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OUTER MEASURES GENERATED BY A
COUNTABLY ADDITIVE MEASURE ON A

RING OF SETS

Abstract

Let R be any ring of subsets of a set X which is not an algebra and
let A be the algebra generated by R. Suppose that µ is a countably
additive measure on R and that µ∗ is the outer measure generated by
(µ,R). If X is a countable union of sets in R, then there is a unique
countably additive measure ν on A which extends µ, and the outer
measure generated by (ν,A) coincides with µ∗. If X is not a countable
union of sets in R, then there exists a family {µp : 0 ≤ p ≤ ∞} of
countably additive measures on A such that each µp agrees with µ on R.
For 0 ≤ p ≤ ∞, let µ∗p denote the outer measure generated by (µp,A).
Then we have µ∗0 ≤ µ∗p ≤ µ∗q ≤ µ∗∞ = µ∗ for 0 < p < q <∞. Moreover,
ifM andMp, respectively, denotes the σ-algebra of µ∗-measurable and
µ∗p-measurable sets, thenMp =M1 ⊂M0 =M∞ =M for all positive
real numbers p. As examples, we give countably additive measures on
rings for which M = M1 and M 6= M1, respectively. By the outer
measures generated by µ we shall mean the outer measures µ∗ and µ∗p
(0 ≤ p ≤ ∞).

1 Preliminaries

Throughout the paper, X denotes a fixed but arbitrary nonempty set unless
otherwise stated, and P(X) denotes the power set of X. For each subset E of
X, let Ec denote the complement of E (relative to X), i.e., Ec = X − E. By
definition, a ring of subsets of X or simply a ring in X is a nonempty family of
subsets of X which is closed under the formation of unions and differences, and
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an algebra of subsets of X is a ring in X containing X. A ring in X which is
closed under the formation of countable unions is called a σ-ring, and a σ-ring
in X containing X is called a σ-algebra. Let R be any ring in X, let Rc be
the family of all complements of sets in R, and let A be the algebra generated
by R, that is, the smallest algebra containing R. Trivially A = R = Rc if
X ∈ R, and A = R ∪Rc if X 6∈ R. Let Rσ and Aσ denote the family of all
countable unions of sets in R and A, respectively.

A non-negative extended real-valued set function µ defined on a ring R
in X is called a measure or a finitely additive measure on R if µ(∅) = 0 and
µ(A1∪· · ·∪An) = µ(A1)+ · · ·+µ(An) for every finite collection {A1, · · · , An}
of pairwise disjoint sets in R. A measure µ on R is called a countably additive
measure if µ(∪∞n=1An) =

∑∞
n=1 µ(An) for every pairwise disjoint sequence

{An}∞n=1 of sets in R whose union is also in R.
Let µ be a countably additive measure on a ring R in X. For each E ⊂ X,

define µ∗(E) by

µ∗(E) = inf {
∑∞
n=1 µ(An) : E ⊂ ∪∞n=1An, An ∈ R (n = 1, 2, · · · )}

if E can be covered by a set in Rσ and otherwise define µ∗(E) =∞ following
the convention that inf ∅ = ∞. Then µ∗ is a ( Carathéodory ) regular outer
measure on X which agrees with µ on R. The outer measure µ∗ constructed in
this way is called the outer measure generated by (µ,R) (see, e.g., [2, pp.163-
165],[3, pp.32-33],[4, pp.36, 41-44]).

For ease of our argument we prove the following simple lemmas.

Lemma 1. Let R be any ring in X with X 6∈ R and A = R∪Rc.
(i) If A ∈ R and B ∈ Rc, then A ∪B ∈ Rc and A ∩B ∈ R.

(ii) If A,B ∈ Rc, then A ∪B,A ∩B ∈ Rc.
(iii) If A,B ∈ A and A ∩B = ∅, then A ∈ R or B ∈ R.
(iv) If {An}∞n=1 is a pairwise disjoint sequence of sets in A, then

there is at most one set An ∈ Rc.

PROOF. Assertions (i) and (ii) follow from de Morgan’s laws. To prove (iii),
suppose that A and B are disjoint sets in Rc. Since A ⊂ Bc ∈ R, we have
A = A∩Bc ∈ R by (i). This contradiction proves (iii). Assertion (iv) follows
from (iii). �

Lemma 2. Let R be any ring in X. Then the following assertions are
equivalent:

(i) X ∈ Rσ;
(ii) Rc ⊂ Rσ ∩ (Rσ)c;
(iii) Rσ ∩ (Rσ)c 6= ∅.
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PROOF. Suppose that X ∈ Rσ. Assume first that X ∈ R. Then R is an alge-
bra so R = Rc. Since R ⊂ Rσ, we have R = Rc ⊂ (Rσ)c so that Rc = R ⊂
Rσ ∩ (Rσ)c. Next assume that X 6∈ R. Then R ∩ Rc = ∅. Let {Xn}∞n=1 be
any sequence of sets in R such that X = ∪∞n=1Xn. For each A ∈ Rc, we have
A ∩Xn ∈ R for all n by Lemma 1 (i), so A = ∪∞n=1A ∩Xn ∈ Rσ, and hence
Rc ⊂ Rσ. We have Rc ⊂ (Rσ)c, since R ⊂ Rσ. Thus (i) implies (ii). Plainly
(ii) implies (iii). Now suppose that (iii) holds, and let A ∈ Rσ ∩ (Rσ)c. We
have A,Ac ∈ Rσ, so X = A ∪Ac ∈ Rσ. Thus (iii) implies (i). �

The next lemma follows immediately from Lemma 2.

Lemma 3. Let R be any ring in X. Then X 6∈ Rσ if and only if Rσ∩(Rσ)c =
∅.
Lemma 4. Let R be any ring in X and let A be the algebra generated by R.

(i) If X ∈ Rσ −R, then Aσ = Rσ.
(ii) If X 6∈ Rσ, then, for each A ∈ Aσ, one and only one of the

following alternatives holds: A ∈ Rσ or A is of the form E∪F , where E ∈ Rσ,
F ∈ Rc, and E ∩ F = ∅.

PROOF. For (i), suppose that X ∈ Rσ−R. Since X 6∈ R, we have A = R∪Rc
soRσ ⊂ Aσ. Since X ∈ Rσ, we infer from Lemma 2 thatRc ⊂ Rσ so A ⊂ Rσ.
Consequently, Aσ ⊂ Rσ and henceAσ = Rσ. Thus (i) is established. To prove
(ii), suppose that X 6∈ Rσ. Obviously X 6∈ R, so A = R∪Rc. Assume that A
is an arbitrary set in Aσ. Then there is a pairwise disjoint sequence {An}∞n=1

of sets in A such that A = ∪∞n=1An. If An ∈ R for all n, then A ∈ Rσ. Oth-
erwise, by Lemma 1 (iv) there is exactly one set Ai ∈ Rc such that An ∈ R
for all n 6= i, so that letting E = ∪n 6=iAn and F = Ai we have A = E ∪ F ,
where E ∈ Rσ, F ∈ Rc, and E ∩ F = ∅. If there were a set A ∈ Rσ of the
form E ∪F , where E ∈ Rσ, F ∈ Rc, and E ∩F = ∅, then F = F ∩A ∈ Rσ, so
F ∈ Rσ ∩ Rc. This is a contradiction by Lemma 3. Thus (ii) is established.
�

Assume that X 6∈ Rσ and that E ∈ Rσ, F ∈ Rc, and E ∩ F 6= ∅. We have
that E ∪ F ∈ Aσ −Rσ and E − F ∈ Rσ, so E ∪ F = (E − F ) ∪ F . Note that
F − E ∈ (Rc)δ = (Rσ)c and F − E need not be in Rc. Thus we have that
every set in Aσ−Rσ is represented in at least one way as the union of disjoint
sets from Rσ and Rc, respectively, and that such a representation of a set in
Aσ −Rσ need not be unique, for X = E ∪ (X − E) for all E ∈ R.

Example 1. Let X be a nonempty countable set, let R be the ring of
all finite subsets of X, and let A be the algebra generated by R. Trivially



238 Yong Tae Kim and C. W. Kim

R = A = P(X) if X is finite. If X is infinite, then Rσ is the σ-ring of all
countable subsets of X such that X ∈ Rσ −R, so that Rσ = Aσ = P(X).

Example 2. Let X be any uncountable set and let R be the ring of all finite
subsets of X. Then Rσ is the σ-ring of all countable subsets of X such that
X 6∈ Rσ or, equivalently, Rσ ∩ (Rσ)c = ∅ by Lemma 3. Plainly Rσ is the
σ-ring generated by R.
A set E ⊂ X is called cofinite or cocountable if Ec is finite or countable. Let
A and B denote the algebra and the σ-algebra generated by R, respectively.
Then A consists of the finite and the cofinite subsets of X, i.e., A = R ∪Rc,
and B consists of the countable and the cocountable subsets of X, i.e., B =
Rσ ∪ (Rσ)c. Assert that Aσ = Rσ ∪ Rc. Suppose that A is any set in
Aσ −Rσ and let A = E ∪ F , where E ∈ Rσ, F ∈ Rc and E ∩ F = ∅. Since
E ⊂ F c ∈ R, we have E ∈ R, so E ∪ F ∈ Rc by Lemma 1 (i). Consequently,
Aσ − Rσ = Rc and hence the assertion follows from Lemma 4 (ii). We see
readily that A & B & P(X).

The next lemma is a version of Lemma 3.4.1 in [1, p.76].

Lemma 5. (cf. [5, Problem 9, p.258]) Let R be an arbitrary ring in X which
is not an algebra, let A be the algebra generated by R, and let µ be any measure
on R.

(i) Define µ0 on A by µ0(E) = sup{µ(A) : A ⊂ E,A ∈ R} for all
E in A. Then µ0 is a measure on A such that µ0(E) = µ(E) if E ∈ R.

(ii) For 0 < p ≤ ∞, define µp on A by µp(E) = µ(E) if E ∈ R and
µp(E) = µ0(E) + p if E ∈ Rc. Then µp is a measure on A.

(iii) Every measure ν on A such that ν(E) = µ(E) for all E in R is
of the form µp for some p ∈ [0,∞].

The measures µp are called the measures induced by the measure µ and
parameters p ∈ [0,∞].

PROOF. We have A = R ∪ Rc. To prove (i), suppose first that E ∈ R. By
the definition of µ0, we have µ(E) ≤ µ0(E). For any A ∈ R with A ⊂ E,
we have µ(A) ≤ µ(E). Taking the supremum of µ(A) over all such A we
obtain µ0(E) ≤ µ(E) and hence µ0(E) = µ(E). To prove the additivity of
µ0, suppose that E and F are arbitrary sets in A such that E ∩ F = ∅. If
E,F ∈ R, then there is nothing to prove. Otherwise, by Lemma 1 (iii) we
can assume that E ∈ R and F ∈ Rc, so E ∪ F ∈ Rc by Lemma 1 (i). For
any A ∈ R with A ⊂ E ∪ F , we have that A = (A ∩ E) ∪ (A ∩ F ), where
A ∩ E,A ∩ F ∈ R, so

µ(A) = µ(A ∩ E) + µ(A ∩ F ) ≤ µ(E) + µ0(F ) = µ0(E) + µ0(F ).
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Taking the supremum of µ(A) over all A ∈ R with A ⊂ E ∪ F we obtain
µ0(E ∪ F ) ≤ µ0(E) + µ0(F ). To prove the reverse inequality, suppose that
B ∈ R and B ⊂ F . Since E ∪ F ⊃ E ∪B ∈ R, we have

µ(E) + µ(B) = µ(E ∪B) ≤ µ0(E ∪ F ).

Taking the supremum of µ(B) over all such B we obtain µ0(E) + µ0(F ) ≤
µ0(E ∪ F ), and hence the additivity of µ0 follows. By induction µ0 is finitely
additive on A, so (i) is established. To prove (ii), assume that 0 < p ≤ ∞ and
that E ∈ R, F ∈ Rc, and E ∩ F = ∅. Then E ∪ F ∈ Rc. By the definition of
µp, together with (i), we have

µp(E ∪ F ) = µ0(E ∪ F ) + p = µ0(E) + µ0(F ) + p = µp(E) + µp(F ).

By an argument given in the proof of (i) we show that µp is additive on
A so it is also finitely additive on A. Thus (ii) is established. To prove
(iii), suppose that ν is any measure on A which agrees with µ on R, and
let E be an arbitrary set in Rc. For any A ∈ R with A ⊂ E, we have
µ(A) = ν(A) ≤ ν(E), so µ0(E) ≤ ν(E). Therefore, µ0 ≤ ν on Rc. If ν = µ0

on Rc, we are done. Suppose that µ0 6= ν on Rc. Then there is a set F ∈ Rc
such that µ0(F ) < ν(F ), so 0 ≤ µ0(F ) < ∞. Define p = ν(F ) − µ0(F ). We
have 0 < p ≤ ∞. Assert that ν(E) = µp(E). For this, assume first that
0 < p <∞ or, equivalently, 0 < ν(F ) <∞. We have that

ν(F ) = ν(E ∩ F ) + µ(F − E) <∞ and µ0(F ) = µ0(E ∩ F ) + µ0(F − E) <∞.

Since E − F, F − E ∈ R, we also have that ν(E − F ) = µ0(E − F ) and
ν(F−E) = µ0(F−E). Then we have p = ν(E∩F )−µ0(E∩F ). Consequently,

µp(E) = µ0(E) + p = µ0(E − F ) + µ0(E ∩ F ) + ν(E ∩ F )− µ0(E ∩ F ) = ν(E).

Next assume that p =∞ or, equivalently, ν(F ) =∞. Since ν(F ) = ν(E∩F )+
ν(F −E) and ν(F −E) = µ0(F −E) ≤ µ0(F ) <∞, we obtain ν(E∩F ) =∞,
so ν(E) = ∞. By the definition of µ∞, we have µ∞(E) = ∞. Thus the
assertion holds and hence (iii) is established. �

Lemma 6. Let R be any ring in X such that X 6∈ R and let A be the algebra
generated by R. Suppose that µ is a countably additive measure on R and that
{µp} are the measures on A that are induced by µ and parameters p ∈ [0,∞].
Then:

(i) µ0 is a countably additive measure on A which extends µ.
(ii) If X ∈ Rσ, then µ0 is a unique countably additive measure on
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A which extends µ.
(iii) If X 6∈ Rσ, then each µp with 0 < p ≤ ∞ is a countably additive

measure on A which extends µ.
(iv) If X 6∈ Rσ, then every countably additive measure ν on A which

extends µ is of the form µp for some p ∈ [0,∞].

PROOF. For (i), suppose that {En}∞n=1 is a pairwise disjoint sequence of sets
in A such that E = ∪∞n=1En ∈ A. Assume first that E ∈ R. By Lemma 1 (i)
we have En ∈ R for all n, so that by the countable additivity of µ, together
with Lemma 5 (i),

µ0(E) = µ(E) =
∑∞
n=1 µ(En) =

∑∞
n=1 µ0(En).

Next assume that E ∈ Rc and that A ∈ R and A ⊂ E. Since A = ∪∞n=1A∩En,
where A∩En ∈ R for all n by Lemma 1 (i), we obtain again by the countable
additivity of µ that µ(A) =

∑∞
n=1 µ(A ∩ En) ≤

∑∞
n=1 µ0(En). Taking the

supremum of µ(A) over all such A we obtain µ0(E) ≤
∑∞
n=1 µ0(En). Since µ0

is finitely additive on A by Lemma 5 (i), we have, for any positive integer n,∑n
i=1 µ0(Ei) = µ0(∪ni=1Ei) ≤ µ0(E). Letting n −→ ∞ we obtain the reverse

inequality so that (i) holds.
For (ii), suppose that X ∈ Rσ and that ν is any countably additive measure

on A which agrees with µ on R. By part (i), ν agrees with µ0 on R. Assert
that ν agrees with µ0 on Rc. For this, suppose that A is any set in Rc. Since
X ∈ Rσ, we have Rc ⊂ Rσ by Lemma 2, so that there is a pairwise disjoint
sequence {An}∞n=1 of sets in R such that A = ∪∞n=1An. By the countable
additivity of ν and µ0, we obtain ν(A) =

∑∞
n=1 ν(An) =

∑∞
n=1 µ0(An) =

µ0(A). Thus the assertion is established and hence (ii) holds.
For (iii), suppose that X 6∈ Rσ and that 0 < p ≤ ∞. Trivially µp agrees

with µ on R by the definition of µp. Let {En}∞n=1 be any pairwise disjoint
sequence of sets in A such that E = ∪∞n=1En ∈ A. If E ∈ R, then En ∈ R for
all n, so

µp(E) = µ(E) =
∑∞
n=1µ(En) =

∑∞
n=1µp(En),

since µ is countably additive on R. Suppose that E ∈ Rc. It follows from
Lemma 1 (iv), together with Lemma 3, that there is a unique set Ei ∈ Rc
such that En ∈ R for all n 6= i. Consequently, we obtain from part (i) and the
definition of µp that

µp(E) =µ0(E) + p =
∑∞
n=1µ0(En) + p = µ0(Ei) + p+

∑
n 6=iµ(En)

=µp(Ei) +
∑
n6=iµp(En) =

∑∞
n=1µp(En).
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Thus (iii) holds. Assertion (iv) follows from Lemma 5 (iii), together with parts
(i) and (iii). �

Suppose that R is a σ-ring in X which is not a σ-algebra and that A is
the σ-algebra generated by R. Let µ be any countably additive measure on
R. By parts (i), (iii) and (iv) of Lemma 6, the measures µp (0 ≤ p ≤ ∞) are
the only countably additive measures on A which extend µ (see [5, Problem
9, p.258]).

Let R be any ring in X. It is easy to give an alternate, but equivalent, defi-
nition of Rσ : define Rσ as the family of unions of increasing sequences of sets
in R. Notice that Rσ is the smallest family of subsets of X containing R and
closed under the formation of finite intersections and countable unions. Let µ
be a countably additive measure on R. Define µ̄ on Rσ as follows : for each
A ∈ Rσ, let µ̄(A) = limn µ(An), where {An}∞n=1 is any increasing sequence of
sets in R such that A = ∪∞n=1An. We show readily that µ̄ is defined unam-
biguously on Rσ. Furthermore, µ̄ is a unique monotone increasing, countably
additive non-negative extended real-valued set function on Rσ which agrees
with µ on R. We also have that µ̄(A) = sup{µ(B) : B ⊂ A, B ∈ R} for
all A in Rσ. For the outer measure µ∗ generated by (µ,R), we obtain that
µ∗(E) = inf{µ̄(A) : E ⊂ A ∈ Rσ} if E can be covered by a set in Rσ and
µ∗(E) =∞ otherwise.

Lemma 7. Let R be any ring in X such that X ∈ Rσ −R and let A be the
algebra generated by R. Suppose that µ is a countably additive measure on R
and that µ0 is the unique countably additive measure on A extending µ. Then
Rσ = Aσ and µ̄ = (µ0) on Rσ.

PROOF. The first equality follows from Lemma 4 (i). The set functions µ̄ and
(µ0) denotes, respectively, the extension of µ to Rσ and µ0 to Aσ. Thus both
µ̄ and (µ0) are defined on Rσ = Aσ. Suppose that A is an arbitrary set in
Rσ and that {An}∞n=1 is an increasing sequence of sets in R such that A =
∪∞n=1An. By the definitions of µ̄ and (µ0) we obtain that µ̄(A) = limn µ(An) =
limn µ0(An) = (µ0)(A). Thus the lemma is established. �

Theorem 1. Let X,R,A, µ and µ0 be as in Lemma 7. Then µ∗(E) = µ∗0(E)
for all E ⊂ X.

PROOF. Suppose that E is an arbitrary subset of X. Then E has a cover in
Rσ, since E ⊂ X ∈ Aσ = Rσ by the first part of Lemma 7. We obtain from
the second part of Lemma 7 that

µ∗(E) = inf{µ̄(A) : E ⊂ A ∈ Rσ} = inf{(µ0)(A) : E ⊂ A ∈ Aσ} = µ∗0(E).
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Thus the theorem is established. �

Example 3. Let X denote the real line R and let R denote the ring of all
unions of finite collections of pairwise disjoint intervals [a, b), where −∞ < a ≤
b <∞. Obviously X ∈ Rσ−R. For any finite collection {[ai, bi), i = 1, · · · , n}
of pairwise disjoint intervals in R, define µ(∪ni=1[ai, bi)) =

∑n
i=1(bi−ai). Then

µ is a countably additive measure on R. Let A = R∪Rc and let µ0 denote the
unique countably additive measure onA which extends µ. We have µ0(E) =∞
for all E ∈ Rc. By Theorem 1 we have µ∗ = µ∗0. The outer measure µ∗is called
Lebesgue outer measure on R.

For any subset E of X, cardE denotes the cardinal number of E.

Example 4. Let X denote the set N of all positive integers and let R denote
the ring of all finite subsets of X. Then X 6∈ R. The algebra A generated byR
consists of the finite and the cofinite subsets of X so A & Rσ = Aσ = P(X).
Suppose that µ is any measure on R. Trivially µ is countably additive on R.
Let µ0 and µ̄ denote the countably additive measure extending µ to A and
P(X), respectively. We have that µ0(E) =

∑
n∈E µ({n}) for all E ∈ A and

µ̄(E) =
∑
n∈E µ({n}) for all E ⊂ X. Then µ̄ is a countably additive measure

on P(X) such that µ̄(E) = µ∗(E) = µ∗0(E) for all E ∈ P(X).
Next suppose that µ(E) = cardE for all E ∈ R. Plainly µ is a measure on

R. Then the countably additive measure µ̄ on P(X) is counting measure, that
is, µ̄(E) = n if E is finite and has n elements and µ̄(E) =∞ if E is infinite.

2 Main Result and Examples

Throughout this section we shall assume that R is an arbitrary ring in X such
that X 6∈ Rσ, A is the algebra generated byR, and µ is any countably additive
measure on R. Let µ̄ denote the unique extension of µ from R to Rσ and µ∗

the outer measure generated by (µ,R). Form the countably additive measures
µp (0 ≤ p ≤ ∞) on A that are induced by µ and parameters p ∈ [0,∞]. For
0 ≤ p ≤ ∞, let (µp) denote the unique extension of µp fromA toAσ, and let µ∗p
denote the outer measure generated by (µp,A). Let M and Mp (0 ≤ p ≤ ∞)
denote the σ-algebra of all µ∗-measurable and µ∗p-measurable subsets of X,
respectively.

Lemma 8. Define (µ̄)0 on Aσ by (µ̄)0(E) = µ̄(E) if E ∈ Rσ and (µ̄)0(E ∪
F ) = sup{µ̄(A) : A ⊂ E∪F,A ∈ Rσ} if E ∈ Rσ, F ∈ Rc,and E∩F = ∅. Then:

(i) (µ̄)0(E) = (µ0)(E) = µ̄(E) if E ∈ Rσ;
(ii) (µ̄)0(F ) = (µ0)(F ) = µ0(F ) if F ∈ Rc;
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(iii) (µ̄)0(E∪F ) = µ̄(E)+µ0(F ) if E ∈ Rσ, F ∈ Rc, and E∩F = ∅;
(iv) (µ̄)0 is defined unambiguously on Aσ −Rσ;
(v) (µ̄)0(A) = (µ0)(A) for all A ∈ Aσ.

PROOF. For (i), suppose that E ∈ Rσ and that {En}∞n=1 is an increasing
sequence of sets in R such that E = ∪∞n=1En. We have that (µ̄)0(E) =
µ̄(E) = limn µ(En) = limn µ0(En) = (µ0)(E), so that (i) holds.

For (ii), suppose that F ∈ Rc. By the definitions of (µ̄)0 and (µ0), we have
that (µ̄)0(F ) ≥ µ0(F ) = (µ0)(F ). To prove the reverse inequality, suppose
that A is any set in Rσ such that A ⊂ F , and let {An}∞n=1 be an increasing
sequence of sets in R such that A = ∪∞n=1An. Since µ(An) ≤ µ0(F ) for all n,
we obtain that µ̄(A) = limn µ(An) ≤ µ0(F ). Taking the supremum of µ̄(A)
over all A ∈ Rσ with A ⊂ F we get (µ̄)0(F ) ≤ µ0(F ). Thus (ii) holds.

For (iii), suppose that E ∈ Rσ, F ∈ Rc, and E ∩ F = ∅, and let A be
any set in Rσ such that A ⊂ E ∪ F . Then A = (A ∩ E) ∪ (A ∩ F ), where
A ∩ E, A ∩ F ∈ Rσ and A ∩ E ∩ F = ∅. Since µ̄ is monotone increasing and
countably additive on Rσ, we obtain from (ii) that

µ̄(A) = µ̄(A ∩ E) + µ̄(A ∩ F ) ≤ µ̄(E) + (µ̄)0(F ) = µ̄(E) + µ0(F ).

Taking the supremum of µ̄(A) over all such A we have that (µ̄)0(E ∪ F ) ≤
µ̄(E) + µ0(F ). To prove the reverse inequality, suppose that B ⊂ F and
B ∈ R. Since E ∪B ∈ Rσ and E ∪B ⊂ E ∪ F , we have that

µ̄(E) + µ(B) = µ̄(E) + µ̄(B) = µ̄(E ∪B) ≤ (µ̄)0(E ∪ F ).

Taking the supremum of µ(B) over all B ∈ R with B ⊂ F we have that
µ̄(E) + µ0(F ) ≤ (µ̄)0(E ∪ F ). Thus (iii) holds.

For (iv), suppose that A is any set in Aσ − Rσ and that A = E1 ∪ F1 =
E2∪F2, where Ei ∈ Rσ, Fi ∈ Rc, and Ei∩Fi = ∅ for i = 1, 2. Since E1 is the
union of two disjoint sets E1 ∩E2 and E1 ∩F2 that are in Rσ, we obtain that
µ̄(E1) = µ̄(E1 ∩ E2) + µ̄(E1 ∩ F2). Since F1 = (F1 ∩ E2) ∪ (F1 ∩ F2), where
F1 ∩E2 ∈ Rσ, F1 ∩ F2 ∈ Rc and F1 ∩E2 ∩ F2 = ∅, we have from (ii) and (iii)
that µ0(F1) = (µ̄)0(F1) = µ̄(F1 ∩ E2) + µ0(F1 ∩ F2). Consequently, again by
(iii) we obtain that

(µ̄)0(E1 ∪ F1) = µ̄(E1) + µ0(F1)
= µ̄(E1 ∩ E2) + µ̄(E1 ∩ F2) + µ̄(F1 ∩ E2) + µ0(F1 ∩ F2).

Interchanging E1 and F1 by E2 and F2, respectively, in the above equations
we see at once that (µ̄)0(E1 ∪ F1) = (µ̄)0(E2 ∪ F2). Thus (iv) holds.

For (v), suppose that A is any set in Aσ − Rσ of the form E ∪ F , where
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E ∈ Rσ, F ∈ Rc, and E ∩ F = ∅. Let {En}∞n=1 be an increasing sequence of
sets in R with E = ∪∞n=1En. Since {En ∪ F}∞n=1 is an increasing sequence of
sets in A with A = ∪∞n=1(En ∪ F ), we obtain that

(µ0)(A) = lim
n
µ0(En ∪ F )

= lim
n
µ0(En) + µ0(F ) = lim

n
µ(En) + µ0(F ) = µ̄(E) + µ0(F ),

so by (iii), (µ0)(A) = (µ̄)0(A). Now Assertion (v) follows from (i) and Lemma
4 (ii). �

The simple proof of the next lemma is omitted.

Lemma 9. For 0 < p ≤ ∞, define (µ̄)p on Aσ by (µ̄)p(A) = µ̄(A) if A ∈ Rσ
and (µ̄)p(A) = (µ̄)0(A) + p if A ∈ Aσ −Rσ. Then :

(i) (µ̄)p(E) = (µp)(E) = µ̄(E) if E ∈ Rσ;
(ii) (µ̄)p(F ) = (µp)(F ) = µp(F ) if F ∈ Rc;
(iii) (µ̄)p(E∪F ) = (µp)(E∪F ) = µ̄(E)+µp(F ) if E ∈ Rσ, F ∈ Rc,

and E ∩ F = ∅;
(iv) (µ̄)p(A) = (µp)(A) for all A ∈ Aσ.

For 0 ≤ p ≤ ∞, we write µ̄p(A) for (µ̄)p(A) = (µp)(A), where A ∈ Aσ.

Lemma 10. Let E be any subset of X.

(i) If E has a cover in Rσ, then µ∗p(E) = µ∗(E) for all p ∈ [0,∞].
(ii) If E has no cover in Rσ, then

µ∗p(E) = inf{µ̄p(A) : E ⊂ A ∈ Aσ −Rσ} for all p ∈ [0,∞].
(iii) If E has no cover in Rσ, then

µ∗p(E) = µ∗0(E) + p for all p ∈ (0,∞), and µ∗∞(E) =∞.
(iv) µ∗0(E) ≤ µ∗p(E) ≤ µ∗q(E) ≤ µ∗∞(E) = µ∗(E), where 0 < p < q <

∞.

PROOF. To prove (i), suppose that E ⊂ C ∈ Rσ and that p ∈ [0,∞]. Let C
and D denote the family of all coverings of E from Rσ and Aσ, respectively.
We have that C ∈ C ⊂ D so by part (i) of Lemma 8 or 9,

µ∗p(E) = inf{µ̄p(D) : D ∈ D} ≤ inf{µ̄p(D) : D ∈ C}
= inf{µ̄(D) : D ∈ C} = µ∗(E).

Trivially the reverse inequality holds if µ∗p(E) = ∞. To complete the proof
of (i), assume first that 0 ≤ p < ∞ and µ∗p(E) < ∞. For any ε > 0, there
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is an A ∈ Aσ such that E ⊂ A and µ̄p(A) ≤ µ∗p(E) + ε. Since E ⊂ A ∩
C ∈ Rσ, we have from part (i) of Lemma 8 or 9 that µ∗(E) ≤ µ̄(A ∩ C) =
µ̄p(A ∩ C) ≤ µ̄p(A) ≤ µ∗p(E) + ε, and hence µ∗(E) ≤ µ∗p(E), since ε is an
arbitrary positive real number. Next assume that µ∗∞(E) <∞. Then we have
µ∗∞(E) = inf{µ̄∞(A) : E ⊂ A ∈ Aσ} < ∞. By the definition of µ∞ we have
that µ∞(F ) =∞ for all F ∈ Rc, so that µ̄∞(A) =∞ for all A ∈ Aσ −Rσ by
Lemma 9 (iii). Consequently,

µ∗∞(E) = inf{µ̄∞(A) : E ⊂ A ∈ Rσ} = inf{µ̄(A) : E ⊂ A ∈ Rσ} = µ∗(E)

by Lemma 4 (ii), together with Lemma 9 (i). Thus (i) is established.
To prove (ii), suppose that E has no cover in Rσ. Since E ⊂ X ∈ Rc ⊂

Aσ − Rσ, E has at least one cover from Aσ − Rσ so by Lemma 4 (ii) we
establish (ii).

To prove (iii), again suppose that E has no cover in Rσ. Assume first that
0 < p < ∞. Since µ̄p(A) = µ̄0(A) + p for all A ∈ Aσ −Rσ by Lemma 9, we
obtain from (ii) that µ∗p(E) = inf{µ̄0(A)+p : E ⊂ A ∈ Aσ−Rσ} = µ∗0(E)+p.
As we noted in the proof of (i), we have that µ̄∞(A) =∞ for all A ∈ Aσ−Rσ,
so that by (ii), we get µ∗∞(E) =∞. Thus (iii) is established.

If E has no cover in Rσ, then by the definition of µ∗, together with (iii), we
have µ∗(E) = µ∗∞(E) =∞. By (i), we have µ∗(E) = µ∗∞(E). The inequalities
in (iv) now follow from (i) and (iii). Thus (iv) is established. �

We now turn to the relations among the σ-algebras M and Mp with 0 ≤
p ≤ ∞. Since µ∗ = µ∗∞ by Lemma 10 (iv), we obtain M = M∞. The next
proposition shows that Mp ⊂M for all p ∈ [0,∞).

Proposition 1. For 0 ≤ p < ∞, every µ∗p-measurable subset of X is µ∗-
measurable.

PROOF. Suppose that E is an arbitrary µ∗p-measurable subset of X, and let T
be any subset of X with µ∗(T ) < ∞. Obviously T has a cover in Rσ, so the
same is true for T ∩ E and T ∩ Ec, respectively. By Lemma 10 (i) we have
that µ∗p(T ) = µ∗(T ), µ∗p(T ∩ E) = µ∗(T ∩ E), and µ∗p(T ∩ Ec) = µ∗(T ∩ Ec).
Consequently, by the µ∗p-measurability of E we obtain that

µ∗(T ) = µ∗p(T ) = µ∗p(T ∩ E) + µ∗p(T ∩ Ec) = µ∗(T ∩ E) + µ∗(T ∩ Ec),

and hence E is µ∗-measurable. �

Proposition 2. For each E ⊂ X, E is µ∗-measurable if and only if E is
µ∗0-measurable.
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PROOF. Suppose that E is µ∗-measurable and that T is any subset of X with
µ∗0(T ) <∞. First assume that T has a cover in Rσ. Then T ∩E and T ∩Ec,
respectively, has a cover in Rσ. Since E is µ∗-measurable, using Lemma 10
(i) we obtain that

µ∗0(T ) = µ∗(T ) = µ∗(T ∩ E) + µ∗(T ∩ Ec) = µ∗0(T ∩ E) + µ∗0(T ∩ Ec),

and hence E is µ∗0-measurable.
Next assume that T has no cover in Rσ. By Lemma 10 (ii) there is, for any

ε > 0, a set A = F∪G, where F ∈ Rσ, G ∈ Rc and F∩G = ∅, such that T ⊂ A
and µ̄0(A) ≤ µ∗0(T ) + ε. By Lemma 8 we have that µ̄0(A) = µ̄(F ) + µ0(G).
We show easily that there is a set H ∈ Rσ such that H ⊂ G and µ0(G) =
µ̄(H). Set B = F ∪ H. We have that B ∈ Rσ, B ⊂ A and µ̄0(A) = µ̄(B).
Since A − B = G −H is µ∗0-measurable and since µ0(G) < ∞, we have that
µ∗0(A − B) = µ∗0(G −H) = µ0(G) − µ̄(H) = 0. Since, for any C ⊂ X, µ∗0 is
countably additive on the trace ofM0 on C, i.e., {S ∩C : S ∈M0} (see, e.g.,
[5, Problem 2, p.291]), we have that µ∗0(A ∩ C) = µ∗0(B ∩ C). In particular,
we have that µ∗0(A ∩ E) = µ∗0(B ∩ E) and µ∗0(A ∩ Ec) = µ∗0(B ∩ Ec).
Consequently, using the µ∗-measurability of B and E, together with Lemma
10 (i), we obtain that

µ∗0(T ) + ε ≥ µ̄0(A) = µ̄(B) = µ∗(B ∩ E) + µ∗(B ∩ Ec)
= µ∗0(B ∩ E) + µ∗0(B ∩ Ec)
= µ∗0(A ∩ E) + µ∗0(A ∩ Ec) ≥ µ∗0(T ∩ E) + µ∗0(T ∩ Ec),

and hence µ∗0(T ) ≥ µ∗0(T ∩ E) + µ∗0(T ∩ Ec), since ε is an arbitrary positive
real number. Thus E is µ∗0-measurable. By Proposition 1 we establish the
proposition. �

Proposition 3. For any positive real numbers p and q, a subset E of X is
µ∗p-measurable if and only if E is µ∗q-measurable.

PROOF. We assume that p 6= q. Suppose that E is µ∗p-measurable and let T be
any subset of X. Suppose first that T has a cover in Rσ. Since both T ∩E and
T ∩Ec have covers in Rσ and since E is also µ∗-measurable by Proposition 1,
we have from Lemma 10 (i) that

µ∗q(T ) = µ∗(T ) = µ∗(T ∩ E) + µ∗(T ∩ Ec) = µ∗q(T ∩ E) + µ∗q(T ∩ Ec).

Thus E is µ∗q-measurable. Next suppose that T has no cover in Rσ with
µ∗q(T ) < ∞. By Lemma 10 (iii) we have µ∗0(T ) < ∞. By the assumption on
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T , at least one of the sets T ∩ E and T ∩ Ec has no cover in Rσ. Suppose
that both of these sets have no cover in Rσ. Since E is µ∗0-measurable by
Propositions 1 and 2, we obtain from Lemma 10 (iii) that

µ∗0(T ) + p = µ∗p(T ) = µ∗p(T ∩ E) + µ∗p(T ∩ Ec)
= µ∗0(T ∩ E) + µ∗0(T ∩ Ec) + 2p = µ∗0(T ) + 2p,

so p = 0. This is a contradiction. Therefore, we can assume that T ∩ E has
a cover in Rσ and T ∩ Ec has no cover in Rσ. Consequently, we have from
parts (i) and (iii) of Lemma 10 that

µ∗q(T ) = µ∗0(T ) + q = µ∗0(T ∩ E) + µ∗0(T ∩ Ec) + q = µ∗q(T ∩ E) + µ∗q(T ∩ Ec).

Thus E is µ∗q-measurable. Interchanging p and q in the preceding result we
establish the proposition. �

Now we formulate the main result of this paper.

Theorem 2. Mp =M1 ⊂M0 =M∞ =M for all p ∈ (0,∞).

PROOF. By Proposition 3 we have thatMp =M1 for all positive real numbers
p. We infer from Propositions 1 and 2 that M1 ⊂ M = M0. As we noted
earlier, we have that M =M∞. �

We need not have M1 =M (see Example 5 or 6 below).

Example 5. Let X = {1, 2}, R = {∅}, and A = {∅, X}. Plainly R is a
σ-ring in X with X 6∈ R, and A is the σ-algebra generated by R. Define
µ(∅) = 0. Then µ is a countably additive measure on R. We have at once
that µ∗(∅) = 0 and µ∗(E) =∞ if E is a nonempty subset of X, so µ∗ is also
a countably additive measure on P(X) = {∅, {1}, {2}, X}. Thus M = P(X).
Since µ0(∅) = µ0(X) = 0, we obtain that µ∗0(E) = 0 for all E ⊂ X. By
Lemmas 5 and 10 we have that, for all p ∈ (0,∞], µp(∅) = 0 and µp(X) = p,
so µ∗p(∅) = 0 and µ∗p(E) = p if E = {1}, {2} or X. Notice that µ∗ = µ∗∞. We
assert that Mp = A for all p ∈ (0,∞). To prove the assertion, suppose that
p is any positive real number. Since p = µ∗p(X) < µ∗p({1}) + µ∗p({2}) = 2p,
both {1} and {2} are not µ∗p-measurable and hence the assertion is established.
Thus M1 6=M.

In the following examples, let X denote any uncountable set, let R denote
the ring of all finite subsets of X, and let A and B denote, respectively, the
algebra and the σ-algebra generated by R as in Example 2. For any measure
µ on R, the measure µp (0 ≤ p ≤ ∞) on A induced by µ and parameter p is
countably additive, since µ is countably additive.
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Example 6. Define µ(E) = 0 for all E inR. Plainly µ is a countably additive
measure on R. Since µ̄(E) = 0 for all E in Rσ, we obtain that µ∗(E) = 0 or
∞ according as E is countable or not. Then µ∗ is also a countably additive
measure on P(X) so thatM = P(X). We next compute µ∗0. Since µ0(E) = 0
for all A in A, we obtain that µ̄0(E) = 0 for all E in Aσ = Rσ ∪ Rc (see
Example 2), and hence µ∗0(E) = 0 for all E ⊂ X. By Lemma 10 (iii) we
have that µ∗1(E) = 0 or 1 according as E is countable or not. Assert that
M1 = B. Since B = Rσ ∪ (Rσ)c by Example 2, we obtain B ⊂M1. To prove
the opposite inclusion, suppose that A is any subset of X such that both A
and Ac are uncountable. Then 1 = µ∗1(X) < µ∗1(A) + µ∗1(Ac) = 2 so A is not
µ∗1-measurable. Thus the assertion holds. Consequently, M1 6=M.

Example 7. Define µ on R by µ(E) = card E for all E in R. Then µ is
a countably additive measure on R. We obtain that µ̄(E) = card E if E is
finite and µ̄(E) =∞ if E is countably infinite, so that µ∗(E) = card E if E is
finite and µ∗(E) =∞ if E is infinite. Then µ∗ is a countably additive measure
on P(X) so M = P(X). On the other hand, we have that µ0(E) = card E
if E is finite and µ0(E) = ∞ if E is cofinite, and that µ̄0(E) = card E if E
is finite and µ̄0(E) = ∞ if E is countably infinite or cofinite. Consequently,
µ∗0 = µ∗. By part (iv) of Lemma 10 we obtain that for all p ∈ [0,∞], µ∗p = µ∗

so Mp =M.

Example 8. Define µ on R by µ(∅) = 0 and µ(E) =∞ if E ∈ R and E 6= ∅.
Then µ is a countably additive measure on R. It follows easily that µ∗(∅) = 0
and µ∗(E) = ∞ if E 6= ∅, and that µ∗ is a countably additive measure on
P(X), so M = P(X). As in Example 7, we obtain that for all p ∈ [0,∞],
µ∗p = µ∗ so Mp =M.
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