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THE SUBSTITUTION THEOREM FOR
RIEMANN INTEGRALS

Abstract

We give a completely elementary proof of the strongest possible ver-
sion of the change-of-variables formula for the Riemann integration of
an integrable function f :Z b

a

f ◦ G (x) g (x) dx =

Z G(b)

G(a)

f (u) du

whenever g is Riemann integrable over [a, b], G (x) = G (a)+
R x

a
g (t) dt,

and f is Riemann integrable over the image of [a, b] under G. Our
arguments do not require f to be real-valued; it can take its values in
an arbitrary Banach space.

1 Introduction

There are many versions as well as many proofs of the change-of-variables
formula ∫ b

a

f ◦ g (x) g′ (x) dx =
∫ g(b)

g(a)

f (u) du

for Riemann integrals, with the simplest based on the chain rule and the
fundamental theorem of calculus. A more sophisticated version can be based
on the definition of the Riemann integral:∫ b

a

f ◦G (x) g (x) dx =
∫ G(b)

G(a)

f (u) du
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whenever g is Riemann integrable over [a, b], G (x) = G (a) +
∫ x

a
g (t) dt, and

f is Riemann integrable over the image of [a, b] under G. Note that in this
version, G need not be piecewise differentiable. The argument is quite straight-
forward when g is nonnegative, and is easily extended to the case where g has
only finitely many changes of sign. But the general case is considerably more
subtle, and it doesn’t seem to have been published prior to the recent paper
of D. N. Sarkhel and R. Výborný [3]. Somewhat earlier, McShane [2] gave
a version with f bounded and Lebesgue integrable instead of Riemann inte-
grable; of course, McShane’s theorem only proves that (f ◦G) g is Lebesgue
integrable.

Here we offer a natural proof of the general change-of-variables formula
for Riemann integration. We use only the most basic notions of Riemann
integration, with no measure-theoretic concepts or continuity properties of
Riemann integrable functions, and no mention of differentiation. Unlike the
proof given in [3], our proof allows f to have its values in an arbitrary Banach
space. However, our version of the substitution theorem can only use the
Riemann integrability of f to establish the Riemann integrability of (f ◦G) g,
while their version includes a partial converse. They also prove that f must
be Riemann integrable if (f ◦G) g is Riemann integrable with f bounded,
and give an example showing that f need not even be improperly Riemann
integrable unless its boundedness is explicitly assumed.

2 Riemann Integrability

We use a blend of the familiar Riemann and Darboux conditions for inte-
grability: A function f on [a, b] is Riemann integrable if there is a number∫ b

a
f (x) dx such that for each ε > 0, we can partition [a, b] =

⋃n
k=1 [xk−1, xk]

in such a way that ∣∣∣∣∣
∫ b

a

f (x) dx−
n∑

k=1

f (x∗k) ∆xk

∣∣∣∣∣ < ε

for every choice of x∗k ∈ [xk−1, xk]; as usual, ∆xk = xk − xk−1. Following
Graves [1], we note that this definition of Riemann integrability extends im-
mediately to functions taking values in a Banach space X; in that case the
integral and each Riemann sum are elements of X and we use the norm ‖·‖ in
X instead of absolute values.

Given a partition P of [a, b] and an X-valued function f , we have no
notion of upper or lower sums for f , but there is a natural substitute for the
interval they normally determine, namely, the closed convex hull of the set of
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all associated Riemann sums. Let’s call this set C (f ;P), whether f is real-
valued or X-valued. When we refine P to form a new partition P ′, every
Riemann sum associated with P ′ is a convex combination of Riemann sums
associated with P, so of course we have C (f ;P ′) ⊂ C (f ;P). It then becomes
a simple manner to prove that an X-valued function f on [a, b] is Riemann
integrable if and only if the diameter of C (f ;P) can be made arbitrarily small
by choosing the partition P appropriately, with

∫ b

a
f (x) dx the unique element

of X that is common to all the sets C (f ;P). Then the basic theory of Riemann
integration can be developed along standard lines.

In particular, when an X-valued function f is Riemann integrable over
[a, b], it is also Riemann integrable over every subinterval of [a, b], with∫ b

a

f (x) dx =
∫ c

a

f (x) dx+
∫ b

c

f (x) dx for a ≤ c ≤ b.

Every Riemann integrable function is bounded, so

F (t) =
∫ t

a

f (x) dx

defines a Lipschitz continuous X-valued function F on [a, b].
However, we can prove less about Riemann integrable X-valued functions

than we can prove in the real-valued case. The reason is that we have only

diamC (f ;P) ≤
n∑

k=1

diam {f (x) : x ∈ [xk−1, xk]}∆xk

in general, but in the real-valued case both quantities equal the difference
between the upper and lower sums. Graves [1] defines f : [0, 1]→ L∞ [0, 1] by
calling f (x) the characteristic function of [0, x]; he notes that f is Riemann
integrable but discontinuous everywhere. Rather strikingly,

n∑
k=1

diam {f (x) : x ∈ [xk−1, xk]}∆xk =
n∑

k=1

∆xk = 1

for every partition P of [0, 1], while diamC (f ;P) is maxk ∆xk.

3 Proof of The Substitution Formula

First we assume that g is positive and Riemann integrable over [a, b] and that
f is a Riemann integrable X-valued function on [G (a) , G (b)], where

G (t) = G (a) +
∫ t

a

g (x) dx.
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Any partition P of [a, b] as
⋃n

k=1 [xk−1, xk] produces a corresponding par-
tition P ′ of [G (a) , G (b)] as

⋃n
k=1 [G (xk−1) , G (xk)], and every partition of

[G (a) , G (b)] can be expressed as P ′ for some partition P of [a, b].
In this case we’ll establish the elementary bound∥∥∥∥∥

∫ G(b)

G(a)

f (u) du−
n∑

k=1

f ◦G (x∗k) g (x∗k) ∆xk

∥∥∥∥∥ ≤ diamC (f ;P ′)+M diamC (g,P)

(1)
for every choice of x∗k ∈ [xk−1, xk], whereM = sup {‖f (u)‖ : u ∈ [G (a) , G (b)]}.
With our assumptions, we can make both C (g;P) and C (f ;P ′) have arbi-
trarily small diameters by choosing P appropriately, so (1) implies both the
Riemann integrability of (f ◦G) g and the substitution formula in this special
case.

To prove (1), call uk = G (xk) and u∗k = G (x∗k). Then∥∥∥∥∥
∫ G(b)

G(a)

f (u) du−
n∑

k=1

f (u∗k) ∆uk

∥∥∥∥∥ ≤ diamC (f ;P ′) ,

while∥∥∥∥∥
n∑

k=1

f (u∗k) ∆uk −
n∑

k=1

f ◦G (x∗k) g (x∗k) ∆xk

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=1

f (u∗k) [∆uk − g (x∗k) ∆xk]

∥∥∥∥∥
≤

n∑
k=1

‖f (u∗k)‖ |∆uk − g (x∗k) ∆xk|

≤M diamC (g;P) .

Next we note that the substitution formula must also be valid when g is
negative and Riemann integrable over [a, b]. Essentially the same argument
works, except we call uk = G (xn−k) and u∗k = G

(
x∗n−k

)
to prove∫ b

a

f ◦G (x) g (x) dx = −
∫ G(a)

G(b)

f (u) du.

To prove the substitution formula in the general case, we use the Riemann
integrability of g to partition [a, b] in a way that lets us control the subintervals
on which g does not keep a fixed sign. Given δ > 0, we first choose a partition
P0 for which

diamC (g,P0) =
∑

diam {g (x) : x ∈ [xk−1, xk]}∆xk < δ2 (b− a) .
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Then we examine the approximation of
∫ G(b)

G(a)
f (u) du by arbitrary Riemann

sums for (f ◦G) g associated with a suitable refinement P of P0. The key to
our analysis is a decomposition {1, ..., n} = D ∪ S ∪ L, where k ∈ D if g is
either strictly positive or strictly negative on [xk−1, xk], k ∈ S if k /∈ D but
|g (x)| < δ at all points in [xk−1, xk], and k ∈ L if k /∈ D ∪ S.

For k ∈ D, we know that (f ◦G) g is Riemann integrable over [xk−1, xk],
with ∫ xk

xk−1

f ◦G (x) g (x) dx =
∫ G(xk)

G(xk−1)

f (u) du.

Thus for any ε > 0, we can further partition [xk−1, xk] as
⋃nk

j=1 [xk,j−1, xk,j ]
in such a way that∥∥∥∥∥∥

∫ G(xk)

G(xk−1)

f (u) du−
nk∑
j=1

f ◦G
(
x∗k,j

)
g
(
x∗k,j

)
∆xk,j

∥∥∥∥∥∥ < ε∆xk

for every choice of x∗k,j ∈ [xk,j−1, xk,j ].
When k ∈ S∪L, we make no further subdivision of [xk−1, xk], but to unify

the notation we call nk = 1 and [xk,0, xk,1] = [xk−1, xk]. Thus we partition P
of [a, b] in the form

[a, b] =
n⋃

k=1

nk⋃
j=1

[xk,j−1, xk,j ] .

Since
∫ G(b)

G(a)
f (u) du =

∑n
k=1

∫ G(xk)

G(xk−1)
f (u) du, we have∥∥∥∥∥∥

∫ G(b)

G(a)

f (u) du−
n∑

k=1

nk∑
j=1

f ◦G
(
x∗k,j

)
g
(
x∗k,j

)
∆xk,j

∥∥∥∥∥∥ ≤
n∑

k=1

‖Φk‖ ,

where we’ve called

Φk =
∫ G(xk)

G(xk−1)

f (u) du−
nk∑
j=1

f ◦G
(
x∗k,j

)
g
(
x∗k,j

)
∆xk,j .

By construction, we have ‖Φk‖ < ε∆xk for all k ∈ D. To bound the other
terms, we’ll need bounds for ‖f‖ and |g|; let’s assume that ‖f (u)‖ ≤ M1 for
all u and |g (x)| ≤M2 for all x.

For k ∈ S we have |g (x)| < δ for all x ∈ [xk−1, xk]. Consequently, we have
|G (xk)−G (xk−1)| ≤ δ∆xk and therefore

‖Φk‖ ≤

∥∥∥∥∥
∫ G(xk)

G(xk−1)

f (u) du

∥∥∥∥∥+
∥∥f ◦G (x∗k,1

)
g
(
x∗k,1

)
∆xk

∥∥ ≤ 2M1δ∆xk.
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For k ∈ L we know only that |g (x)| ≤M2, so we get the cruder bound

‖Φk‖ ≤ 2M1M2∆xk.

Here, however, we know that

diam {g (x) : x ∈ [xk−1, xk]} ≥ δ,

so the definition of P0 shows that the total length of all these subintervals is
less than δ (b− a).

Taken all together, these bounds show that

n∑
k=1

‖Φk‖ ≤ ε
∑
k∈D

∆xk + 2M1δ
∑
k∈S

∆xk + 2M1M2

∑
k∈L

∆xk

< (ε+ 2M1δ + 2M1M2δ) (b− a) .

We can make this arbitrarily small by choosing δ and ε appropriately, so
(f ◦G) g is indeed Riemann integrable over [a, b] with∫ b

a

f ◦G (x) g (x) dx =
∫ G(b)

G(a)

f (u) du.
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