are several ideas in the literature concerning what makes a set in the
real line small (or alternatively large). Of course not all of these definitions
are equivalent. For example, sets that are measure zero needn’t be nowhere
dense. We will concentrate on two indicators of size: porosity and porosity
index, which look at how small a Cantor set can be, and thickness, which tells
how large a Cantor set can be. At first glance the definitions of thickness
and porosity index make it seem like one could be the reciprocal of the other.
However, this is not the case. In this paper we shall find conditions on a
Cantor set under which the porosity/porosity index gives information about
the thickness. We include an example to show these two ideas are not always
related and give some questions to be answered.

We start with the definition of porosity for a set on the line. Let E be a
set in R and x ∈ R. The right porosity of E at x, p+ (E, x) is given by

p+ (E, x) = lim sup
ε→0+

k

k + h
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where (x+ h, x+ h+ k) ∩ E = ∅, h + k < ε, and h, k > 0. In a similar
vein, the left porosity of E at x (written p− (E, x)) is defined by having
(x− h− k, x− h) ∩ E = ∅. Finally, the porosity of E at x is defined by

p (E, x) = max
{
p− (E, x) , p+ (E, x)

}
.

Values of p lie in [0, 1]. We say that E is porous at x if p (E, x) > 0 and that E
is a porous set if p (E, x) is positive for all x in E. Stronger is the claim that
E is uniformly porous. A set E is uniformly porous if there exists an α > 0
so that

p (E) = inf
x∈E
{p (E, x)} ≥ α.

For example, the Cantor ternary set C is uniformly porous. We can easily see
that p (C) ≥ 1/2.

A closely related concept we refer to as the porosity index. Let E be a set
in R and x ∈ R. The right porosity index of E at x, pi+ (E, x) is given by

pi+ (E, x) = lim sup
ε→0+

k

h

where (x+ h, x+ h+ k) ∩ E = ∅, h + k < ε, and h, k > 0. The left porosity
index of E at x (written pi− (E, x)) is defined with (x− h− k, x− h)∩E = ∅
and then the porosity index of E at x is defined by

pi (E, x) = max
{
pi− (E, x) , pi+ (E, x)

}
.

For the porosity index, the values lie in [0,∞). We say E is uniformly indexed
if there exists an α > 0 such that

i (E) = inf
x∈E
{pi (E, x)} ≥ α.

Continuing our Cantor set example, i (C) ≥ 1.
As would be expected, the concepts of porosity and porosity index are

related to one another. This relation is given in the following lemma from the
Appendix of [6].

Lemma 1. If p = p+ (E, x) and i = pi+ (E, x) then

p =
i

1 + i
and i =

p

1− p
.

More on porosity and its applications may be found in [6] and [7].
We now turn our attention to Cantor sets. There are two points of view

we will take. The first (although it may be generalized) is rather strict. We
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shall call this construction the standard construction of a Cantor set. Let {an}
be a sequence of values where 0 < an < 1/2. Stage zero of the construction
consists of the closed interval I. At stage n we have 2n closed intervals In,k,
k = 1, 2, . . . , 2n of length (a1 · a2 · · · an−1) |I| where |I| denotes the length of I.
In the next step each sub-interval In,k is divided into three pieces I0

n,k, On,k,

and I1
n,k where On,k is an open interval between I0

n,k and I1
n,k, I0

n,k has the
same left endpoint as In,k, I1

n,k has the same right endpoint as In,k, and∣∣∣I0
n,k

∣∣∣
|In,k|

=

∣∣∣I1
n,k

∣∣∣
|In,k|

= an.

The Cantor set is then
∞⋂
n=1

(
2n⋃
k=1

In,k

)
.

We will denote this set by Can,an (or Ca,a if {an} is the constant sequence {a}).
Note the Cantor ternary set would be written as C1/3,1/3. The terminology we
will employ is to call Can,an a uniform Cantor set and Ca,a a constant Cantor
set.

For our second point of view, we will consider a Cantor set to be any set
of the form

I\ ∪∞i=1 Oi

where I is a bounded, closed interval and {Oi : i ≥ 1} is a countable collection
of disjoint open intervals which have no endpoint in common and whose union
is dense in I. We take the following approach to the construction of the Cantor
set. Let I be the zeroth level. Assume we have defined the construction up to
the nth level. Let Iσ (where σ is a string of length n consisting of 0’s and 1’s
which gives the address of the interval) be an nth level interval. Then define
OIσ as the interval of least index contained in Iσ and let Iσ0 and Iσ1 be the
closed intervals where

Iσ = Iσ0 ∪OIσ ∪ Iσ1.

Continue this process inductively and our Cantor set is given by

C =
∞⋂
n=1

 ⋃
|σ|=n

Iσ

 .

The end result is always C, but, if we look the set
k⋂

n=1

( ⋃
|σ|=n

Iσ

)
, it is a

different set for different ordering of {Oi : i ≥ 1}. For a specific {Oi : i ≥ 1} we
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would refer to this construction of C as the derivation (written D) of C with
respect to {Oi : i ≥ 1}. The different derivations help motivate the concept of
thickness.

Definition 1. Given a derivation D, A ∈ D refers to an arbitrary interval at
some level n which will be decomposed into A0 ∪OA ∪A1 where OA refers to
the interval of least index which is contained in A. Then the thickness, τ , of
the Cantor set C is defined by

τ (C) =∞ if {Oi : i ≥ 1} = ∅

otherwise

τ (C) = sup
D

(
inf
A∈D

(
min

{ ∣∣A0
∣∣

|OA|
,

∣∣A1
∣∣

|OA|

}))
.

For more on thickness consult [1], [2], [4], and [5].
Finding the thickness is reasonably easy if we know the derivation is or-

dered. We say a derivation is ordered if for intervals A and B in the derivation
with A = A0 ∪ OA ∪ A1, B = B0 ∪ OB ∪ B1, and B ⊆ A, then |OA| ≥ |OB |.
Then we have the following lemma.

Lemma 2. Let D be any derivation of C from I (we shall denote the thickness
of C with respect to a fixed derivation D as τD). Then there exists an ordered
derivation DO of C from I with

τD (C) ≤ τDO (C) .

Furthermore, if D1 and D2 are two ordered derivations of C from I then

τD1 (C) = τD2 (C) .

Proof. Proof of this can be found in [1] as the proof of Lemma 3.1.

We can see that the Cantor ternary set is ordered in the canonical con-
struction and that this set has thickness 1. In fact, for 0 < a < 1/2, then
τ (Ca,a) = a

1−2a .

2 Results

Now that our notation is in place we can relate thickness and the porosities.
The derivation under consideration comes from the standard one where at
stage n (since only one interval is to be removed at a time in a derivation) we
remove intervals in the order On,1, On,2, . . . , On,2n . We will refer to this as the
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standard derivation. The first question we wish to look at concerns whether
or not this derivation will be ordered. It seems obvious that the derivation
will be ordered if the sequence of an values is non-decreasing. However, this
is not a necessary condition.

Lemma 3. The set Can,an with the standard derivation is ordered if

an+1 ≥
3an − 1

2an
.

Proof. Consider an interval I from the (n− 1) st stage of the construction.
The gap introduced in I at the next stage will have length (1− 2an) |I| and
the gap length from the (n+ 1) st stage will have length (1− 2an+1) an |I|.
Setting (1− 2an+1) an |I| ≤ (1− 2an) |I| we arrive at our result.

This leads us to the immediate corollaries

Corollary 4. The set Can,an with the standard derivation is ordered if an ≤
1/3 for all n.

Proof. This comes from Lemma 4 since an ≤ 1/3 implies 3an−1
2an

is not posi-
tive.

So a Cantor set where a2n = 1/3 and a2n+1 = 1/5 will be ordered even
though the sequence of an’s is not monotone. As a consequence of knowing
our derivation is ordered we can easily find the thickness value for Can,an .

Corollary 5. If an+1 ≥ 3an−1
2an

then

τ (Can,an) = sup
n≥1

an
1− 2an

.

Proof. Since Lemma 4 guarantees the standard derivation is ordered we get
our result.

In finding a lower bound for the porosity index of the Cantor ternary set
we looked at

|O|
|Ij |

where O is the middle interval removed and Ij is one of the intervals (left or
right) resulting from removing O. In computing thickness, we used∣∣Ij∣∣

|O|
.
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The reciprocal nature of the fractions was the motivation behind our investi-
gation of the relationship between the thickness τ (C) and the uniform index
value i (C).

Theorem 6. Let C = Can,an be a Cantor set constructed by the standard
derivation. If an is non-decreasing then

i (C) ≥ 1
τ (C)

.

Proof. Because an is non-decreasing the standard derivation will be ordered.
Hence τ (C) ≥ an

1−2an
for each n, by Corollary 6. On the other hand, at any

stage the ratio of the length of the gap introduced in an interval I versus the
length of the new subinterval constructed is a lower bound for the values of
the porosity index. This gives our result.

This brings us to the following corollary.

Corollary 7. Let C = Can,an be a Cantor set constructed by the standard
derivation. If an is non-decreasing then

p (C) ≥ 1
1 + τ (C)

.

Proof. This is simply an application of the relationship between the value of
the porosity index at a point and the porosity at a point.

We have an example to show that it is necessary for an to be non-decreasing.
If we use {an} with a1 small and an = 1/3 for n ≥ 2 then the large gap in the
first stage controls τ (C) while the 1/3’s control the porosity index. Therefore
we can make the value of 1

τ(C) exceed i (C) (although the exact value for i (C)
is not known to this author, it is finite).

We note here that we do have similar results for non-centered Cantor sets.
That is, Can,bn where at the nth stage in the standard construction each of the
2n intervals In,k are divided into two subintervals I0

n,k and I1
n,k where I0

n,k and
In,k share the same left endpoint, I1

n,k and In,k share the same right endpoint,
and ∣∣∣I0

n,k

∣∣∣
|In,k|

= an and

∣∣∣I1
n,k

∣∣∣
|In,k|

= bn.

These results, however, are not as succinct as before.
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Lemma 8. The non-centered Cantor set Can,bn is ordered in the standard
derivation if

1− an − bn
max {an, bn}

≥ 1− an+1 − bn+1.

We can now give a result finding the thickness for the Cantor set Can,bn
assuming the an and bn give an ordered derivation.

Lemma 9. If 1−an−bn
max{an,bn} ≥ 1− an+1 − bn+1, then

τ (Can,bn) = sup
n

(
min {an, bn}
1− an − bn

)
.

3 Application

The application we will look at is not truly new. It concerns the sum of Cantor
sets. For two sets A and B we define their sum as

A+B = {a+ b : a ∈ A and b ∈ B} .

It is well-known that if C is the Cantor ternary set then C + C = [0, 2]. Our
original intent was to find a strong connection between porosity of Cantor sets
and the sum of these sets being an interval. Results about this are known
concerning thickness. Theorem 10 comes from [4].

Theorem 10. For j = 1, 2 let Cj be a Cantor set derived from Ij with Oj a
gap of maximal size in Cj. Assume that

|O1| ≤ |I2| and |O2| ≤ |I1| .

If τ (C1) · τ (C2) ≥ 1 then C1 + C2 = I1 + I2.

In rephrasing this in terms of porosity and porosity index we need to put
another restriction on our sets.

Corollary 11. For j = 1, 2 let Cj = Cajn,ajn be a Cantor set derived from Ij
with Oj a gap of maximal size in Cj. Assume that the ajn are non-decreasing
and

|O1| ≤ |I2| and |O2| ≤ |I1| .

If i (C1) · i (C2) ≤ 1 then C1 + C2 = I1 + I2.



356 Robert W. Vallin

Proof. Having i (C1) · i (C2) ≤ 1 is the same as

1 ≤ 1
i (C1)

· 1
i (C2)

≤ τ (C1) · τ (C2)

and we apply Theorem 10.

Corollary 12. For j = 1, 2 let Cj = Cajn,ajn be a Cantor set derived from Ij
with Oj a gap of maximal size in Cj. Assume that the ajn are non-decreasing
for each j and

|O1| ≤ |I2| and |O2| ≤ |I1| .

If p (C1) + p (C2) ≤ 1 then C1 + C2 = I1 + I2.

Proof. This is simply an application of Lemma 1.

Restating these results, if the “holes” in the Cantor sets are small enough,
the sum of the sets is an interval. The relationship we used to get the corollaries
was an inequality, however, not an equation. This leaves us with some room
which means while the conditions are sufficient they are not necessary.

Example 1. Let C be the Cantor ternary set. It is well-known that p (C) ≥
3/4. Thus p (C) + p (C) > 1 while C + C = [0, 2].

So we have the following questions concerning porosities and sums of Can-
tor sets:

Questions How large can p (C1) + p (C2) (or i (C1) · i (C2)) be and still have
C1 + C2 be an interval? Is it possible for both to be strongly porous
(p (C) = 1)?

Example 2. Theorem 5.11 in [3] leads us to an example of Cantor sets C1

and C2 which are strongly porous yet C1 + C2 is an interval. We begin with
the interval [0, 1]. Let C1 be the subset of [0, 1] with x ∈ C1 if and only if x
has a zero in the rth decimal place where j! + 1 ≤ r ≤ (j + 1)! where j is odd.
We construct C2 in a similar manner except j is even.

However, these sets do have thickness zero. So now we have a whole new
set of questions.

Question If we have Cantor sets C1 and C2 so that τ (C1) · τ (C2) ≥ 1 how
large can p (C1) + p (C2) be?
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We have a partial answer to this, beginning with the constant Cantor set
Ca,a. From the repeated removal of the same ratio from the middle we can
calculate a lower bound of the porosity as

p (Ca,a) ≥ 1− 2a
(1− a)2

(note that this is an improvement over our previous 1/2 for the Cantor ternary
set). We have already seen an exact value of τ (Ca,a) = a

1−2a for the thickness.
Then having both C1 and C2 be Ca,a we have τ (C1) · τ (C2) ≥ 1 if a ∈
[1/3, 1/2). Since porosity is a decreasing function of a we have p (C1) + p (C2)
is bounded above by p

(
C1/3,1/3

)
+ p

(
C1/3,1/3

)
which is less than two (so an

upper bound does exist for this question and this type of set).
We return to this result even if we do not insist C1 and C2 are the same

constant Cantor set. When we have C1 = Ca,a and C2 = Cb,b the maximum
of p (C1)+p (C2) subject to τ (C1) ·τ (C2) ≥ 1 will occur when a = b = 1/3. So
if the answer to the question is above 2 · p

(
C1/3,1/3

)
, the Cantor sets involved

must be non-constant.
Now Falconer’s example tells us that adding the porosities of two Cantor

sets cannot be used to indicate whether or not the sum of the sets is an interval.
So we must ask if there is some type of indication we can get using porosity.

Question Does there exist an “elementary” operation ∗ defined on [0, 1] so
that for Cantor sets C1 and C2

p (C1) ∗ p (C2) ≤ 1

if and only if C1 + C2 is an interval?
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