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DERIVATES, APPROXIMATE DERIVATES
AND POROSITY DERIVATES OF

n-CONVEX FUNCTIONS

Abstract

It is shown that if f is n-convex then the four nth order Peano
derivates of f are respectively equal to the corresponding nth order
approximate Peano derivates and the porosity Peano derivates of f . It
is further shown that the same result holds for the de la Vallée Poussin
derivates, and the symmetric and unsymmetric Riemann derivates.

1 Introduction

It is well known that for a monotone function f the four Dini derivates of f
are equal to the corresponding approximate derivates of f . This result which
generalized a result of Khintchine, [5], appeared in [7]; the proof in [7] is for
finite derivates but only minor modifications are necessary to allow for infinite
derivates. The result remained unnoticed by many authors; Misik proved the
same result in a different way in [8]. Since then the result has been attributed
to Misik, (see [1, pp.154–155], [10, p.139], [11, p.286], [6, p. 652], [2, p.
526] etc.). In this paper we show that for an n-convex function f the four
nth order Peano derivates of f are respectively equal to the corresponding
nth order approximate Peano derivates and the porosity Peano derivates of
f . It is further shown that the same result holds for the de la Vallée Poussin
derivates, and the symmetric and unsymmetric Riemann derivates.
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2 Definitions and Notations

Let E ⊆ R, let I be any open interval, and let λ(E, I) denote the length of the
largest open sub-interval of I that contains no point of E. For x ∈ R. define
the porosity of E at x from the right, and from the left as

P+(E, x) = lim sup
h→0+

λ(E, (x, x+ h))
h

, P−(E, x) = lim inf
h→0+

λ(E, (x− h, x))
h

,

respectively. The quantity P (E, x) = max{P+(E, x), P−(E, x)} is then called
the porosity of E at x. Details of porosity considerations can be found in [10].

Let f : R 7→ R and x ∈ R; then the upper porosity limit of f at x on the
right, or the upper right porosity limit of f at x is defined by:

P−lim sup
t→x+

f(t) = inf
{
y; {ξ : f(ξ) < y}has porosity 0 on the right of x

}
.

The other three porosity limits of f at x are defined analogously. If all four
porosity limits of f at x are equal then the common value is called the porosity
limit of f at x, written P−limt→x f(t).

The relations among ordinary, approximate and porosity upper right hand
limits are as follows:

P−lim sup
t→x+

f(t) ≤ lim sup apt→x+f(t) ≤ lim sup
t→x+

f(t). (1)

The definition of n-convexity is as in [3].
The function f is said to have a right Peano derivative at x of order k, k

being a positive integer, if there exist real numbers αi, 1 ≤ i ≤ k, depending
on x and f only, such that

f(x+ h) = f(x) +
k∑
i=1

αi
i!
hi +

εk(x, h; f)
k!

hk, (2)

where
lim
h→0+

εk(x, h; f) = 0. (3)

The number αk is called the right Peano derivative of f at x of order k, written
f+
(k)(x). For convenience we take α0 = f(x) = f+

(0)(x).
Suppose that f+

(k)(x) exists, and for t 6= 0 write

γ+
(k+1)(x, h; f) = γ+

(k+1)(x, h) = (k + 1)!
(f(x+ h)−

∑k
i=0

f+
(i)(x)

i!
hi

hk+1

)
.
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The right upper Peano derivative of f at x of order k + 1 is defined by

f
+

(k+1)(x) = lim sup
h→0+

γ+
(k+1)(x, h; f).

The definitions of the right approximate Peano derivative, f+
(k),ap(x), and the

derivate f
+

(k+1),ap(x), and the definitions of the right porosity Peano derivative

Pf+
(k)(x), and derivate Pf

+

(k+1)(x) are obtained by taking the approximate
limit and the porosity limit, respectively, at each stage beginning with (3).
The definitions of other quantities, left, right, upper and lower versions of the
above concepts are obtained analogously.

The first order Peano derivative, and derivates, are the usual first order
derivative and Dini derivates respectively; the porosity versions of which are
defined in a more general way in [2, 10].

The function f is said to have a de la Vallée Poussin, or just dlVP deriva-
tive at x of order 2k, k being a positive integer, if there are real numbers
β0, β2, . . . , β2k such that

f(x+ h) + f(x− h)
2

=
k∑
i=0

β2i

(2i)!
h2i +

η2k(x, h; f)
(2k)!

h2k,

where
lim
h→0

η2k(x, h; f) = 0. (4)

In this case β2k is called the dlVP derivative of f at x of order 2k, written
d2kf(x).

Suppose that d2kf(x) exists and write

θ2k+2(x, h; f) =
(2k + 2)!
h2k+2

(
f(x+ h) + f(x− h)

2
−

k∑
i=0

d2if(x)
(2i)!

h2i

)
,

and define the upper dlVP derivate of f at x of order 2k + 2 as

d2k+2f(x) = lim sup
h→0

θ2k+2(x, h; f).

Similarly if there are real numbers β1, β3, . . . , β2k+1 such that

f(x+ h)− f(x− h)
2

=
k∑
i=0

β2i+1

(2i+ 1)!
h2i+1 +

η2k+1(x, h; f)
(2k + 1)!

h2k+1,
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where
lim
h→0

η2k+1(x, h; f) = 0,

then β2k+1 is called the dlVP derivative of f at x of order 2k + 1, written
d2k+1f(x). The quantities θ2k+3(x, h; f), and d2k+3f(x) are defined analo-
gously.

The approximate dlVP derivative, dm,apf(x) and derivate dm+2,apf(x), the
porosity dlVP derivative Pdmf(x), and derivate Pdm+2f(x) are defined in an
analogous way by taking approximate and porosity limits respectively, starting
from (4). The lower derivates of the above concepts are defined similarly.

The kth order symmetric difference of f at x is defined by,

∆k(x, h; f) =
k∑
i=0

(−1)k−i
(
k

i

)
f
(
x+ ih− kh

2

)
.

The kth order symmetric Riemann derivative and derivate RDkf(x) and
RDkf(x), their approximate analogues, RDk,apf(x), and RDk,apf(x), and
their porosity analogues PRDkf(x), and PRDkf(x), are defined by taking
the appropriate limits of ∆k(x, h; f)/hk as h→ 0. The lower derivates of the
above concepts are defined similarly.

Similarly considering the unsymmetric difference of f at x,

∆∗k(x, h; f) =
k∑
i=0

(−1)k−i
(
k

i

)
f(x+ ih),

the kth order unsymmetric Riemann derivative RD∗kf(x), derivates RD
∗
kf(x)

etc., and their approximate and porosity analogues, RD∗k,apf(x), RD
∗,+
k,apf(x),

PRD∗kf(x), PRD
∗,+
k f(x), etc., are defined by taking appropriate limits of

∆∗k(x, h; f)/hk as h→ 0,→ 0+.

3 Properties of n-convex Functions

The following properties of n-convex functions, which are obvious for the case
n = 1, i.e. for increasing functions, and which will be needed in the sequel, do
not seem to be known before [9, 4, 3].

Theorem 3.1. If f : R 7→ R is n-convex then for t ≥ 0,

(i) 0 ≤ tn γ
+
n (x,t;f)
n! ≤ hn γ

+
n (y,h;f)
n! when [x, x+ t] ⊆ [y, y + h];

(ii) 0 ≤ tn θn(x,t;f)
n! ≤ hn θn(y,h;f)

n! when [x− t

2
, x+

t

2
] ⊆ [y − h

2
, y +

h

2
].
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Proof. For n = 1 these are obvious since in that case f is increasing.
Let n = 2. Since f is convex, the function g = f ′+ is increasing and f is an

indefinite integral of g. So for any ξ

g(ξ)− g(x) ≤ g(ξ)− g(y) if [x, x+ t] ⊆ [y, y + h],

and

g(x+ ξ + t/2)− g(x+ ξ − t/2) ≤ g(y + ξ + h/2)− g(y + ξ − h/2),

if [x− t/2, x+ t/2] ⊆ [y − h/2, y + h/2]. Hence

0 ≤
∫ x+t

x

(
g(ξ)− g(x)

)
dξ ≤

∫ y+h

y

(
g(ξ)− g(y)

)
dξ,

and

0 ≤
∫ t/2

−t/2

(
g(x+ ξ + t/2)− g(x+ ξ − t/2)

)
dξ

≤
∫ h/2

−h/2

(
g(y + ξ + h/2)− g(y + ξ − h/2)

)
dξ,

which respectively give

0 ≤ t2 γ
+
2 (x, t; f)

2
≤ h2 γ

+
2 (y, h; f)

2
, and 0 ≤ t2 θ2(x, t; f)

2
≤ h2 θ2(y, h; f)

2
,

proving (i) and (ii) in this case.
Suppose that they are true for n = m. Then for any m-convex function φ

0 ≤ tm γ
+
m(x, t;φ)
m!

≤ hm γ
+
m(y, h;φ)
m!

, (5)

whenever [x, x+ t] ⊆ [y, y + h], and

0 ≤ tm θm(x, t;φ)
m!

≤ hm θm(y, h;φ)
m!

, (6)

whenever [x− t/2, x+ t/2] ⊆ [y − h/2, y + h/2].
Let f be m+ 1-convex, then φ = f ′ is m-convex and satisfies (5) and (6).

We consider several cases.
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Case I Let x = y. Then from (5) and (6),

0 ≤ um γ
+
m(x, u;φ)
m!

, and 0 ≤ umθm(x, u;φ)
m!

, for t ≤ u ≤ h.

Integrating these relations from t to h we get (5) and (6) with m replaced
by m + 1, and φ replaced by f . Note that we have used the fact: φ+

(m−1) =

φ
(m−1)
+ = f

(m)
+ = f+

(m). Thus we have proved (i) and (ii) in this case. For the
other cases we tackle (i) and (ii) separately.

Case II (i) Let x 6= y, x + t = y + h; then h = t + α, where α = x − y >
0. Since for u ≥ 0, [x, x + u] ⊂ [y, x + u] = [y, y + u + α], (5) gives that
0 ≤ um

γ+
m(x,u;φ)
m! ≤ (u+ α)m γ+

m(y,u+α;φ)
m! . Hence

0 ≤
∫ t

0

um
γ+
m(x, u;φ)
m!

du

≤
∫ t

0

(u+ α)m
γ+
m(y, u+ α;φ)

m!
du ≤

∫ h

0

vm
γ+
m(y, v;φ)
m!

dv,

which gives (5) with m and φ replaced by m+ 1 and f respectively.
Case III (i) Let y < x ≤ x+ t < y+h. Set k = t+α, where α = x−y > 0.

Then x+ t = y + k and [x, x+ t] ⊂ [y, y + k] ⊂ [y, y + h]. So by Case II (i)

0 ≤ tm+1 γ
+
m+1(x, t; f)
(m+ 1)!

≤ km+1 γ
+
m+1(y, k; f)
(m+ 1)!

and by Case I

km+1 γ
+
m+1(y, k; f)
(m+ 1)!

≤ hm+1 γ
+
m+1(y, h; f)
(m+ 1)!

,

which together give (5) with m and φ replaced by m + 1 and f respectively.
This completes the proof of (i).

Case II (ii) Let x 6= y, x + t/2 = y + h/2; then h = t + 2α, where α =
x− y > 0. Since for u ≥ 0, [x− u/2, x+ u/2] ⊂ [y − u/2− α, y + u/2 + α] we
have from (6) that

0 ≤ um θm(x, u;φ)
m!

≤ (u+ 2α)m
θm(y, u+ 2α;φ)

m!
,
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and hence

0 ≤
∫ t

0

um
θm(x, u;φ)

m!
du ≤∫ t

0

(u+ 2α)m
θm(x, u+ 2α;φ)

m!
du ≤

∫ h

0

vm
θm(y, v;φ)

m!
dv,

which gives (6) with m and φ replaced by m+ 1 and f respectively.
Case III (ii) Let x 6= y, x − t/2 = y − h/2; then set α = y − x > 0, and

proceed as in the previous case.
Case IV (ii) Let x 6= y, x− t/2 > y−h/2, x+ t/2 < y+h/2. First suppose

that y < x; put α = x− y; so if k = t+ 2α then y+ k/2 = x+ t/2. Now since
[x− t/2, x+ t/2] ⊂ [y − k/2, y + k/2], we have by Case II (ii) that

0 ≤ tm+1 θm+1(x, t; f)
(m+ 1)!

≤ km+1 θm+1(y, k; f)
(m+ 1)!

;

and since [y − k/2, y + k/2] ⊂ [y − h/2, y + h/2], by Case I

0 ≤ km+1 θm+1(y, k; f)
(m+ 1)!

≤ hm+1 θm+1(y, h; f)
(m+ 1)!

,

which together give (6) with m and φ replaced by m + 1 and f . Finally if
x < y similar arguments hold and this completes the proof by induction of
(ii).

To get similar results for the divided differences we need two lemmas.

Lemma 3.1. Let g : R 7→ R be L-integrable in every finite interval, and let
gk denote the k-fold repeated indefinite integral of g. Then for all n ≥ 2, and
for all r, x, t ∈ R,∫ (r+1)t

rt

dξ1 · · ·∫ (r+1)t

rt

(
g(x+ Σn−1

j=1 ξj + (1 + r)t)− g(x+ Σn−1
j=1 ξj + rt)

)
dξn−1

=
n∑
i=0

(−1)n−i
(
n

i

)
gn−1(x+ it+ nrt).
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Proof. It can be verified that the result is true for n = 2. So suppose that
it is true for n = m ≥ 2. Then for all r, x, t ∈ R and for all ξm ∈ R∫ (r+1)t

rt

dξ1 · · ·∫ (r+1)t

rt

(
g(x+ ξm + ξ1 + · · ·+ ξm−1 + (1 + r)t)−

g(x+ ξm + ξ1 + · · ·+ ξm−1 + rt)
)

dξm−1

=
m∑
i=0

(−1)m−i
(
m

i

)
gm−1(x+ ξm + it+mrt).

Integrating with respect to ξm,∫ (r+1)t

rt

dξ1 · · ·∫ (r+1)t

rt

(
g(x+ ξ1 + · · ·+ ξm + (1 + r)t)−

g(x+ ξ1 + · · ·+ ξm + rt)
)

dξm

=
m∑
i=0

(−1)m−i
(
m

i

)(
gm(x+ (i+ 1)t+ (m+ 1)rt)

− gm(x+ it+ (m+ 1)rt)
)

=
m+1∑
j=1

(−1)m−j+1

(
m

j − 1

)
gm(x+ jt+ (m+ 1)rt)

+
m∑
i=0

(−1)m−i+1

(
m

i

)
gm(x+ it+ (m+ 1)rt)

=
m+1∑
j=0

(−1)m−j+1

(
m+ 1
j

)
gm(x+ jt+ (m+ 1)rt),

showing that the result is true for n = m + 1. The proof is complete by
induction.

Lemma 3.2. let f : R 7→ R be n-convex. If x, y, r, t, h ∈ R are such that
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[x+ rt, x+ (r + 1)t] ⊆ [y + rh, y + (r + 1)h] then

0 ≤
n∑
i=0

(−1)n−i
(
n

i

)
f(x+ it+ nrt) ≤

n∑
i=0

(−1)n−i
(
n

i

)
f(y + ih+ nrh).

Proof. Since f is n-convex, f (n−2) exists and is convex, and so is an indefinite
integral of g = (f (n−2))′+, which is an increasing function. Therefore, for every
choice of ξ1, . . . , ξn−1,

0 ≤ g(x+ ξ1 + · · ·+ ξn−1 + (r + 1)t)− g(x+ ξ1 + · · ·+ ξn−1 + rt)
≤ g(y + ξ1 + · · ·+ ξn−1 + (r + 1)h)− g(y + ξ1 + · · ·+ ξn−1 + rh)

and so

0 ≤
∫ (r+1)t

rt

(g(x+ ξ1 + · · ·+ ξn−1 + (r + 1)t)

− g(x+ ξ1 + · · ·+ ξn−1 + rt))dξn−1

≤
∫ (r+1)h

rh

(g(y + ξ1 + · · ·+ ξn−1 + (r + 1)h)

− g(y + ξ1 + · · ·+ ξn−1 + rh))dξn−1.

Integrating successively with respect to ξn−2, . . . , ξ1, and applying Lemma 3.1
the proof is complete.

Theorem 3.2. If f : R 7→ R is n-convex then for t ≥ 0,

(i) 0 ≤ ∆n(x, t; f) ≤ ∆n(y, h; f)

whenever [x− t
2 , x+ t

2 ] ⊆ [y − h
2 , y + h

2 ];

(ii) 0 ≤ ∆∗n(x, t; f) ≤ ∆∗n(y, h; f)

whenever [x, x+ t] ⊆ [y, y + h].

Proof. Put r = −1/2, and r = 0 in Lemma 3.2 to get (i) and (ii) respectively.
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4 Derivates, Approximate Derivates and Porosity Derivates
of n-convex Functions

We need the following porosity lemma due to Evans & Humke.

Lemma 4.1. Let g : R 7→ R be an increasing function such that at a point

x0, D+f(x0) < r < s. Then the set of points Y s = {y;
f(y)− f(x0)

y − x0
> s} has

porosity at least 1− r/s on the right at x0. If D
+
f(x0) > s > r > 0 then the

set of points Yr = {y;
f(y)− f(x0)

y − x0
< r} has porosity at least 1 − r/s on the

right at x0.

For a proof see [10, p.191].

Theorem 4.1. If f : R 7→ R is n-convex then at any point x0

(i) f
+

(n)(x0) = f
+

(n),ap(x0) = Pf
+

(n)(x0);

(ii) dnf(x0) = dn,apf(x0) = Pdnf(x0);
(iii) RDnf(x0) = RDn,apf(x0) = PRDnf(x0);

(iv) RD
∗+
n f(x0) = RD

∗+
n,apf(x0) = PRD

∗+
n f(x0).

Similar relations hold for the left upper derivates, and for the left and right
lower derivates.

Proof. We first note that (cf. [10, p.155, Theorem 65.1]) if g(t) is increasing
for t ≥ 0 then D

+
g(0) = PD

+
g(0) where D

+
and PD

+
denote the right upper

Dini derivate and porosity derivate respectively. Indeed, if PD
+
g(0) < D

+
g(0)

choose PD
+
g(0) < r < s < D

+
g(0) when, by the second part of Lemma

4.1 the set Yr = {y; g(y)−g(0)
y < r} has porosity at least 1 − r/s, and so

PD
+
g(0) ≥ r which is a contradiction.

Now from Theorem 3.1(i) tnγ+
n (ξ, t; f) is a non-negative increasing function

of t, t ≥ 0. Hence if g(t) = t(γ+
n (ξ, t; f))1/n, t > 0 and g(0) = 0 the function

g(t) is increasing for t ≥ 0. Therefore from above D
+
g(0) = PD

+
g(0). But

D+g(0) = lim sup
t→0+

g(t)− g(0)
t

= lim sup
t→0+

(γ+
n (ξ, t; f))1/n = (f

+

(n)(ξ))
1/n,

and similarly PD
+
g(0) = (Pf

+

(n)(ξ))
1/n. Therefore Pf

+

(n)(ξ) = f
+

(n)(ξ), and

since Pf
+

(n)(ξ) ≤ f
+

(n),ap(ξ) ≤ f+

(n)(ξ) the proof of (i) is complete.
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Applying Theorem 3.1(ii) and setting g(t) = t(θn(ξ, t; f)1/n for t > 0 and
g(0) = 0, (ii) is proved as above.

To prove (iii) and (iv) note that by Theorem 3.2(i) and (ii) ∆n(ξ, t; f) and
∆∗n(ξ, t; f) are non-negative and increasing functions of t for t ≥ 0. Setting

successively g(t) = t(
∆n(ξ, t; f)

tn
)1/n, and g(t) = t(

∆∗n(ξ, t; f)
tn

)1/n for t > 0

and g(0) = 0 and applying the above argument the proof of (iii) and (iv) is
completed as above.

The authors wish to thank the referee for his suggestions which shortened
the proof of Theorem 4.1.
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