Yong Tae Kim and C. W. Kim, Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea. e-mail: wylee@yurim.skku.ac.kr

OUTER MEASURES GENERATED BY A COUNTABLY ADDITIVE MEASURE ON A RING OF SETS

Abstract

Let \mathcal{R} be any ring of subsets of a set X which is not an algebra and let \mathcal{A} be the algebra generated by \mathcal{R}. Suppose that μ is a countably additive measure on \mathcal{R} and that μ^{*} is the outer measure generated by (μ, \mathcal{R}). If X is a countable union of sets in \mathcal{R}, then there is a unique countably additive measure ν on \mathcal{A} which extends μ, and the outer measure generated by (ν, \mathcal{A}) coincides with μ^{*}. If X is not a countable union of sets in \mathcal{R}, then there exists a family $\left\{\mu_{p}: 0 \leq p \leq \infty\right\}$ of countably additive measures on \mathcal{A} such that each μ_{p} agrees with μ on \mathcal{R}. For $0 \leq p \leq \infty$, let μ_{p}^{*} denote the outer measure generated by $\left(\mu_{p}, \mathcal{A}\right)$. Then we have $\mu_{0}^{*} \leq \mu_{p}^{*} \leq \mu_{q}^{*} \leq \mu_{\infty}^{*}=\mu^{*}$ for $0<p<q<\infty$. Moreover, if \mathcal{M} and \mathcal{M}_{p}, respectively, denotes the σ-algebra of μ^{*}-measurable and μ_{p}^{*}-measurable sets, then $\mathcal{M}_{p}=\mathcal{M}_{1} \subset \mathcal{M}_{0}=\mathcal{M}_{\infty}=\mathcal{M}$ for all positive real numbers p. As examples, we give countably additive measures on rings for which $\mathcal{M}=\mathcal{M}_{1}$ and $\mathcal{M} \neq \mathcal{M}_{1}$, respectively. By the outer measures generated by μ we shall mean the outer measures μ^{*} and μ_{p}^{*} $(0 \leq p \leq \infty)$.

1 Preliminaries

Throughout the paper, X denotes a fixed but arbitrary nonempty set unless otherwise stated, and $\mathcal{P}(X)$ denotes the power set of X. For each subset E of X, let E^{c} denote the complement of E (relative to X), i.e., $E^{c}=X-E$. By definition, a ring of subsets of X or simply a ring in X is a nonempty family of subsets of X which is closed under the formation of unions and differences, and

[^0]an algebra of subsets of X is a ring in X containing X. A ring in X which is closed under the formation of countable unions is called a σ-ring, and a σ-ring in X containing X is called a σ-algebra. Let \mathcal{R} be any ring in X, let \mathcal{R}^{c} be the family of all complements of sets in \mathcal{R}, and let \mathcal{A} be the algebra generated by \mathcal{R}, that is, the smallest algebra containing \mathcal{R}. Trivially $\mathcal{A}=\mathcal{R}=\mathcal{R}^{c}$ if $X \in \mathcal{R}$, and $\mathcal{A}=\mathcal{R} \cup \mathcal{R}^{c}$ if $X \notin \mathcal{R}$. Let \mathcal{R}_{σ} and \mathcal{A}_{σ} denote the family of all countable unions of sets in \mathcal{R} and \mathcal{A}, respectively.

A non-negative extended real-valued set function μ defined on a ring \mathcal{R} in X is called a measure or a finitely additive measure on \mathcal{R} if $\mu(\emptyset)=0$ and $\mu\left(A_{1} \cup \cdots \cup A_{n}\right)=\mu\left(A_{1}\right)+\cdots+\mu\left(A_{n}\right)$ for every finite collection $\left\{A_{1}, \cdots, A_{n}\right\}$ of pairwise disjoint sets in \mathcal{R}. A measure μ on \mathcal{R} is called a countably additive measure if $\mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ for every pairwise disjoint sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of sets in \mathcal{R} whose union is also in \mathcal{R}.

Let μ be a countably additive measure on a ring \mathcal{R} in X. For each $E \subset X$, define $\mu^{*}(E)$ by

$$
\mu^{*}(E)=\inf \left\{\sum_{n=1}^{\infty} \mu\left(A_{n}\right): E \subset \cup_{n=1}^{\infty} A_{n}, A_{n} \in \mathcal{R} \quad(n=1,2, \cdots)\right\}
$$

if E can be covered by a set in \mathcal{R}_{σ} and otherwise define $\mu^{*}(E)=\infty$ following the convention that $\inf \emptyset=\infty$. Then μ^{*} is a (Carathéodory) regular outer measure on X which agrees with μ on \mathcal{R}. The outer measure μ^{*} constructed in this way is called the outer measure generated by (μ, \mathcal{R}) (see, e.g., [2, pp.163165],[3, pp.32-33],[4, pp.36, 41-44]).

For ease of our argument we prove the following simple lemmas.
Lemma 1. Let \mathcal{R} be any ring in X with $X \notin \mathcal{R}$ and $\mathcal{A}=\mathcal{R} \cup \mathcal{R}^{c}$.
(i) If $A \in \mathcal{R}$ and $B \in \mathcal{R}^{c}$, then $A \cup B \in \mathcal{R}^{c}$ and $A \cap B \in \mathcal{R}$.
(ii) If $A, B \in \mathcal{R}^{c}$, then $A \cup B, A \cap B \in \mathcal{R}^{c}$.
(iii) If $A, B \in \mathcal{A}$ and $A \cap B=\emptyset$, then $A \in \mathcal{R}$ or $B \in \mathcal{R}$.
(iv) If $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a pairwise disjoint sequence of sets in \mathcal{A}, then there is at most one set $A_{n} \in \mathcal{R}^{c}$.

Proof. Assertions (i) and (ii) follow from de Morgan's laws. To prove (iii), suppose that A and B are disjoint sets in \mathcal{R}^{c}. Since $A \subset B^{c} \in \mathcal{R}$, we have $A=A \cap B^{c} \in \mathcal{R}$ by (i). This contradiction proves (iii). Assertion (iv) follows from (iii).

Lemma 2. Let \mathcal{R} be any ring in X. Then the following assertions are equivalent:
(i) $X \in \mathcal{R}_{\sigma}$;
(ii) $\mathcal{R}^{c} \subset \mathcal{R}_{\sigma} \cap\left(\mathcal{R}_{\sigma}\right)^{c}$;
(iii) $\mathcal{R}_{\sigma} \cap\left(\mathcal{R}_{\sigma}\right)^{c} \neq \emptyset$.

Proof. Suppose that $X \in \mathcal{R}_{\sigma}$. Assume first that $X \in \mathcal{R}$. Then \mathcal{R} is an algebra so $\mathcal{R}=\mathcal{R}^{c}$. Since $\mathcal{R} \subset \mathcal{R}_{\sigma}$, we have $\mathcal{R}=\mathcal{R}^{c} \subset\left(\mathcal{R}_{\sigma}\right)^{c}$ so that $\mathcal{R}^{c}=\mathcal{R} \subset$ $\mathcal{R}_{\sigma} \cap\left(\mathcal{R}_{\sigma}\right)^{c}$. Next assume that $X \notin \mathcal{R}$. Then $\mathcal{R} \cap \mathcal{R}^{c}=\emptyset$. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be any sequence of sets in \mathcal{R} such that $X=\cup_{n=1}^{\infty} X_{n}$. For each $A \in \mathcal{R}^{c}$, we have $A \cap X_{n} \in \mathcal{R}$ for all n by Lemma 1 (i), so $A=\cup_{n=1}^{\infty} A \cap X_{n} \in \mathcal{R}_{\sigma}$, and hence $\mathcal{R}^{c} \subset \mathcal{R}_{\sigma}$. We have $\mathcal{R}^{c} \subset\left(\mathcal{R}_{\sigma}\right)^{c}$, since $\mathcal{R} \subset \mathcal{R}_{\sigma}$. Thus (i) implies (ii). Plainly (ii) implies (iii). Now suppose that (iii) holds, and let $A \in \mathcal{R}_{\sigma} \cap\left(\mathcal{R}_{\sigma}\right)^{c}$. We have $A, A^{c} \in \mathcal{R}_{\sigma}$, so $X=A \cup A^{c} \in \mathcal{R}_{\sigma}$. Thus (iii) implies (i).

The next lemma follows immediately from Lemma 2.
Lemma 3. Let \mathcal{R} be any ring in X. Then $X \notin \mathcal{R}_{\sigma}$ if and only if $\mathcal{R}_{\sigma} \cap\left(\mathcal{R}_{\sigma}\right)^{c}=$ \emptyset.

Lemma 4. Let \mathcal{R} be any ring in X and let \mathcal{A} be the algebra generated by \mathcal{R}.
(i) If $X \in \mathcal{R}_{\sigma}-\mathcal{R}$, then $A_{\sigma}=\mathcal{R}_{\sigma}$.
(ii) If $X \notin \mathcal{R}_{\sigma}$, then, for each $A \in \mathcal{A}_{\sigma}$, one and only one of the following alternatives holds: $A \in \mathcal{R}_{\sigma}$ or A is of the form $E \cup F$, where $E \in \mathcal{R}_{\sigma}$, $F \in \mathcal{R}^{c}$, and $E \cap F=\emptyset$.

Proof. For (i), suppose that $X \in \mathcal{R}_{\sigma}-\mathcal{R}$. Since $X \notin \mathcal{R}$, we have $\mathcal{A}=\mathcal{R} \cup \mathcal{R}^{c}$ so $\mathcal{R}_{\sigma} \subset \mathcal{A}_{\sigma}$. Since $X \in \mathcal{R}_{\sigma}$, we infer from Lemma 2 that $\mathcal{R}^{c} \subset \mathcal{R}_{\sigma}$ so $\mathcal{A} \subset \mathcal{R}_{\sigma}$. Consequently, $\mathcal{A}_{\sigma} \subset \mathcal{R}_{\sigma}$ and hence $\mathcal{A}_{\sigma}=\mathcal{R}_{\sigma}$. Thus (i) is established. To prove (ii), suppose that $X \notin \mathcal{R}_{\sigma}$. Obviously $X \notin \mathcal{R}$, so $\mathcal{A}=\mathcal{R} \cup \mathcal{R}^{c}$. Assume that A is an arbitrary set in \mathcal{A}_{σ}. Then there is a pairwise disjoint sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of sets in \mathcal{A} such that $A=\cup_{n=1}^{\infty} A_{n}$. If $A_{n} \in \mathcal{R}$ for all n, then $A \in \mathcal{R}_{\sigma}$. Otherwise, by Lemma $1(i v)$ there is exactly one set $A_{i} \in \mathcal{R}^{c}$ such that $A_{n} \in \mathcal{R}$ for all $n \neq i$, so that letting $E=\cup_{n \neq i} A_{n}$ and $F=A_{i}$ we have $A=E \cup F$, where $E \in \mathcal{R}_{\sigma}, F \in \mathcal{R}^{c}$, and $E \cap F=\emptyset$. If there were a set $A \in \mathcal{R}_{\sigma}$ of the form $E \cup F$, where $E \in \mathcal{R}_{\sigma}, F \in \mathcal{R}^{c}$, and $E \cap F=\emptyset$, then $F=F \cap A \in \mathcal{R}_{\sigma}$, so $F \in \mathcal{R}_{\sigma} \cap \mathcal{R}^{c}$. This is a contradiction by Lemma 3. Thus (ii) is established.

Assume that $X \notin \mathcal{R}_{\sigma}$ and that $E \in \mathcal{R}_{\sigma}, F \in \mathcal{R}^{c}$, and $E \cap F \neq \emptyset$. We have that $E \cup F \in \mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$ and $E-F \in \mathcal{R}_{\sigma}$, so $E \cup F=(E-F) \cup F$. Note that $F-E \in\left(\mathcal{R}^{c}\right)_{\delta}=\left(\mathcal{R}_{\sigma}\right)^{c}$ and $F-E$ need not be in \mathcal{R}^{c}. Thus we have that every set in $\mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$ is represented in at least one way as the union of disjoint sets from \mathcal{R}_{σ} and \mathcal{R}^{c}, respectively, and that such a representation of a set in $\mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$ need not be unique, for $X=E \cup(X-E)$ for all $E \in \mathcal{R}$.
Example 1. Let X be a nonempty countable set, let \mathcal{R} be the ring of all finite subsets of X, and let \mathcal{A} be the algebra generated by \mathcal{R}. Trivially
$\mathcal{R}=\mathcal{A}=\mathcal{P}(X)$ if X is finite. If X is infinite, then \mathcal{R}_{σ} is the σ-ring of all countable subsets of X such that $X \in \mathcal{R}_{\sigma}-\mathcal{R}$, so that $\mathcal{R}_{\sigma}=\mathcal{A}_{\sigma}=\mathcal{P}(X)$.

Example 2. Let X be any uncountable set and let \mathcal{R} be the ring of all finite subsets of X. Then \mathcal{R}_{σ} is the σ-ring of all countable subsets of X such that $X \notin \mathcal{R}_{\sigma}$ or, equivalently, $\mathcal{R}_{\sigma} \cap\left(\mathcal{R}_{\sigma}\right)^{c}=\emptyset$ by Lemma 3 . Plainly \mathcal{R}_{σ} is the σ-ring generated by \mathcal{R}.
A set $E \subset X$ is called cofinite or cocountable if E^{c} is finite or countable. Let \mathcal{A} and \mathcal{B} denote the algebra and the σ-algebra generated by \mathcal{R}, respectively. Then \mathcal{A} consists of the finite and the cofinite subsets of X, i.e., $\mathcal{A}=\mathcal{R} \cup \mathcal{R}^{c}$, and \mathcal{B} consists of the countable and the cocountable subsets of X, i.e., $\mathcal{B}=$ $\mathcal{R}_{\sigma} \cup\left(\mathcal{R}_{\sigma}\right)^{c}$. Assert that $\mathcal{A}_{\sigma}=\mathcal{R}_{\sigma} \cup \mathcal{R}^{c}$. Suppose that A is any set in $\mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$ and let $A=E \cup F$, where $E \in \mathcal{R}_{\sigma}, F \in \mathcal{R}^{c}$ and $E \cap F=\emptyset$. Since $E \subset F^{c} \in \mathcal{R}$, we have $E \in \mathcal{R}$, so $E \cup F \in \mathcal{R}^{c}$ by Lemma 1 (i). Consequently, $\mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}=\mathcal{R}^{c}$ and hence the assertion follows from Lemma 4 (ii). We see readily that $\mathcal{A} \varsubsetneqq \mathcal{B} \varsubsetneqq \mathcal{P}(X)$.

The next lemma is a version of Lemma 3.4.1 in [1, p.76].
Lemma 5. (cf. [5, Problem 9, p.258]) Let \mathcal{R} be an arbitrary ring in X which is not an algebra, let \mathcal{A} be the algebra generated by \mathcal{R}, and let μ be any measure on \mathcal{R}.
(i) Define μ_{0} on \mathcal{A} by $\mu_{0}(E)=\sup \{\mu(A): A \subset E, A \in \mathcal{R}\}$ for all E in \mathcal{A}. Then μ_{0} is a measure on \mathcal{A} such that $\mu_{0}(E)=\mu(E)$ if $E \in \mathcal{R}$.
(ii) For $0<p \leq \infty$, define μ_{p} on \mathcal{A} by $\mu_{p}(E)=\mu(E)$ if $E \in \mathcal{R}$ and $\mu_{p}(E)=\mu_{0}(E)+p$ if $E \in \mathcal{R}^{c}$. Then μ_{p} is a measure on \mathcal{A}.
(iii) Every measure ν on \mathcal{A} such that $\nu(E)=\mu(E)$ for all E in \mathcal{R} is of the form μ_{p} for some $p \in[0, \infty]$.

The measures μ_{p} are called the measures induced by the measure μ and parameters $p \in[0, \infty]$.

Proof. We have $\mathcal{A}=\mathcal{R} \cup \mathcal{R}^{c}$. To prove (i), suppose first that $E \in \mathcal{R}$. By the definition of μ_{0}, we have $\mu(E) \leq \mu_{0}(E)$. For any $A \in \mathcal{R}$ with $A \subset E$, we have $\mu(A) \leq \mu(E)$. Taking the supremum of $\mu(A)$ over all such A we obtain $\mu_{0}(E) \leq \mu(E)$ and hence $\mu_{0}(E)=\mu(E)$. To prove the additivity of μ_{0}, suppose that E and F are arbitrary sets in \mathcal{A} such that $E \cap F=\emptyset$. If $E, F \in \mathcal{R}$, then there is nothing to prove. Otherwise, by Lemma 1 (iii) we can assume that $E \in \mathcal{R}$ and $F \in \mathcal{R}^{c}$, so $E \cup F \in \mathcal{R}^{c}$ by Lemma 1 (i). For any $A \in \mathcal{R}$ with $A \subset E \cup F$, we have that $A=(A \cap E) \cup(A \cap F)$, where $A \cap E, A \cap F \in \mathcal{R}$, so

$$
\mu(A)=\mu(A \cap E)+\mu(A \cap F) \leq \mu(E)+\mu_{0}(F)=\mu_{0}(E)+\mu_{0}(F)
$$

Taking the supremum of $\mu(A)$ over all $A \in \mathcal{R}$ with $A \subset E \cup F$ we obtain $\mu_{0}(E \cup F) \leq \mu_{0}(E)+\mu_{0}(F)$. To prove the reverse inequality, suppose that $B \in \mathcal{R}$ and $B \subset F$. Since $E \cup F \supset E \cup B \in \mathcal{R}$, we have

$$
\mu(E)+\mu(B)=\mu(E \cup B) \leq \mu_{0}(E \cup F)
$$

Taking the supremum of $\mu(B)$ over all such B we obtain $\mu_{0}(E)+\mu_{0}(F) \leq$ $\mu_{0}(E \cup F)$, and hence the additivity of μ_{0} follows. By induction μ_{0} is finitely additive on \mathcal{A}, so (i) is established. To prove (ii), assume that $0<p \leq \infty$ and that $E \in \mathcal{R}, F \in \mathcal{R}^{c}$, and $E \cap F=\emptyset$. Then $E \cup F \in \mathcal{R}^{c}$. By the definition of μ_{p}, together with (i), we have

$$
\mu_{p}(E \cup F)=\mu_{0}(E \cup F)+p=\mu_{0}(E)+\mu_{0}(F)+p=\mu_{p}(E)+\mu_{p}(F)
$$

By an argument given in the proof of (i) we show that μ_{p} is additive on \mathcal{A} so it is also finitely additive on \mathcal{A}. Thus (ii) is established. To prove (iii), suppose that ν is any measure on \mathcal{A} which agrees with μ on \mathcal{R}, and let E be an arbitrary set in \mathcal{R}^{c}. For any $A \in \mathcal{R}$ with $A \subset E$, we have $\mu(A)=\nu(A) \leq \nu(E)$, so $\mu_{0}(E) \leq \nu(E)$. Therefore, $\mu_{0} \leq \nu$ on \mathcal{R}^{c}. If $\nu=\mu_{0}$ on \mathcal{R}^{c}, we are done. Suppose that $\mu_{0} \neq \nu$ on \mathcal{R}^{c}. Then there is a set $F \in \mathcal{R}^{c}$ such that $\mu_{0}(F)<\nu(F)$, so $0 \leq \mu_{0}(F)<\infty$. Define $p=\nu(F)-\mu_{0}(F)$. We have $0<p \leq \infty$. Assert that $\nu(E)=\mu_{p}(E)$. For this, assume first that $0<p<\infty$ or, equivalently, $0<\nu(F)<\infty$. We have that
$\nu(F)=\nu(E \cap F)+\mu(F-E)<\infty$ and $\mu_{0}(F)=\mu_{0}(E \cap F)+\mu_{0}(F-E)<\infty$.
Since $E-F, F-E \in \mathcal{R}$, we also have that $\nu(E-F)=\mu_{0}(E-F)$ and $\nu(F-E)=\mu_{0}(F-E)$. Then we have $p=\nu(E \cap F)-\mu_{0}(E \cap F)$. Consequently,
$\mu_{p}(E)=\mu_{0}(E)+p=\mu_{0}(E-F)+\mu_{0}(E \cap F)+\nu(E \cap F)-\mu_{0}(E \cap F)=\nu(E)$.
Next assume that $p=\infty$ or, equivalently, $\nu(F)=\infty$. Since $\nu(F)=\nu(E \cap F)+$ $\nu(F-E)$ and $\nu(F-E)=\mu_{0}(F-E) \leq \mu_{0}(F)<\infty$, we obtain $\nu(E \cap F)=\infty$, so $\nu(E)=\infty$. By the definition of μ_{∞}, we have $\mu_{\infty}(E)=\infty$. Thus the assertion holds and hence (iii) is established.

Lemma 6. Let \mathcal{R} be any ring in X such that $X \notin \mathcal{R}$ and let \mathcal{A} be the algebra generated by \mathcal{R}. Suppose that μ is a countably additive measure on \mathcal{R} and that $\left\{\mu_{p}\right\}$ are the measures on \mathcal{A} that are induced by μ and parameters $p \in[0, \infty]$. Then:
(i) μ_{0} is a countably additive measure on \mathcal{A} which extends μ.
(ii) If $X \in \mathcal{R}_{\sigma}$, then μ_{0} is a unique countably additive measure on
\mathcal{A} which extends μ.
(iii) If $X \notin \mathcal{R}_{\sigma}$, then each μ_{p} with $0<p \leq \infty$ is a countably additive measure on \mathcal{A} which extends μ.
(iv) If $X \notin \mathcal{R}_{\sigma}$, then every countably additive measure ν on \mathcal{A} which extends μ is of the form μ_{p} for some $p \in[0, \infty]$.

Proof. For (i), suppose that $\left\{E_{n}\right\}_{n=1}^{\infty}$ is a pairwise disjoint sequence of sets in \mathcal{A} such that $E=\cup_{n=1}^{\infty} E_{n} \in \mathcal{A}$. Assume first that $E \in \mathcal{R}$. By Lemma 1 (i) we have $E_{n} \in \mathcal{R}$ for all n, so that by the countable additivity of μ, together with Lemma 5 (i),

$$
\mu_{0}(E)=\mu(E)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)=\sum_{n=1}^{\infty} \mu_{0}\left(E_{n}\right)
$$

Next assume that $E \in \mathcal{R}^{c}$ and that $A \in \mathcal{R}$ and $A \subset E$. Since $A=\cup_{n=1}^{\infty} A \cap E_{n}$, where $A \cap E_{n} \in \mathcal{R}$ for all n by Lemma 1 (i), we obtain again by the countable additivity of μ that $\mu(A)=\sum_{n=1}^{\infty} \mu\left(A \cap E_{n}\right) \leq \sum_{n=1}^{\infty} \mu_{0}\left(E_{n}\right)$. Taking the supremum of $\mu(A)$ over all such A we obtain $\mu_{0}(E) \leq \sum_{n=1}^{\infty} \mu_{0}\left(E_{n}\right)$. Since μ_{0} is finitely additive on \mathcal{A} by Lemma 5 (i), we have, for any positive integer n, $\sum_{i=1}^{n} \mu_{0}\left(E_{i}\right)=\mu_{0}\left(\cup_{i=1}^{n} E_{i}\right) \leq \mu_{0}(E)$. Letting $n \longrightarrow \infty$ we obtain the reverse inequality so that (i) holds.

For (ii), suppose that $X \in \mathcal{R}_{\sigma}$ and that ν is any countably additive measure on \mathcal{A} which agrees with μ on \mathcal{R}. By part (i), ν agrees with μ_{0} on \mathcal{R}. Assert that ν agrees with μ_{0} on \mathcal{R}^{c}. For this, suppose that A is any set in \mathcal{R}^{c}. Since $X \in \mathcal{R}_{\sigma}$, we have $\mathcal{R}^{c} \subset \mathcal{R}_{\sigma}$ by Lemma 2 , so that there is a pairwise disjoint sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of sets in \mathcal{R} such that $A=\cup_{n=1}^{\infty} A_{n}$. By the countable additivity of ν and μ_{0}, we obtain $\nu(A)=\sum_{n=1}^{\infty} \nu\left(A_{n}\right)=\sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right)=$ $\mu_{0}(A)$. Thus the assertion is established and hence (ii) holds.

For (iii), suppose that $X \notin \mathcal{R}_{\sigma}$ and that $0<p \leq \infty$. Trivially μ_{p} agrees with μ on \mathcal{R} by the definition of μ_{p}. Let $\left\{E_{n}\right\}_{n=1}^{\infty}$ be any pairwise disjoint sequence of sets in \mathcal{A} such that $E=\cup_{n=1}^{\infty} E_{n} \in \mathcal{A}$. If $E \in \mathcal{R}$, then $E_{n} \in \mathcal{R}$ for all n, so

$$
\mu_{p}(E)=\mu(E)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)=\sum_{n=1}^{\infty} \mu_{p}\left(E_{n}\right)
$$

since μ is countably additive on \mathcal{R}. Suppose that $E \in \mathcal{R}^{c}$. It follows from Lemma 1 (iv), together with Lemma 3, that there is a unique set $E_{i} \in \mathcal{R}^{c}$ such that $E_{n} \in \mathcal{R}$ for all $n \neq i$. Consequently, we obtain from part (i) and the definition of μ_{p} that

$$
\begin{aligned}
\mu_{p}(E) & =\mu_{0}(E)+p=\sum_{n=1}^{\infty} \mu_{0}\left(E_{n}\right)+p=\mu_{0}\left(E_{i}\right)+p+\sum_{n \neq i} \mu\left(E_{n}\right) \\
& =\mu_{p}\left(E_{i}\right)+\sum_{n \neq i} \mu_{p}\left(E_{n}\right)=\sum_{n=1}^{\infty} \mu_{p}\left(E_{n}\right)
\end{aligned}
$$

Thus (iii) holds. Assertion (iv) follows from Lemma 5 (iii), together with parts (i) and (iii).

Suppose that \mathcal{R} is a σ-ring in X which is not a σ-algebra and that \mathcal{A} is the σ-algebra generated by \mathcal{R}. Let μ be any countably additive measure on \mathcal{R}. By parts (i), (iii) and (iv) of Lemma 6, the measures $\mu_{p} \quad(0 \leq p \leq \infty)$ are the only countably additive measures on \mathcal{A} which extend μ (see [5, Problem 9, p.258]).

Let \mathcal{R} be any ring in X. It is easy to give an alternate, but equivalent, definition of \mathcal{R}_{σ} : define \mathcal{R}_{σ} as the family of unions of increasing sequences of sets in \mathcal{R}. Notice that \mathcal{R}_{σ} is the smallest family of subsets of X containing \mathcal{R} and closed under the formation of finite intersections and countable unions. Let μ be a countably additive measure on \mathcal{R}. Define $\bar{\mu}$ on \mathcal{R}_{σ} as follows : for each $A \in \mathcal{R}_{\sigma}$, let $\bar{\mu}(A)=\lim _{n} \mu\left(A_{n}\right)$, where $\left\{A_{n}\right\}_{n=1}^{\infty}$ is any increasing sequence of sets in \mathcal{R} such that $A=\cup_{n=1}^{\infty} A_{n}$. We show readily that $\bar{\mu}$ is defined unambiguously on \mathcal{R}_{σ}. Furthermore, $\bar{\mu}$ is a unique monotone increasing, countably additive non-negative extended real-valued set function on \mathcal{R}_{σ} which agrees with μ on \mathcal{R}. We also have that $\bar{\mu}(A)=\sup \{\mu(B): B \subset A, \quad B \in \mathcal{R}\}$ for all A in \mathcal{R}_{σ}. For the outer measure μ^{*} generated by (μ, \mathcal{R}), we obtain that $\mu^{*}(E)=\inf \left\{\bar{\mu}(A): E \subset A \in \mathcal{R}_{\sigma}\right\}$ if E can be covered by a set in \mathcal{R}_{σ} and $\mu^{*}(E)=\infty$ otherwise.
Lemma 7. Let \mathcal{R} be any ring in X such that $X \in \mathcal{R}_{\sigma}-\mathcal{R}$ and let \mathcal{A} be the algebra generated by \mathcal{R}. Suppose that μ is a countably additive measure on \mathcal{R} and that μ_{0} is the unique countably additive measure on \mathcal{A} extending μ. Then $\mathcal{R}_{\sigma}=\mathcal{A}_{\sigma}$ and $\bar{\mu}=\overline{\left(\mu_{0}\right)}$ on \mathcal{R}_{σ}.

Proof. The first equality follows from Lemma 4 (i). The set functions $\bar{\mu}$ and $\overline{\left(\mu_{0}\right)}$ denotes, respectively, the extension of μ to \mathcal{R}_{σ} and μ_{0} to \mathcal{A}_{σ}. Thus both $\bar{\mu}$ and $\overline{\left(\mu_{0}\right)}$ are defined on $\mathcal{R}_{\sigma}=A_{\sigma}$. Suppose that A is an arbitrary set in \mathcal{R}_{σ} and that $\left\{A_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence of sets in \mathcal{R} such that $A=$ $\cup_{n=1}^{\infty} A_{n}$. By the definitions of $\bar{\mu}$ and $\overline{\left(\mu_{0}\right)}$ we obtain that $\bar{\mu}(A)=\lim _{n} \mu\left(A_{n}\right)=$ $\lim _{n} \mu_{0}\left(A_{n}\right)=\overline{\left(\mu_{0}\right)}(A)$. Thus the lemma is established.
Theorem 1. Let $X, \mathcal{R}, \mathcal{A}, \mu$ and μ_{0} be as in Lemma 7. Then $\mu^{*}(E)=\mu_{0}^{*}(E)$ for all $E \subset X$.

Proof. Suppose that E is an arbitrary subset of X. Then E has a cover in \mathcal{R}_{σ}, since $E \subset X \in \mathcal{A}_{\sigma}=\mathcal{R}_{\sigma}$ by the first part of Lemma 7. We obtain from the second part of Lemma 7 that
$\mu^{*}(E)=\inf \left\{\bar{\mu}(A): E \subset A \in \mathcal{R}_{\sigma}\right\}=\inf \left\{\overline{\left(\mu_{0}\right)}(A): E \subset A \in \mathcal{A}_{\sigma}\right\}=\mu_{0}^{*}(E)$.

Thus the theorem is established.
Example 3. Let X denote the real line \mathbb{R} and let \mathcal{R} denote the ring of all unions of finite collections of pairwise disjoint intervals $[a, b)$, where $-\infty<a \leq$ $b<\infty$. Obviously $X \in \mathcal{R}_{\sigma}-\mathcal{R}$. For any finite collection $\left\{\left[a_{i}, b_{i}\right), i=1, \cdots, n\right\}$ of pairwise disjoint intervals in \mathcal{R}, define $\mu\left(\cup_{i=1}^{n}\left[a_{i}, b_{i}\right)\right)=\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)$. Then μ is a countably additive measure on \mathcal{R}. Let $\mathcal{A}=\mathcal{R} \cup \mathcal{R}^{c}$ and let μ_{0} denote the unique countably additive measure on \mathcal{A} which extends μ. We have $\mu_{0}(E)=\infty$ for all $E \in \mathcal{R}^{c}$. By Theorem 1 we have $\mu^{*}=\mu_{0}^{*}$. The outer measure μ^{*} is called Lebesgue outer measure on \mathbb{R}.

For any subset E of $X, \operatorname{card} E$ denotes the cardinal number of E.
Example 4. Let X denote the set \mathbb{N} of all positive integers and let \mathcal{R} denote the ring of all finite subsets of X. Then $X \notin \mathcal{R}$. The algebra \mathcal{A} generated by \mathcal{R} consists of the finite and the cofinite subsets of X so $\mathcal{A} \varsubsetneqq \mathcal{R}_{\sigma}=\mathcal{A}_{\sigma}=\mathcal{P}(X)$. Suppose that μ is any measure on \mathcal{R}. Trivially μ is countably additive on \mathcal{R}. Let μ_{0} and $\bar{\mu}$ denote the countably additive measure extending μ to \mathcal{A} and $\mathcal{P}(X)$, respectively. We have that $\mu_{0}(E)=\sum_{n \in E} \mu(\{n\})$ for all $E \in \mathcal{A}$ and $\bar{\mu}(E)=\sum_{n \in E} \mu(\{n\})$ for all $E \subset X$. Then $\bar{\mu}$ is a countably additive measure on $\mathcal{P}(X)$ such that $\bar{\mu}(E)=\mu^{*}(E)=\mu_{0}^{*}(E)$ for all $E \in \mathcal{P}(X)$.

Next suppose that $\mu(E)=\operatorname{card} E$ for all $E \in \mathcal{R}$. Plainly μ is a measure on \mathcal{R}. Then the countably additive measure $\bar{\mu}$ on $\mathcal{P}(X)$ is counting measure, that is, $\bar{\mu}(E)=n$ if E is finite and has n elements and $\bar{\mu}(E)=\infty$ if E is infinite.

2 Main Result and Examples

Throughout this section we shall assume that \mathcal{R} is an arbitrary ring in X such that $X \notin \mathcal{R}_{\sigma}, \mathcal{A}$ is the algebra generated by \mathcal{R}, and μ is any countably additive measure on \mathcal{R}. Let $\bar{\mu}$ denote the unique extension of μ from \mathcal{R} to \mathcal{R}_{σ} and μ^{*} the outer measure generated by (μ, \mathcal{R}). Form the countably additive measures $\mu_{p}(0 \leq p \leq \infty)$ on \mathcal{A} that are induced by μ and parameters $p \in[0, \infty]$. For $0 \leq p \leq \infty$, let $\left(\mu_{p}\right)$ denote the unique extension of μ_{p} from \mathcal{A} to \mathcal{A}_{σ}, and let μ_{p}^{*} denote the outer measure generated by $\left(\mu_{p}, \mathcal{A}\right)$. Let \mathcal{M} and $\mathcal{M}_{p}(0 \leq p \leq \infty)$ denote the σ-algebra of all μ^{*}-measurable and μ_{p}^{*}-measurable subsets of X, respectively.

Lemma 8. Define $(\bar{\mu})_{0}$ on \mathcal{A}_{σ} by $(\bar{\mu})_{0}(E)=\bar{\mu}(E)$ if $E \in \mathcal{R}_{\sigma}$ and $(\bar{\mu})_{0}(E \cup$ $F)=\sup \left\{\bar{\mu}(A): A \subset E \cup F, A \in \mathcal{R}_{\sigma}\right\}$ if $E \in \mathcal{R}_{\sigma}, F \in \mathcal{R}^{c}$, and $E \cap F=\emptyset$. Then:
(i) $(\bar{\mu})_{0}(E)=\overline{\left(\mu_{0}\right)}(E)=\bar{\mu}(E)$ if $E \in \mathcal{R}_{\sigma}$;
(ii) $(\bar{\mu})_{0}(F)=\overline{\left(\mu_{0}\right)}(F)=\mu_{0}(F)$ if $F \in \mathcal{R}^{c}$;
(iii) $(\bar{\mu})_{0}(E \cup F)=\bar{\mu}(E)+\mu_{0}(F)$ if $E \in \mathcal{R}_{\sigma}, F \in \mathcal{R}^{c}$, and $E \cap F=\emptyset$;
(iv) $(\bar{\mu})_{0}$ is defined unambiguously on $\mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$;
(v) $(\bar{\mu})_{0}(A)=\overline{\left(\mu_{0}\right)}(A)$ for all $A \in \mathcal{A}_{\sigma}$.

Proof. For (i), suppose that $E \in \mathcal{R}_{\sigma}$ and that $\left\{E_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence of sets in \mathcal{R} such that $E=\cup_{n=1}^{\infty} E_{n}$. We have that $(\bar{\mu})_{0}(E)=$ $\bar{\mu}(E)=\lim _{n} \mu\left(E_{n}\right)=\lim _{n} \mu_{0}\left(E_{n}\right)=\overline{\left(\mu_{0}\right)}(E)$, so that (i) holds.

For (ii), suppose that $F \in \mathcal{R}^{c}$. By the definitions of $(\bar{\mu})_{0}$ and $\left(\mu_{0}\right)$, we have that $(\bar{\mu})_{0}(F) \geq \mu_{0}(F)=\overline{\left(\mu_{0}\right)}(F)$. To prove the reverse inequality, suppose that A is any set in \mathcal{R}_{σ} such that $A \subset F$, and let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of sets in \mathcal{R} such that $A=\cup_{n=1}^{\infty} A_{n}$. Since $\mu\left(A_{n}\right) \leq \mu_{0}(F)$ for all n, we obtain that $\bar{\mu}(A)=\lim _{n} \mu\left(A_{n}\right) \leq \mu_{0}(F)$. Taking the supremum of $\bar{\mu}(A)$ over all $A \in \mathcal{R}_{\sigma}$ with $A \subset F$ we get $(\bar{\mu})_{0}(F) \leq \mu_{0}(F)$. Thus (ii) holds.

For (iii), suppose that $E \in \mathcal{R}_{\sigma}, F \in \mathcal{R}^{c}$, and $E \cap F=\emptyset$, and let A be any set in \mathcal{R}_{σ} such that $A \subset E \cup F$. Then $A=(A \cap E) \cup(A \cap F)$, where $A \cap E, A \cap F \in \mathcal{R}_{\sigma}$ and $A \cap E \cap F=\emptyset$. Since $\bar{\mu}$ is monotone increasing and countably additive on \mathcal{R}_{σ}, we obtain from (ii) that

$$
\bar{\mu}(A)=\bar{\mu}(A \cap E)+\bar{\mu}(A \cap F) \leq \bar{\mu}(E)+(\bar{\mu})_{0}(F)=\bar{\mu}(E)+\mu_{0}(F)
$$

Taking the supremum of $\bar{\mu}(A)$ over all such A we have that $(\bar{\mu})_{0}(E \cup F) \leq$ $\bar{\mu}(E)+\mu_{0}(F)$. To prove the reverse inequality, suppose that $B \subset F$ and $B \in \mathcal{R}$. Since $E \cup B \in \mathcal{R}_{\sigma}$ and $E \cup B \subset E \cup F$, we have that

$$
\bar{\mu}(E)+\mu(B)=\bar{\mu}(E)+\bar{\mu}(B)=\bar{\mu}(E \cup B) \leq(\bar{\mu})_{0}(E \cup F)
$$

Taking the supremum of $\mu(B)$ over all $B \in \mathcal{R}$ with $B \subset F$ we have that $\bar{\mu}(E)+\mu_{0}(F) \leq(\bar{\mu})_{0}(E \cup F)$. Thus (iii) holds.

For (iv), suppose that A is any set in $\mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$ and that $A=E_{1} \cup F_{1}=$ $E_{2} \cup F_{2}$, where $E_{i} \in \mathcal{R}_{\sigma}, F_{i} \in \mathcal{R}^{c}$, and $E_{i} \cap F_{i}=\emptyset$ for $i=1,2$. Since E_{1} is the union of two disjoint sets $E_{1} \cap E_{2}$ and $E_{1} \cap F_{2}$ that are in \mathcal{R}_{σ}, we obtain that $\bar{\mu}\left(E_{1}\right)=\bar{\mu}\left(E_{1} \cap E_{2}\right)+\bar{\mu}\left(E_{1} \cap F_{2}\right)$. Since $F_{1}=\left(F_{1} \cap E_{2}\right) \cup\left(F_{1} \cap F_{2}\right)$, where $F_{1} \cap E_{2} \in \mathcal{R}_{\sigma}, F_{1} \cap F_{2} \in \mathcal{R}^{c}$ and $F_{1} \cap E_{2} \cap F_{2}=\emptyset$, we have from (ii) and (iii) that $\mu_{0}\left(F_{1}\right)=(\bar{\mu})_{0}\left(F_{1}\right)=\bar{\mu}\left(F_{1} \cap E_{2}\right)+\mu_{0}\left(F_{1} \cap F_{2}\right)$. Consequently, again by (iii) we obtain that

$$
\begin{aligned}
(\bar{\mu})_{0}\left(E_{1} \cup F_{1}\right) & =\bar{\mu}\left(E_{1}\right)+\mu_{0}\left(F_{1}\right) \\
& =\bar{\mu}\left(E_{1} \cap E_{2}\right)+\bar{\mu}\left(E_{1} \cap F_{2}\right)+\bar{\mu}\left(F_{1} \cap E_{2}\right)+\mu_{0}\left(F_{1} \cap F_{2}\right)
\end{aligned}
$$

Interchanging E_{1} and F_{1} by E_{2} and F_{2}, respectively, in the above equations we see at once that $(\bar{\mu})_{0}\left(E_{1} \cup F_{1}\right)=(\bar{\mu})_{0}\left(E_{2} \cup F_{2}\right)$. Thus (iv) holds.

For (v), suppose that A is any set in $\mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$ of the form $E \cup F$, where
$E \in \mathcal{R}_{\sigma}, F \in \mathcal{R}^{c}$, and $E \cap F=\emptyset$. Let $\left\{E_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of sets in \mathcal{R} with $E=\cup_{n=1}^{\infty} E_{n}$. Since $\left\{E_{n} \cup F\right\}_{n=1}^{\infty}$ is an increasing sequence of sets in \mathcal{A} with $A=\cup_{n=1}^{\infty}\left(E_{n} \cup F\right)$, we obtain that

$$
\begin{aligned}
\overline{\left(\mu_{0}\right)}(A) & =\lim _{n} \mu_{0}\left(E_{n} \cup F\right) \\
& =\lim _{n} \mu_{0}\left(E_{n}\right)+\mu_{0}(F)=\lim _{n} \mu\left(E_{n}\right)+\mu_{0}(F)=\bar{\mu}(E)+\mu_{0}(F)
\end{aligned}
$$

so by (iii), $\overline{\left(\mu_{0}\right)}(A)=(\bar{\mu})_{0}(A)$. Now Assertion (v) follows from (i) and Lemma 4 (ii).

The simple proof of the next lemma is omitted.
Lemma 9. For $0<p \leq \infty$, define $(\bar{\mu})_{p}$ on \mathcal{A}_{σ} by $(\bar{\mu})_{p}(A)=\bar{\mu}(A)$ if $A \in \mathcal{R}_{\sigma}$ and $(\bar{\mu})_{p}(A)=(\bar{\mu})_{0}(A)+p$ if $A \in \mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$. Then:
(i) $(\bar{\mu})_{p}(E)=\overline{\left(\mu_{p}\right)}(E)=\bar{\mu}(E)$ if $E \in \mathcal{R}_{\sigma}$;
(ii) $(\bar{\mu})_{p}(F)=\overline{\left(\mu_{p}\right)}(F)=\mu_{p}(F)$ if $F \in \mathcal{R}^{c}$;
(iii) $(\bar{\mu})_{p}(E \cup F)=\overline{\left(\mu_{p}\right)}(E \cup F)=\bar{\mu}(E)+\mu_{p}(F)$ if $E \in \mathcal{R}_{\sigma}, F \in \mathcal{R}^{c}$, and $E \cap F=\emptyset$;
(iv) $(\bar{\mu})_{p}(A)=\overline{\left(\mu_{p}\right)}(A)$ for all $A \in \mathcal{A}_{\sigma}$.

For $0 \leq p \leq \infty$, we write $\bar{\mu}_{p}(A)$ for $(\bar{\mu})_{p}(A)=\overline{\left(\mu_{p}\right)}(A)$, where $A \in \mathcal{A}_{\sigma}$.
Lemma 10. Let E be any subset of X.
(i) If E has a cover in \mathcal{R}_{σ}, then $\mu_{p}^{*}(E)=\mu^{*}(E)$ for all $p \in[0, \infty]$.
(ii) If E has no cover in \mathcal{R}_{σ}, then

$$
\mu_{p}^{*}(E)=\inf \left\{\bar{\mu}_{p}(A): E \subset A \in \mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}\right\} \text { for all } p \in[0, \infty]
$$

(iii) If E has no cover in \mathcal{R}_{σ}, then
$\mu_{p}^{*}(E)=\mu_{0}^{*}(E)+p$ for all $p \in(0, \infty)$, and $\mu_{\infty}^{*}(E)=\infty$.
(iv) $\mu_{0}^{*}(E) \leq \mu_{p}^{*}(E) \leq \mu_{q}^{*}(E) \leq \mu_{\infty}^{*}(E)=\mu^{*}(E)$, where $0<p<q<$
∞.
Proof. To prove (i), suppose that $E \subset C \in \mathcal{R}_{\sigma}$ and that $p \in[0, \infty]$. Let \mathcal{C} and \mathcal{D} denote the family of all coverings of E from \mathcal{R}_{σ} and \mathcal{A}_{σ}, respectively. We have that $C \in \mathcal{C} \subset \mathcal{D}$ so by part (i) of Lemma 8 or 9 ,

$$
\begin{aligned}
\mu_{p}^{*}(E) & =\inf \left\{\bar{\mu}_{p}(D): D \in \mathcal{D}\right\} \leq \inf \left\{\bar{\mu}_{p}(D): D \in \mathcal{C}\right\} \\
& =\inf \{\bar{\mu}(D): D \in \mathcal{C}\}=\mu^{*}(E)
\end{aligned}
$$

Trivially the reverse inequality holds if $\mu_{p}^{*}(E)=\infty$. To complete the proof of (i), assume first that $0 \leq p<\infty$ and $\mu_{p}^{*}(E)<\infty$. For any $\epsilon>0$, there
is an $A \in \mathcal{A}_{\sigma}$ such that $E \subset A$ and $\bar{\mu}_{p}(A) \leq \mu_{p}^{*}(E)+\epsilon$. Since $E \subset A \cap$ $C \in \mathcal{R}_{\sigma}$, we have from part (i) of Lemma 8 or 9 that $\mu^{*}(E) \leq \bar{\mu}(A \cap C)=$ $\bar{\mu}_{p}(A \cap C) \leq \overline{\mu_{p}}(A) \leq \mu_{p}^{*}(E)+\epsilon$, and hence $\mu^{*}(E) \leq \mu_{p}^{*}(E)$, since ϵ is an arbitrary positive real number. Next assume that $\mu_{\infty}^{*}(E)<\infty$. Then we have $\mu_{\infty}^{*}(E)=\inf \left\{\bar{\mu}_{\infty}(A): E \subset A \in \mathcal{A}_{\sigma}\right\}<\infty$. By the definition of μ_{∞} we have that $\mu_{\infty}(F)=\infty$ for all $F \in \mathcal{R}^{c}$, so that $\bar{\mu}_{\infty}(A)=\infty$ for all $A \in \mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$ by Lemma 9 (iii). Consequently,
$\mu_{\infty}^{*}(E)=\inf \left\{\bar{\mu}_{\infty}(A): E \subset A \in \mathcal{R}_{\sigma}\right\}=\inf \left\{\bar{\mu}(A): E \subset A \in \mathcal{R}_{\sigma}\right\}=\mu^{*}(E)$
by Lemma 4 (ii), together with Lemma 9 (i). Thus (i) is established.
To prove (ii), suppose that E has no cover in \mathcal{R}_{σ}. Since $E \subset X \in \mathcal{R}^{c} \subset$ $\mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}, E$ has at least one cover from $\mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$ so by Lemma 4 (ii) we establish (ii).

To prove (iii), again suppose that E has no cover in \mathcal{R}_{σ}. Assume first that $0<p<\infty$. Since $\bar{\mu}_{p}(A)=\bar{\mu}_{0}(A)+p$ for all $A \in \mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$ by Lemma 9 , we obtain from (ii) that $\mu_{p}^{*}(E)=\inf \left\{\bar{\mu}_{0}(A)+p: E \subset A \in \mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}\right\}=\mu_{0}^{*}(E)+p$. As we noted in the proof of (i), we have that $\bar{\mu}_{\infty}(A)=\infty$ for all $A \in \mathcal{A}_{\sigma}-\mathcal{R}_{\sigma}$, so that by (ii), we get $\mu_{\infty}^{*}(E)=\infty$. Thus (iii) is established.

If E has no cover in \mathcal{R}_{σ}, then by the definition of μ^{*}, together with (iii), we have $\mu^{*}(E)=\mu_{\infty}^{*}(E)=\infty$. By (i), we have $\mu^{*}(E)=\mu_{\infty}^{*}(E)$. The inequalities in (iv) now follow from (i) and (iii). Thus (iv) is established.

We now turn to the relations among the σ-algebras \mathcal{M} and \mathcal{M}_{p} with $0 \leq$ $p \leq \infty$. Since $\mu^{*}=\mu_{\infty}^{*}$ by Lemma 10 (iv), we obtain $\mathcal{M}=\mathcal{M}_{\infty}$. The next proposition shows that $\mathcal{M}_{p} \subset \mathcal{M}$ for all $p \in[0, \infty)$.

Proposition 1. For $0 \leq p<\infty$, every μ_{p}^{*}-measurable subset of X is μ^{*} measurable.

Proof. Suppose that E is an arbitrary μ_{p}^{*}-measurable subset of X, and let T be any subset of X with $\mu^{*}(T)<\infty$. Obviously T has a cover in \mathcal{R}_{σ}, so the same is true for $T \cap E$ and $T \cap E^{c}$, respectively. By Lemma 10 (i) we have that $\mu_{p}^{*}(T)=\mu^{*}(T), \mu_{p}^{*}(T \cap E)=\mu^{*}(T \cap E)$, and $\mu_{p}^{*}\left(T \cap E^{c}\right)=\mu^{*}\left(T \cap E^{c}\right)$. Consequently, by the μ_{p}^{*}-measurability of E we obtain that

$$
\mu^{*}(T)=\mu_{p}^{*}(T)=\mu_{p}^{*}(T \cap E)+\mu_{p}^{*}\left(T \cap E^{c}\right)=\mu^{*}(T \cap E)+\mu^{*}\left(T \cap E^{c}\right)
$$

and hence E is μ^{*}-measurable.
Proposition 2. For each $E \subset X, E$ is μ^{*}-measurable if and only if E is μ_{0}^{*}-measurable.

Proof. Suppose that E is μ^{*}-measurable and that T is any subset of X with $\mu_{0}^{*}(T)<\infty$. First assume that T has a cover in \mathcal{R}_{σ}. Then $T \cap E$ and $T \cap E^{c}$, respectively, has a cover in \mathcal{R}_{σ}. Since E is μ^{*}-measurable, using Lemma 10 (i) we obtain that

$$
\mu_{0}^{*}(T)=\mu^{*}(T)=\mu^{*}(T \cap E)+\mu^{*}\left(T \cap E^{c}\right)=\mu_{0}^{*}(T \cap E)+\mu_{0}^{*}\left(T \cap E^{c}\right)
$$

and hence E is μ_{0}^{*}-measurable.
Next assume that T has no cover in \mathcal{R}_{σ}. By Lemma 10 (ii) there is, for any $\epsilon>0$, a set $A=F \cup G$, where $F \in \mathcal{R}_{\sigma}, G \in \mathcal{R}^{c}$ and $F \cap G=\emptyset$, such that $T \subset A$ and $\bar{\mu}_{0}(A) \leq \mu_{0}^{*}(T)+\epsilon$. By Lemma 8 we have that $\bar{\mu}_{0}(A)=\bar{\mu}(F)+\mu_{0}(G)$. We show easily that there is a set $H \in \mathcal{R}_{\sigma}$ such that $H \subset G$ and $\mu_{0}(G)=$ $\bar{\mu}(H)$. Set $B=F \cup H$. We have that $B \in \mathcal{R}_{\sigma}, B \subset A$ and $\bar{\mu}_{0}(A)=\bar{\mu}(B)$. Since $A-B=G-H$ is μ_{0}^{*}-measurable and since $\mu_{0}(G)<\infty$, we have that $\mu_{0}^{*}(A-B)=\mu_{0}^{*}(G-H)=\mu_{0}(G)-\bar{\mu}(H)=0$. Since, for any $C \subset X, \mu_{0}^{*}$ is countably additive on the trace of \mathcal{M}_{0} on C, i.e., $\left\{S \cap C: S \in \mathcal{M}_{0}\right\}$ (see, e.g., [5, Problem 2, p.291]), we have that $\mu_{0}^{*}(A \cap C)=\mu_{0}^{*}(B \cap C)$. In particular, we have that $\mu_{0}^{*}(A \cap E)=\mu_{0}^{*}(B \cap E)$ and $\mu_{0}^{*}\left(A \cap E^{c}\right)=\mu_{0}^{*}\left(B \cap E^{c}\right)$. Consequently, using the μ^{*}-measurability of B and E, together with Lemma 10 (i), we obtain that

$$
\begin{aligned}
\mu_{0}^{*}(T)+\epsilon \geq \bar{\mu}_{0}(A) & =\bar{\mu}(B)=\mu^{*}(B \cap E)+\mu^{*}\left(B \cap E^{c}\right) \\
& =\mu_{0}^{*}(B \cap E)+\mu_{0}^{*}\left(B \cap E^{c}\right) \\
& =\mu_{0}^{*}(A \cap E)+\mu_{0}^{*}\left(A \cap E^{c}\right) \geq \mu_{0}^{*}(T \cap E)+\mu_{0}^{*}\left(T \cap E^{c}\right),
\end{aligned}
$$

and hence $\mu_{0}^{*}(T) \geq \mu_{0}^{*}(T \cap E)+\mu_{0}^{*}\left(T \cap E^{c}\right)$, since ϵ is an arbitrary positive real number. Thus E is μ_{0}^{*}-measurable. By Proposition 1 we establish the proposition.

Proposition 3. For any positive real numbers p and q, a subset E of X is μ_{p}^{*}-measurable if and only if E is μ_{q}^{*}-measurable.

Proof. We assume that $p \neq q$. Suppose that E is μ_{p}^{*}-measurable and let T be any subset of X. Suppose first that T has a cover in \mathcal{R}_{σ}. Since both $T \cap E$ and $T \cap E^{c}$ have covers in \mathcal{R}_{σ} and since E is also μ^{*}-measurable by Proposition 1, we have from Lemma 10 (i) that

$$
\mu_{q}^{*}(T)=\mu^{*}(T)=\mu^{*}(T \cap E)+\mu^{*}\left(T \cap E^{c}\right)=\mu_{q}^{*}(T \cap E)+\mu_{q}^{*}\left(T \cap E^{c}\right)
$$

Thus E is μ_{q}^{*}-measurable. Next suppose that T has no cover in \mathcal{R}_{σ} with $\mu_{q}^{*}(T)<\infty$. By Lemma 10 (iii) we have $\mu_{0}^{*}(T)<\infty$. By the assumption on
T, at least one of the sets $T \cap E$ and $T \cap E^{c}$ has no cover in \mathcal{R}_{σ}. Suppose that both of these sets have no cover in \mathcal{R}_{σ}. Since E is μ_{0}^{*}-measurable by Propositions 1 and 2, we obtain from Lemma 10 (iii) that

$$
\begin{aligned}
\mu_{0}^{*}(T)+p & =\mu_{p}^{*}(T)=\mu_{p}^{*}(T \cap E)+\mu_{p}^{*}\left(T \cap E^{c}\right) \\
& =\mu_{0}^{*}(T \cap E)+\mu_{0}^{*}\left(T \cap E^{c}\right)+2 p=\mu_{0}^{*}(T)+2 p,
\end{aligned}
$$

so $p=0$. This is a contradiction. Therefore, we can assume that $T \cap E$ has a cover in \mathcal{R}_{σ} and $T \cap E^{c}$ has no cover in \mathcal{R}_{σ}. Consequently, we have from parts (i) and (iii) of Lemma 10 that
$\mu_{q}^{*}(T)=\mu_{0}^{*}(T)+q=\mu_{0}^{*}(T \cap E)+\mu_{0}^{*}\left(T \cap E^{c}\right)+q=\mu_{q}^{*}(T \cap E)+\mu_{q}^{*}\left(T \cap E^{c}\right)$.
Thus E is μ_{q}^{*}-measurable. Interchanging p and q in the preceding result we establish the proposition.

Now we formulate the main result of this paper.
Theorem 2. $\mathcal{M}_{p}=\mathcal{M}_{1} \subset \mathcal{M}_{0}=\mathcal{M}_{\infty}=\mathcal{M}$ for all $p \in(0, \infty)$.
Proof. By Proposition 3 we have that $\mathcal{M}_{p}=\mathcal{M}_{1}$ for all positive real numbers p. We infer from Propositions 1 and 2 that $\mathcal{M}_{1} \subset \mathcal{M}=\mathcal{M}_{0}$. As we noted earlier, we have that $\mathcal{M}=\mathcal{M}_{\infty}$.

We need not have $\mathcal{M}_{1}=\mathcal{M}$ (see Example 5 or 6 below).
Example 5. Let $X=\{1,2\}, \mathcal{R}=\{\emptyset\}$, and $\mathcal{A}=\{\emptyset, X\}$. Plainly \mathcal{R} is a σ-ring in X with $X \notin \mathcal{R}$, and \mathcal{A} is the σ-algebra generated by \mathcal{R}. Define $\mu(\emptyset)=0$. Then μ is a countably additive measure on \mathcal{R}. We have at once that $\mu^{*}(\emptyset)=0$ and $\mu^{*}(E)=\infty$ if E is a nonempty subset of X, so μ^{*} is also a countably additive measure on $\mathcal{P}(X)=\{\emptyset,\{1\},\{2\}, X\}$. Thus $\mathcal{M}=\mathcal{P}(X)$. Since $\mu_{0}(\emptyset)=\mu_{0}(X)=0$, we obtain that $\mu_{0}^{*}(E)=0$ for all $E \subset X$. By Lemmas 5 and 10 we have that, for all $p \in(0, \infty], \mu_{p}(\emptyset)=0$ and $\mu_{p}(X)=p$, so $\mu_{p}^{*}(\emptyset)=0$ and $\mu_{p}^{*}(E)=p$ if $E=\{1\},\{2\}$ or X. Notice that $\mu^{*}=\mu_{\infty}^{*}$. We assert that $\mathcal{M}_{p}=\mathcal{A}$ for all $p \in(0, \infty)$. To prove the assertion, suppose that p is any positive real number. Since $p=\mu_{p}^{*}(X)<\mu_{p}^{*}(\{1\})+\mu_{p}^{*}(\{2\})=2 p$, both $\{1\}$ and $\{2\}$ are not μ_{p}^{*}-measurable and hence the assertion is established. Thus $\mathcal{M}_{1} \neq \mathcal{M}$.

In the following examples, let X denote any uncountable set, let \mathcal{R} denote the ring of all finite subsets of X, and let \mathcal{A} and \mathcal{B} denote, respectively, the algebra and the σ-algebra generated by \mathcal{R} as in Example 2. For any measure μ on \mathcal{R}, the measure $\mu_{p}(0 \leq p \leq \infty)$ on \mathcal{A} induced by μ and parameter p is countably additive, since μ is countably additive.

Example 6. Define $\mu(E)=0$ for all E in \mathcal{R}. Plainly μ is a countably additive measure on \mathcal{R}. Since $\bar{\mu}(E)=0$ for all E in \mathcal{R}_{σ}, we obtain that $\mu^{*}(E)=0$ or ∞ according as E is countable or not. Then μ^{*} is also a countably additive measure on $\mathcal{P}(X)$ so that $\mathcal{M}=\mathcal{P}(X)$. We next compute μ_{0}^{*}. Since $\mu_{0}(E)=0$ for all A in \mathcal{A}, we obtain that $\bar{\mu}_{0}(E)=0$ for all E in $\mathcal{A}_{\sigma}=\mathcal{R}_{\sigma} \cup \mathcal{R}^{c}$ (see Example 2), and hence $\mu_{0}^{*}(E)=0$ for all $E \subset X$. By Lemma 10 (iii) we have that $\mu_{1}^{*}(E)=0$ or 1 according as E is countable or not. Assert that $\mathcal{M}_{1}=\mathcal{B}$. Since $\mathcal{B}=\mathcal{R}_{\sigma} \cup\left(\mathcal{R}_{\sigma}\right)^{c}$ by Example 2, we obtain $\mathcal{B} \subset \mathcal{M}_{1}$. To prove the opposite inclusion, suppose that A is any subset of X such that both A and A^{c} are uncountable. Then $1=\mu_{1}^{*}(X)<\mu_{1}^{*}(A)+\mu_{1}^{*}\left(A^{c}\right)=2$ so A is not μ_{1}^{*}-measurable. Thus the assertion holds. Consequently, $\mathcal{M}_{1} \neq \mathcal{M}$.
Example 7. Define μ on \mathcal{R} by $\mu(E)=\operatorname{card} E$ for all E in \mathcal{R}. Then μ is a countably additive measure on \mathcal{R}. We obtain that $\bar{\mu}(E)=\operatorname{card} E$ if E is finite and $\bar{\mu}(E)=\infty$ if E is countably infinite, so that $\mu^{*}(E)=\operatorname{card} E$ if E is finite and $\mu^{*}(E)=\infty$ if E is infinite. Then μ^{*} is a countably additive measure on $\mathcal{P}(X)$ so $\mathcal{M}=\mathcal{P}(X)$. On the other hand, we have that $\mu_{0}(E)=\operatorname{card} E$ if E is finite and $\mu_{0}(E)=\infty$ if E is cofinite, and that $\bar{\mu}_{0}(E)=\operatorname{card} E$ if E is finite and $\bar{\mu}_{0}(E)=\infty$ if E is countably infinite or cofinite. Consequently, $\mu_{0}^{*}=\mu^{*}$. By part (iv) of Lemma 10 we obtain that for all $p \in[0, \infty], \mu_{p}^{*}=\mu^{*}$ so $\mathcal{M}_{p}=\mathcal{M}$.
Example 8. Define μ on \mathcal{R} by $\mu(\emptyset)=0$ and $\mu(E)=\infty$ if $E \in \mathcal{R}$ and $E \neq \emptyset$. Then μ is a countably additive measure on \mathcal{R}. It follows easily that $\mu^{*}(\emptyset)=0$ and $\mu^{*}(E)=\infty$ if $E \neq \emptyset$, and that μ^{*} is a countably additive measure on $\mathcal{P}(X)$, so $\mathcal{M}=\mathcal{P}(X)$. As in Example 7, we obtain that for all $p \in[0, \infty]$, $\mu_{p}^{*}=\mu^{*}$ so $\mathcal{M}_{p}=\mathcal{M}$.

Acknowledgment. The authors wish to thank the referee for valuable remarks and suggestions.

References

[1] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of Charges, Academic Press, London,1983.
[2] P. Billingsley, Probability and Measure, 2nd ed., Wiley, New York, 1986.
[3] J. L. Doob, Measure Theory, Springer-Verlag, New York,1991.
[4] M. M. Rao, Measure Theory and Integration, Wiley, New York, 1987.
[5] H. L. Royden, Real Analysis, 3rd ed., Macmillan, New York, 1988.

[^0]: Key Words: ring, algebra, measure, outer measure, measurability
 Mathematical Reviews subject classification: 28A12
 Received by the editors June 1, 1999

